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REMINDER: TRUSTED VS. UNTRUSTED CURATOR

Trusted curator model (also called
global model or centralized model):
A is differentially private wrt dataset D
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Untrusted curator model (also called
local model or distributed model):
Each Ri is differentially private wrt
record (or local dataset) xi
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TODAY’S LECTURE

1. Local Differential Privacy (LDP)

2. Intermediate trust models

3. Federated Learning

4. Wrapping up
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LOCAL DIFFERENTIAL PRIVACY (LDP)



PRIVATELY ANSWERING TO A SURVEY

• Consider the following setup:
• A researcher wants to conduct a survey of n individuals, which consists of a single yes/no
question that the researcher asks each individual

• The researcher is interested in the proportion of “yes” answers
• However the subject matter is very sensitive or embarrassing, such as “did you have sex
with a prostitute this month?” or “have you ever assaulted someone?”

• If the researcher was fully trusted to collect the true individual answers, we could
use Laplace or Gaussian mechanisms to make the final result differentially private

• However, this is not the case here: we can expect that just asking the individuals to
reply truthfully will induce important bias in the result of the survey

• How can we provide privacy to the participants while getting an unbiased result?
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SIMPLE RANDOMIZED RESPONSE

• We denote the truthful answer of individual i by xi ∈ {0, 1} and the true proportion
of “yes” by Y = 1

n
∑n

i=1 xi

• Consider the following simple randomized approach: each participant answers
truthfully (zi = xi) with probability p and falsely (zi = ¬xi) with probability 1− p

• Let’s do it! If you agree, we can use p = 0.75 (you can flip a coin two times, or just
use a random number generator)

• The expected proportion of “yes” is given by pY+ (1− p)(1− Y), so we can recover an
unbiased estimate Ŷ of Y by computing:

Ŷ =
1
n
∑n

i=1 zi + p− 1
2p− 1

• This approach, which dates back to [Warner, 1965], satisfies local differential privacy!
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LOCAL DIFFERENTIAL PRIVACY

• As always, let X denote an abstract data domain

• A local randomizer R : X → Z is a randomized function which maps an input x ∈ X
to an output z ∈ Z

Definition (Local Differential Privacy [Kasiviswanathan et al., 2008, Duchi et al., 2013])
Let ε > 0 and δ ∈ (0, 1). A local randomizer algorithm R is (ε, δ)-locally differentially
private (LDP) if for all x, x′ ∈ X and any possible z ∈ Z :

Pr[R(x) = z] ≤ eε Pr[R(x′) = z] + δ.

• This is equivalent to (ε, δ)-DP for datasets of size 1!

• LDP is a much stronger model than central DP (no trusted curator)

• Indeed, LDP allows participants to have plausible deniability even if the curator is
compromised: they can deny having value x on the basis of lack of evidence 5

https://en.wikipedia.org/wiki/Plausible_deniability


K-ARY RANDOMIZED RESPONSE: ALGORITHM & PRIVACY GUARANTEES

• Assume a K-ary data domain X = {v1, . . . , vK}

Algorithm: K-ary Randomized Response RRR,K(x, ε) [Kairouz et al., 2014]

1. Sample b ∼ Ber(K/(eε + K− 1))
2. If b = 0 output x, else output y ∼ Unif(X )

• K−RR will output the true value w.p. eε−1
eε+K−1 , or a random value w.p. K

eε+K−1

• This can be seen as a generalization of the simple binary version that we used earlier

Theorem (DP guarantees for K-RR mechanism)
Let ε > 0. The K-ary randomized response mechanism RRR,K(·, ε) satisfies ε-LDP.
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K-ARY RANDOMIZED RESPONSE: ALGORITHM & PRIVACY GUARANTEES

Proof.

• For any x, x′ ∈ X and z ∈ Z , we want to show that Pr[RRR,K(x)=z]
Pr[RRR,K(x′)=z] ≤ eε

• If x ̸= z ∧ x′ ̸= z or x = x′ = z, then clearly Pr[RRR,K(x) = z] = Pr[RRR,K(x′) = z]

• We thus focus on the case x = z and x′ ̸= z. We have:

Pr[RRR,K(x) = z] = eε − 1
eε + K− 1 +

K
K(eε + K− 1) =

eε
eε + K− 1

Pr[RRR,K(x′) = z] = 1
eε + K− 1

• Taking the ratio gives us the desired result
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K-ARY RANDOMIZED RESPONSE: UTILITY GUARANTEES

• Let h = (h1, . . . ,hK) denote the histogram of the private data: hk =
1
n
∑n

i=1 I[xi = vk]

• Letting p = eε−1
eε+K−1 , K-RR allows us to obtain an unbiased estimate ĥ of h by setting

ĥk =
( 1
n
∑n

i=1 I[zi = vk])− 1−p
K

p =
( 1
n
∑n

i=1 I[zi = vk])(eε + K− 1)− 1
eε − 1

Theorem (ℓ2 error of K-ary randomized response)
Let ε > 0. The histogram ĥ obtained using the K-ary randomized response mechanism
satisfies for any k ∈ {1, . . . , K}:

E[(ĥk − hk)
2] =

K− 2+ eε
n(eε − 1)2 .

• Proof: exercise
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REAL AVERAGING AND SUM QUERIES IN LDP

• Let f be a public function from X to a bounded numeric range (say f : X → [0, 1])

• We want to compute an averaging query f̄ = 1
n
∑n

i=1 f(xi)

• How to do this in the LDP setting?

• We can readily use the Laplace and Gaussian mechanisms!

• Indeed, seeing each input as a dataset of size 1, the query f(x) sensitivity is 1:

∆1(f) = max
x,x′
|f(x)− f(x′)| = 1, and similarly ∆2(f) = 1

• For instance, with the Laplace mechanism, we get an estimate of f̄ with variance 2/nε2
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THE COST OF THE LOCAL MODEL

• As one can expect, there is a large utility gap between the central and the local
model of DP: it is typically a factor of O(1/

√
n) in ℓ1 error (or O(1/n) in ℓ2 error)

• Example 1: histograms
• In the local model, we have seen that E[(ĥk − hk)

2] = O(1/n)
• In the central model, we can compute the exact hk =

1
n
∑n

i=1 I[xi = vk] and add Laplace
noise calibrated to its ℓ1 sensitivity 1/n, hence we get E[(ĥk − hk)

2] = O(1/n2)

• Example 2: averaging queries
• In the local model, we have seen that we get a variance of O(1/n)
• In the central model, we can compute the exact f̄ and add Laplace noise calibrated to its
ℓ1 sensitivity ∆1(̄f) = 1/n, hence we get a variance of O(1/n2)

• This gap is known to be unavoidable for some queries like averaging [Chan et al., 2012]

• This restricts the usefulness of LDP to applications where n is very large
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INTERMEDIATE TRUST MODELS



COMPUTATIONAL DP

• The gap between local and central DP is due to the lack of a trusted curator

• If the participants could simulate the trusted curator without anyone learning
anything more than the final result, we would obtain the best of both worlds!

• Designing such protocols is precisely the focus of secure multi-party computation
(MPC), a subfield of cryptography

• It seems too good to be true. What is the catch?

• First, the guarantees of MPC only hold against computationally-bounded adversaries:
this gives rise to the relaxed notion of computational DP [Mironov et al., 2009]

• Second, general-purpose MPC is computationally intractable, so we need to restrict
our attention to MPC primitives that are sufficiently efficient
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USEFUL MPC PRIMITIVES

Individuals
(or organizations)

... A

Untrusted
curator

A(M)

x1

x2

xn

z1

z2

zn

Secure aggregation

Secure shuffling

...

R1

R2

Rn

MPC
primitive

M

• Secure aggregation takes as input a value zi for each participant i and outputs
∑n

i=1 zi
• Very natural to use in averaging/sum queries
• State-of-the-art protocols [Bonawitz et al., 2017] have communication cost of O(n2)

• Secure shuffling takes as input a value zi for each participant i and outputs a random
permutation of the inputs (i.e., makes communications anonymous)

• Generic privacy amplification results [Erlingsson et al., 2019, Balle et al., 2019]
• Practical implementations are costly (e.g., layers of servers + non-collusion assumptions)
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FEDERATED LEARNING



A BROAD DEFINITION OF FEDERATED LEARNING

• Federated Learning (FL) [Kairouz et al., 2021] aims to collaboratively train a ML model
while keeping the data decentralized

• We would like the final model to be as good as the centralized solution (ideally), or
at least better than what each party can learn on its own

13



A BROAD DEFINITION OF FEDERATED LEARNING

• Federated Learning (FL) [Kairouz et al., 2021] aims to collaboratively train a ML model
while keeping the data decentralized

initialize model

• We would like the final model to be as good as the centralized solution (ideally), or
at least better than what each party can learn on its own

13



A BROAD DEFINITION OF FEDERATED LEARNING

• Federated Learning (FL) [Kairouz et al., 2021] aims to collaboratively train a ML model
while keeping the data decentralized

each party makes an update
using its local dataset

• We would like the final model to be as good as the centralized solution (ideally), or
at least better than what each party can learn on its own
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A BROAD DEFINITION OF FEDERATED LEARNING

• Federated Learning (FL) [Kairouz et al., 2021] aims to collaboratively train a ML model
while keeping the data decentralized

parties share local
updates for aggregation

• We would like the final model to be as good as the centralized solution (ideally), or
at least better than what each party can learn on its own
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A BROAD DEFINITION OF FEDERATED LEARNING

• Federated Learning (FL) [Kairouz et al., 2021] aims to collaboratively train a ML model
while keeping the data decentralized

server aggregates updates
and sends back to parties

• We would like the final model to be as good as the centralized solution (ideally), or
at least better than what each party can learn on its own
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A BROAD DEFINITION OF FEDERATED LEARNING

• Federated Learning (FL) [Kairouz et al., 2021] aims to collaboratively train a ML model
while keeping the data decentralized

parties update their copy
of the model and iterate

• We would like the final model to be as good as the centralized solution (ideally), or
at least better than what each party can learn on its own 13



CROSS-DEVICE VS. CROSS-SILO FL

Cross-device FL

• Massive number of parties (up to 1010)

• Small dataset per party (could be size 1)

• Limited availability and reliability

• Some parties may be malicious

Cross-silo FL

• 2-100 parties

• Medium to large dataset per party

• Reliable parties, almost always available

• Parties are typically honest
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SERVER ORCHESTRATED VS. FULLY DECENTRALIZED FL

Server-orchestrated FL

• Server-client communication

• Global coordination, global aggregation

• Server is a single point of failure and
may become a bottleneck

Fully decentralized FL

• Device-to-device communication

• No global coordination, local aggregation

• Naturally scales to a large number of
devices
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EMPIRICAL RISK MINIMIZATION IN FL

• We consider a set of n parties (clients)

• Each party i holds a dataset Di of mi points

• Let D = D1 ∪ · · · ∪ Dn be the joint dataset and m =
∑

imi the total number of points

• We denote by θ ∈ Rp the model parameters

• We want to solve ERM problems of the form minθ∈Rp F(θ;D) where:

F(θ;D) =
n∑
i=1

mi
m Fi(θ;Di) and Fi(θ;Di) =

∑
(x,y)∈Di

L(θ; x; y),

where L(θ; x, y) is the loss function
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FEDAVG (AKA LOCAL SGD) [MCMAHAN ET AL., 2017]

Algorithm FedAvg (server-side)
initialize θ

for each round t = 0, 1, . . . do
for each client i in parallel do
θi ← ClientUpdate(i, θ)

end for
θ ←

∑n
i=1

mi
m θi

end for

Algorithm ClientUpdate(i, θ)
Parameters: batch size B, number of local
steps E, learning rate η
for each local step 1, . . . , E do
B ← mini-batch of B examples from Di
θ ← θ − mi

B η
∑

(x,y)∈B∇L(θ; x, y)
end for
send θ to server

• For E = 1, it is equivalent to classic parallel SGD

• For E > 1: each client performs multiple local SGD steps before communicating
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DIFFERENTIALLY PRIVATE FEDAVG

• A simple approach is to use local gradient perturbation to make each client update
DP with respect to its local dataset

• In particular, when E = 1 we recover DP-SGD but the gradient used to update has
increased variance (because noise is added locally before aggregation)

• Secure aggregation or other DP aggregation schemes [Sabater et al., 2020] can be
readily used to recover the utility of centralized DP-SGD

• This is also the case with secure shuffling [Girgis et al., 2020]
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WRAPPING UP



TAKE-AWAYS OF THE COURSE

1. Any personal information can be sensitive, and anonymization is hard

2. Privacy should be a property of the analysis, not of a particular output

3. Differential privacy provides a robust mathematical definition of privacy

4. Simple DP primitives can be used as basis to design complex algorithms

5. In ML, this leads to approaches based on output, objective and gradient perturbation

6. When there is no trusted curator, DP can be deployed locally at the participants’ level

7. This can be used to train models while keeping data decentralized and confidential
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ADVERTISEMENT

• Privacy-preserving ML and federated learning are booming topics in the core ML
community but also in applied fields and in the industry

• They are my main current research interests and key topics for the Inria Magnet team

• If you liked these topics, there may be opportunities for you (Master internships, PhD
positions, engineer positions)

• Get in touch with me if you’re interested!
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