PRIVACY PRESERVING MACHINE LEARNING

LECTURE 5: DIFFERENTIALLY PRIVATE STOCHASTIC GRADIENT DESCENT

Aurélien Bellet (Inria)

Master 2 Data Science, University of Lille

REMINDER: EMPIRICAL RISK MINIMIZATION (ERM)

- · $D = \{(x_i, y_i)\}_{i=1}^n$: training points drawn i.i.d. from distribution μ over $\mathcal{X} \times \mathcal{Y}$
- · Models $h_{\theta}: \mathcal{X} \to \mathcal{Y}$ parameterized by $\theta \in \Theta \subseteq \mathbb{R}^p$
- $L(\theta; x, y)$: loss of model h_{θ} on data point (x, y)
- $\hat{R}(\theta; D) = \frac{1}{n} \sum_{i=1}^{n} L(\theta; x_i, y_i)$: empirical risk of model h_{θ}
- $\psi(\theta)$: regularizer on model parameters (e.g., ℓ_2 norm)

Empirical Risk Minimization (ERM)

$$\hat{\theta} \in \underset{\theta \in \Theta}{\operatorname{arg min}} [F(\theta; D) := \hat{R}(\theta; D) + \lambda \psi(\theta)]$$

where $\lambda \geq 0$ is a trade-off hyperparameter.

1

REMINDER: USEFUL PROPERTIES

- We typically work with loss functions that are differentiable in θ : for $(x,y) \in \mathcal{X} \times \mathcal{Y}$, we denote the gradient of L at θ by $\nabla L(\theta; x, y) \in \mathbb{R}^p$
- We also like the loss function, its gradient and/or the regularizer to be Lipschitz

Definition (Lipschitz function)

Let l > 0. A function f is l-Lipschitz with respect to some norm $\|\cdot\|$ if if for all $\theta, \theta' \in \Theta$:

$$|f(\theta) - f(\theta')| \le l||\theta - \theta'||.$$

If f is differentiable and $\|\cdot\| = \|\cdot\|_2$, the above property is equivalent to:

$$\|\nabla f(\theta)\|_2 \leq l, \quad \forall \theta \in \Theta.$$

• It is also useful when the loss and/or regularizer are convex or strongly convex

Definition (Strongly convex function)

Let $s \ge 0$. A differentiable function f is s-strongly convex if for all $\theta, \theta' \in \Theta$:

$$f(\theta') \ge f(\theta) + \nabla f(\theta)^{\top} (\theta - \theta') + \frac{s}{2} \|\theta - \theta'\|_2^2,$$

or equivalently:

$$(\nabla f(\theta) - \nabla f(\theta'))^{\top} (\theta - \theta') \ge s \|\theta - \theta'\|_2^2,$$

For s = 0, we simply say that f is convex.

REMINDER: DP-ERM VIA OUTPUT PERTUBATION

Algorithm: DP-ERM via output perturbation $\mathcal{A}_{DP-ERM}(D, L, \psi, \lambda, \varepsilon, \delta)$

- 1. Compute ERM solution $\hat{ heta} = \mathop{\sf arg\,min}_{ heta \in \mathbb{R}^p} extit{F}(heta)$
- 2. For $j=1,\ldots,p$: draw $Y_j \sim \mathcal{N}(0,\sigma^2)$ independently for each j, where $\sigma=\frac{2\sqrt{2\ln(1.25/\delta)}}{n\lambda\varepsilon}$
- 3. Output $\hat{\theta} + Y$, where $Y = (Y_1, \dots, Y_p) \in \mathbb{R}^p$

Theorem (DP guarantees for DP-ERM via output perturbation)

Let $\varepsilon, \delta > 0$ and $\Theta = \mathbb{R}^p$. For ψ differentiable and 1-strongly convex, and $L(\cdot; x, y)$ convex, differentiable and 1-Lipschitz, $\mathcal{A}_{DP-ERM}(\cdot, L, \psi, \varepsilon, \delta)$ is (ε, δ) -DP.

4

TODAY'S LECTURE

- 1. Differentially Private SGD
- 2. Summary of DP-ERM results

LIMITATIONS OF DP-ERM VIA OUTPUT PERTURBATION

- 1. It requires restrictive assumptions on the loss function and regularizer
- 2. The sensitivity is likely to be pessimistic as it treats ERM as a black box

ALTERNATIVE APPROACH: DIFFERENTIALLY PRIVATE ERM SOLVER

- Another approach is to design differentially private ERM solvers
- Such a solver (optimization algorithm) must interact with the data only through DP mechanisms
- The idea is to perturb only the quantities accessed by a particular solver

NON-PRIVATE STOCHASTIC GRADIENT DESCENT (SGD)

- · For simplicity, let us assume that $\psi(\theta) = 0$ (no regularization)
- · Denote by $\Pi_{\Theta}(\theta) = \arg\min_{\theta' \in \Theta} \|\theta \theta'\|_2$ the projection operator onto Θ

Algorithm: Non-private (projected) SGD

- · Initialize parameters to $heta^{(0)} \in \Theta$
- For t = 0, ..., T 1:
 - Pick $i_t \in \{1, ..., n\}$ uniformly at random
 - $\cdot \ \theta^{(t+1)} \leftarrow \Pi_{\Theta}(\theta^{(t)} \gamma_t \nabla L(\theta^{(t)}; X_{i_t}, y_{i_t}))$
- Return $\theta^{(T)}$
- · SGD is a natural candidate solver: simple, flexible, scalable, heavily used in ML
- · How to design a DP version of SGD?

MAKING THE STOCHASTIC GRADIENT PRIVATE

- · We have already seen ingredients to do this in previous lectures
- Assume that $L(\cdot; x, y)$ is *l*-Lipschitz with respect to the ℓ_2 norm for any $(x, y) \in \mathcal{X} \times \mathcal{Y}$
- Then we know that for all x, y, θ we have $\|\nabla L(\theta; x, y)\| \le l$
- Therefore, at any step t of SGD, the ℓ_2 sensitivity of individual gradients is bounded:

$$\sup_{x,y,x',y'} \|\nabla L(\theta;x,y) - \nabla L(\theta;x',y')\| \le 2l, \quad \forall \theta \in \Theta$$

and we can use the Gaussian mechanism

· It feels like we can do better...

Theorem (Amplification by subsampling [Balle et al., 2018])

Let $\mathcal X$ be a data domain and $\mathcal S:\mathcal X^n\to\mathcal X^m$ be a procedure such that $\mathcal S(D)$ returns a random subset of m records sampled uniformly without replacement from D. Let $\mathcal A$ be an (ε,δ) -DP algorithm. Then $\mathcal A\circ\mathcal S$ satisfies $(\varepsilon',\frac mn\delta)$ -DP with $\varepsilon'=\ln\left(1+\frac mn(e^\varepsilon-1)\right)$.

- The amplification effect is due to the secrecy of the samples
- For simplicity of exposition, we will use the following approximation: when $\varepsilon \leq 1$, $\ln\left(1+\frac{m}{n}(e^{\varepsilon}-1)\right) \leq 2\frac{m}{n}\varepsilon$ (but in practice the tight version above should be used!)
- The proof and results with other sampling schemes can be found in [Balle et al., 2018]

DIFFERENTIALLY PRIVATE SGD: ALGORITHM & PRIVACY GUARANTEES

Algorithm: Differentially Private SGD $A_{DP-SGD}(D, L, \varepsilon, \delta)$

- · Initialize parameters to $\theta^{(0)} \in \Theta$ (must be independent of D)
- For t = 0, ..., T 1:
 - Pick $i_t \in \{1, ..., n\}$ uniformly at random
 - $\boldsymbol{\gamma}^{(t)} \leftarrow (\eta_1^{(t)}, \dots, \eta_p^{(t)}) \in \mathbb{R}^p$ where each $\eta_j^{(t)} \sim \mathcal{N}(0, \sigma^2)$ with $\sigma = \frac{16l\sqrt{T \ln(2/\delta) \ln(2.5T/\delta n)}}{n\varepsilon}$
 - $\cdot \ \theta^{(t+1)} \leftarrow \Pi_{\Theta} \Big(\theta^{(t)} \gamma_t \big(\nabla L(\theta^{(t)}; \mathsf{x}_{i_t}, \mathsf{y}_{i_t}) + \boldsymbol{\eta^{(t)}} \big) \Big)$
- Return $\theta^{(T)}$
- More data (larger n) \rightarrow less noise added to each gradient
- More iterations (larger T) \rightarrow more noise added to each gradient

Theorem (DP guarantees for DP-SGD)

Let $\varepsilon \leq 1, \delta > 0$. Let the loss function $L(\cdot; x, y)$ be l-Lipschitz w.r.t. the ℓ_2 norm for all $x, y \in \mathcal{X} \times \mathcal{Y}$. Then $\mathcal{A}_{DP\text{-}SGD}(\cdot, L, \varepsilon, \delta)$ is $(\varepsilon, \delta)\text{-}DP$.

DIFFERENTIALLY PRIVATE SGD: ALGORITHM & PRIVACY GUARANTEES

Proof.

- Recall that for a query with ℓ_2 sensitivity Δ , achieving (ε', δ') with the Gaussian mechanism requires to add noise with standard deviation $\sigma' = \frac{\sqrt{2 \ln(1.25/\delta')}\Delta}{\varepsilon'}$
- So with $\Delta=2l$, $\sigma=\frac{16l\sqrt{T\ln(2/\delta)\ln(2.5T/\delta n)}}{n\varepsilon}$, each noisy gradient is $\left(\frac{n\varepsilon}{4\sqrt{2T\ln(2/\delta)}},\frac{\delta n}{2T}\right)$ -DP
- Now, taking into account the randomness in the choice of i_t using privacy amplification by subsampling, each noisy gradient is in fact $\left(\frac{\varepsilon}{2\sqrt{2T\ln(2/\delta)}}, \frac{\delta}{2T}\right)$ -DP
- DP-SGD is an adaptive composition of T DP mechanisms, so by advanced composition (using the simple corollary in lecture 3) we obtain that it is (ε, δ) -DP

12

Theorem (Utility guarantees for DP-SGD [Bassily et al., 2014])

Let Θ be a convex domain of diameter bounded by R, and let the loss function L be convex and l-Lipschitz over Θ . For $T=n^2$ and $\gamma_t=O(R/\sqrt{t})$, DP-SGD guarantees:

$$\mathbb{E}[F(\theta^{(T)}] - \min_{\theta \in \Theta} F(\theta) \le O\left(\frac{lR\sqrt{p\ln(1/\delta)\ln^{3/2}(n/\delta)}}{n\varepsilon}\right).$$

If the objective F is also s-strongly convex, then for $T = n^2$ and $\gamma_t = 1/\text{st}$ we have:

$$\mathbb{E}[F(\theta^{(T)}] - \min_{\theta \in \Theta} F(\theta) \le O\left(\frac{\ell^2 p \ln(1/\delta) \ln^2(n/\delta)}{s \varepsilon^2 n^2}\right).$$

- The utility gap with respect to the non-private model reduces with n
- Privacy induces a larger cost for high-dimensional models
- We see notable differences between the convex and strongly convex cases

• We will rely on a very general lemma giving convergence rates for SGD algorithms

Lemma ([Shamir and Zhang, 2013])

Let F be a convex function over a convex domain Θ with diameter bounded by R. Consider any SGD algorithm $\theta^{(t+1)} \leftarrow \Pi_{\Theta}(\theta^{(t)} - \gamma_t g_t)$ where g_t satisfies $\mathbb{E}[g_t] = \nabla F(\theta^{(t)})$ and $\mathbb{E}[\|g_t\|^2] \leq G^2$. By setting $\gamma_t = \frac{R}{G\sqrt{t}}$, we have

$$\mathbb{E}[F(\theta^{(T)}] - \min_{\theta \in \Theta} F(\theta) \le 2RG\left(\frac{2 + \log T}{\sqrt{T}}\right).$$

If F is also s-strongly convex, then setting $\gamma_t = \frac{1}{st}$ gives

$$\mathbb{E}[F(\theta^{(T)}] - \min_{\theta \in \Theta} F(\theta) \le \frac{17G^2(1 + \log T)}{sT}.$$

Proof of the theorem.

- · Denote by $g_t = \nabla L(\theta^{(t)}; x_{i_t}, y_{i_t}) + \eta^{(t)}$ the noisy gradient at step t
- · Let us examine $\mathbb{E}[g_t]$ and $\mathbb{E}[\|g_t\|^2]$
- We have $\mathbb{E}[g_t] = \frac{1}{n} \sum_{i=1}^n \nabla L(\theta^{(t)}; x_i, y_i) + \mathbb{E}[\eta^{(t)}] = \nabla F(\theta^{(t)}; D)$, hence g_t is an unbiased estimate of the gradient of the objective function at $\theta^{(t)}$
- Furthermore, since $\nabla L(\theta^{(t)}; x_{i_t}, y_{i_t})$ and $\eta^{(t)}$ are independent and L is l-Lipschitz:

$$\mathbb{E}[\|g_t\|^2] = \mathbb{E}[\|\nabla L(\theta^{(t)}; X_{i_t}, Y_{i_t})\|^2] + \mathbb{E}[\|\eta^{(t)}\|^2]$$

$$\leq l^2 + \rho \frac{256l^2T \ln(2/\delta) \ln(2.5T/\delta n)}{\varepsilon^2 n^2}$$

15

Proof of the theorem.

- It remains to plug our results in the previous lemma and to set *T* appropriately
- · For the convex case, we get:

$$\mathbb{E}[F(\theta^{(T)}] - \min_{\theta \in \Theta} F(\theta) \le O\left(\frac{lR \ln T}{\sqrt{T}} + \frac{lR\sqrt{pT \ln(T) \ln(1/\delta) \ln(T/\delta n)}}{n\varepsilon\sqrt{T}}\right)$$

· For the s-strongly case, we get:

$$\mathbb{E}[F(\theta^{(T)}] - \min_{\theta \in \Theta} F(\theta) \le O\left(\frac{l^2 \ln T}{sT} + \frac{l^2 p T \ln(T) \ln(1/\delta) \ln(T/\delta n)}{\varepsilon^2 n^2 s T}\right)$$

• In both cases, choosing $T = n^2$ balances the two terms ("optimization error" and "privacy error") and gives the result

DIFFERENTIALLY PRIVATE SGD: IMPROVEMENTS

- In practice one should apply the tighter versions of amplification by subsampling and advanced composition to obtain better performance
- Using moments accountant [Abadi et al., 2016] or Rényi DP [Wang et al., 2019], one can further save a factor $O(\sqrt{\ln T/\delta})$ in the composition and get better constants
- There are some straightforward extensions of DP-SGD:
 - · Mini-batch version: same analysis applies with minor modifications
 - · Regularization: can be readily incorporated into the algorithm
 - Non-differentiable loss: if *L* is only sub-differentiable (e.g., hinge loss, ReLU), one can use a subgradient instead of the gradient
 - Non-Lipschitz loss: if *L* is not Lipschitz (or the constant is hard to bound as in deep neural nets), one can use gradient clipping *before* adding the noise, see [Abadi et al., 2016]
- It is also possible to improve the $O(n^2)$ gradient complexity, e.g., down to $O(n \log n)$ using variance reduction techniques [Wang et al., 2017]

DP-ERM: SOME RESULTS FOR THE STRONGLY CONVEX CASE

- Assume convex 1-Lipschitz loss with 1-Lipschitz gradient, 1-strongly convex objective
- Tight lower bound for (ε, δ) -DP: $\Omega(\min\{1, \frac{p}{n^2 \varepsilon^2}\})$
- Upper bounds (ignoring multiplicative dependence on $log(1/\delta)$):

Paper	Technique	Excess risk
[Chaudhuri et al., 2011]	Black box output perturbation	$O\left(\frac{p}{n^2\varepsilon^2}\right)$
[Chaudhuri et al., 2011]	Objective perturbation	$O\left(\frac{p}{n^2\varepsilon^2}\right)$
[Bassily et al., 2014]	Gradient perturbation (this lecture)	$O\left(\frac{p \ln^2(n)}{n^2 \varepsilon^2}\right)$
[Wang et al., 2017]	Gradient perturbation with MA + VR	$O\left(\frac{p \ln(n)}{n^2 \varepsilon^2}\right)$

(MA: Moments Accountant, VR: Variance Reduction)

DP-ERM: SOME RESULTS FOR THE CONVEX CASE

- · Assume convex 1-Lipschitz loss with 1-Lipschitz gradient
- Tight lower bound for (ε, δ) -DP: $\Omega(\min\{1, \frac{\sqrt{p}}{n\varepsilon}\})$
- Upper bounds (ignoring multiplicative dependence on $log(1/\delta)$):

Paper	Technique	Excess risk
[Chaudhuri et al., 2011]	Objective perturbation	$O\left(\frac{\sqrt{p}}{n\varepsilon}\right)$
[Bassily et al., 2014]	Gradient perturbation (this lecture)	$O\left(\frac{\sqrt{p}\ln^{3/2}(n)}{n\varepsilon}\right)$
[Wang et al., 2017]	Gradient perturbation with MA + VR	$O\left(\frac{\sqrt{p}}{n\varepsilon}\right)$
[Feldman et al., 2018]	Gradient perturbation with amp. by iteration	$O\left(\frac{\sqrt{p}}{n\varepsilon^2}\right)$

- More results can be found in [Bassily et al., 2014, Wang et al., 2017]
- For problems with more structure, other gradient perturbation algorithms and lower bounds exist, see e.g. [Talwar et al., 2015, Mangold et al., 2022]

REFERENCES I

- [Abadi et al., 2016] Abadi, M., Chu, A., Goodfellow, I. J., McMahan, H. B., Mironov, I., Talwar, K., and Zhang, L. (2016). Deep learning with differential privacy.

 In CCS.
- [Balle et al., 2018] Balle, B., Barthe, G., and Gaboardi, M. (2018).
 Privacy amplification by subsampling: tight analyses via couplings and divergences.
 In NeurIPS.
- [Bassily et al., 2014] Bassily, R., Smith, A. D., and Thakurta, A. (2014).

 Private Empirical Risk Minimization: Efficient Algorithms and Tight Error Bounds.
 In FOCS.
- [Chaudhuri et al., 2011] Chaudhuri, K., Monteleoni, C., and Sarwate, A. D. (2011). **Differentially Private Empirical Risk Minimization.** Journal of Machine Learning Research, 12:1069–1109.
- [Feldman et al., 2018] Feldman, V., Mironov, I., Talwar, K., and Thakurta, A. (2018).
 Privacy Amplification by Iteration.
 In FOCS.
- [Mangold et al., 2022] Mangold, P., Bellet, A., Salmon, J., and Tommasi, M. (2022). **Differentially Private Coordinate Descent for Composite Empirical Risk Minimization.** In *ICML*.

REFERENCES II

[Shamir and Zhang, 2013] Shamir, O. and Zhang, T. (2013).

Stochastic Gradient Descent for Non-smooth Optimization: Convergence Results and Optimal Averaging Schemes.

In ICML.

[Talwar et al., 2015] Talwar, K., Guha Thakurta, A., and Zhang, L. (2015).

Nearly Optimal Private LASSO.

In NIPS.

[Wang et al., 2017] Wang, D., Ye, M., and Xu, J. (2017).

Differentially Private Empirical Risk Minimization Revisited: Faster and More General.

In NIPS.

[Wang et al., 2019] Wang, Y.-X., Balle, B., and Kasiviswanathan, S. P. (2019).

Subsampled Renyi Differential Privacy and Analytical Moments Accountant.

In AISTATS.