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REMINDER: EMPIRICAL RISK MINIMIZATION (ERM)

* D= {(x;,y;)}[_: training points drawn i.i.d. from distribution p over X x Y
- Models hy : X — Y parameterized by § € © C RP
- L(6;x,y): loss of model hy on data point (x,y)
- R(6;D) = LS4 L(6; x;, yi): empirical risk of model hg
- (0): regularizer on model parameters (e.g.,, £, norm)
Empirical Risk Minimization (ERM)
0 € argmin[F(6; D) := R(6; D) + \p(0)]

USC)

where A > 0 is a trade-off hyperparameter.



REMINDER: USEFUL PROPERTIES

- We typically work with loss functions that are cfor (x,y) € X x ),
we denote the gradient of L at 6 by VL(0;x,y) € RP

- We also like the loss function, its gradient and/or the regularizer to be

Definition (Lipschitz function)
Let [ > 0. A function fis [-Lipschitz with respect to some norm || - || if if for all 6,6’ € ©:

f(0) =[O < 16 —¢']l.
If fis differentiable and || - || = || - ||, the above property is equivalent to:

IVAO)IL <1, Woee.



REMINDER: USEFUL PROPERTIES

- It is also useful when the loss and/or regularizer are or

Definition (Strongly convex function)
Let s > 0. A differentiable function f is s-strongly convex if for all 6,6’ € ©:

f8') > f(8) + VAO) (0 — 0) + 2110 — '3,

or equivalently:
ny T / /
(VA(8) — VA(8")) (6 —-6) =5/ 015,

For s = 0, we simply say that f is convex.



REMINDER: DP-ERM VIA OUTPUT PERTUBATION

Algorithm: DP-ERM via output perturbation App_gru(D, L, %, A, €, )
1. Compute ERM solution 8 = arg mingg, F(6)

2. Forj=1,...,p: draw Y; ~ N(0,0?) independently for each j, where o = 27”';(;525/5)
3. Output § 4 Y, where Y = (Y4,...,Y,) € RP

Theorem (DP guarantees for DP-ERM via output perturbation)

Lete, 6 > 0 and © = RP. For « differentiable and 1-strongly convex, and L(-; X, y) convex,
differentiable and 1-Lipschitz, App—grm(+, L, %, €, ) is (¢,0)-DP.



TODAY'S LECTURE

1. Differentially Private SGD

2. Summary of DP-ERM results



DIFFERENTIALLY PRIVATE SGD



LIMITATIONS OF DP-ERM VIA OUTPUT PERTURBATION

1. It requires restrictive assumptions on the loss function and regularizer

2. The sensitivity is likely to be pessimistic as it treats ERM as a black box
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ALTERNATIVE APPROACH: DIFFERENTIALLY PRIVATE ERM SOLVER

- Another approach is to

- Such a solver (optimization algorithm) must

- The idea is to perturb only the quantities accessed by a particular solver
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NON-PRIVATE STOCHASTIC GRADIENT DESCENT (SGD)

- For simplicity, let us assume that (#) = 0 (no regularization)
- Denote by Mg (#) = argming g || — &'||, the projection operator onto ©

Algorithm: Non-private (projected) SGD

- Initialize parameters to #(®) € ©

- Fort=0,...,T—1:
- Pick i € {1,...,n} uniformly at random
-« 00 Mo (80 — %VL(OY; X, Vi)

- Return (N

- SGD is a - simple, flexible, scalable, heavily used in ML

- How to design a DP version of SGD?



MAKING THE STOCHASTIC GRADIENT PRIVATE

- We have already seen ingredients to do this in previous lectures
- Assume that L(+; x,y) is [-Lipschitz with respect to the ¢, norm for any (x,y) € X x Y
- Then we know that for all x,y, 6 we have | VL(6;x,y)|| <

- Therefore, at any step t of SGD, the ¢, sensitivity of individual gradients is bounded:

sup ||[VL(8;x,y) — VL(O; X,y)| <2l, Voec©

Xy X'y

and we can use the Gaussian mechanism

- It feels like we can do better...



PRIVACY AMPLIFICATION BY SUBSAMPLING

Theorem (Amplification by subsampling [Balle et al., 2018])

Let X be a data domain and S : X" — X be a procedure such that S(D) returns a
random subset of m records sampled uniformly without replacement from D. Let A be
an (e, 8)-DP algorithm. Then Ao S satisfies (¢/, 76)-DP with &’ = In (14 2 (e — 1)).

- The amplification effect is due to the secrecy of the samples

- For simplicity of exposition, we will use the following approximation: when = < 1,
In (1+ 2 (e — 1)) < 22¢ (butin practice the tight version above should be used!)

- The proof and results with other sampling schemes can be found in [Balle et al., 2018]



DIFFERENTIALLY PRIVATE SGD: ALGORITHM & PRIVACY GUARANTEES

Algorithm: Differentially Private SGD App-sep(D, L, £, 9)

- Initialize parameters to #(®) € ©
- Fort=0,...,T—1:
- Pick i € {1,...,n} uniformly at random

LR (9(” — % (VLOD; x;,, i) ))
- Return 6("

(larger n) — added to each gradient

(larger T) — added to each gradient

Theorem (DP guarantees for DP-SGD)

Lete < 1,8 > 0. Let the loss function L(-; x,y) be [-Lipschitz w.rt. the ¢, norm for all

X,y € X x Y. Then -ADP—SGD('a L,&(S) Is (6,5)-DP
1



DIFFERENTIALLY PRIVATE SGD: ALGORITHM & PRIVACY GUARANTEES

Proof.

- Recall that for a query with ¢, sensitivity A, achieving (¢’,4") with the Gaussian

mechanism requires to add noise with standard deviation ¢’ = w

16ly/TIn(2/8) In(2.5T/6n)
ne

* Sowith A=2l,0= , each noisy gradient is (L 5”>—DP

44/2TIn(2/0) 2T

- Now, taking into account the randomness in the choice of i; using privacy
. . : . o p 5\
amplification by subsampling, each noisy gradient is in fact <72\/2Tln(72/6)’ — |1-BP
- DP-SGD is an adaptive composition of T DP mechanisms, so by advanced
composition (using the simple corollary in lecture 3) we obtain that it is (&, §)-DP



DIFFERENTIALLY PRIVATE SGD: UTILITY GUARANTEES

Theorem (Utility guarantees for DP-SGD [Bassily et al., 2014])

Let © be a convex domain of diameter bounded by R, and let the loss function L be
convex and [-Lipschitz over ©. For T = n? and 4 = O(R/+/t), DP-SGD guarantees:

E{F(6"] - min F(6) < o(lR\/W 'n”z(n/a)).

ne

If the objective F is also s-strongly convex, then for T = n? and ~ = 1/st we have:

E[F(67] — min FO) < O(l DIn(TS/:Z)r:;\ (n/é))

- The with respect to the non-private model
- Privacy induces a

- We see notable differences between the convex and strongly convex cases 13



DIFFERENTIALLY PRIVATE SGD: UTILITY GUARANTEES

- We will rely on a very general lemma giving convergence rates for SGD algorithms

Lemma ([Shamir and Zhang, 2013])

Let F be a convex function over a convex domain © with diameter bounded by R.
Consider any SGD algorithm 6+ « Ng(6® — ~,g;) where g; satisfies E[g] = VF(6D)
and E[||g¢||?] < G% By setting vy = %, we have

2+ logT
Ly

If Fis also s-strongly convex, then setting v+ = % gives

E[F(97] — min F(0) < 2RG<

: 17G*(1 + log T)
E[F(0] — min F(f) < ———=-1.
PO = pigFO) < =57

14



DIFFERENTIALLY PRIVATE SGD: UTILITY GUARANTEES

Proof of the theorem.
- Denote by g; = VL(0O; x;,,y;,) +n® the noisy gradient at step t
- Let us examine E[g¢] and E[||g:|*]

- We have E[g;] = 1 "1, VL(8W; x;, ;) + E[n] = VF(6W; D), hence g; is an unbiased
estimate of the gradient of the objective function at §®

- Furthermore, since VL(6W; x;,y;) and n® are independent and L is [-Lipschitz:

E[|9:%) = E{IVL60:x;.yi) ] + Elln®I]
256[2TIn(2/68) In(2.5T/én
M AL e il




DIFFERENTIALLY PRIVATE SGD: UTILITY GUARANTEES

Proof of the theorem.

- It remains to plug our results in the previous lemma and to set T appropriately

- For the convex case, we get:

E[F(67] — min F(6) < o(’R InT _(Ry/pTIn(T)In(1/6) |n(T/5n))

VT nevV'T

- For the s-strongly case, we get:

BIF() — min F6) < 0(12 InT . EpTin(T)In(1/3) In(T/én))

sT €2n?sT

- In both cases, choosing T = n? balances the two terms (“optimization error” and
“privacy error”) and gives the result



DIFFERENTIALLY PRIVATE SGD: IMPROVEMENTS

- In practice one should apply the tighter versions of amplification by subsampling
and advanced composition to obtain better performance

- Using moments accountant [Abadi et al, 2016] or Rényi DP [Wang et al,, 2019], one can
further save a factor O(4/InT/¢) in the composition and get better constants

- There are some straightforward extensions of DP-SGD:
- Mini-batch version: same analysis applies with minor modifications
- Regularization: can be readily incorporated into the algorithm
- Non-differentiable loss: if L is only sub-differentiable (e.g., hinge loss, ReLU), one can use
a subgradient instead of the gradient
- Non-Lipschitz loss: if L is not Lipschitz (or the constant is hard to bound as in deep neural
nets), one can use gradient clipping before adding the noise, see [Abadi et al., 2016]

- Itis also possible to improve the O(n?) gradient complexity, e.g., down to O(n log n)
using variance reduction techniques [Wang et al., 2017]



SUMMARY OF DP-ERM RESULTS



DP-ERM: SOME RESULTS FOR THE STRONGLY CONVEX CASE

- Assume convex 1-Lipschitz loss with 1-Lipschitz gradient, 1-strongly convex objective
- Tight lower bound for (e, §)-DP: Q(min{1, = })

- Upper bounds (ignoring multiplicative dependence on log(1/4)):

Paper Technique Excess risk
[Chaudhuri et al,, 2011] Black box output perturbation O+
[Chaudhuri et al, 2011] Objective perturbation Ognzgz;

[Bassily et al., 2014] Gradient perturbation (this lecture) O(%i&”’)
[Wang et al.,, 2017] Gradient perturbation with MA + VR O(%"—S’)

(MA: Moments Accountant, VR: Variance Reduction)



DP-ERM: SOME RESULTS FOR THE CONVEX CASE

- Assume convex 1-Lipschitz loss with 1-Lipschitz gradient
- Tight lower bound for (e, §)-DP: Q(min{1, !})

- Upper bounds (ignoring multiplicative dependence on log(1/4)):

Paper Technique Excess risk
[Chaudhuri et al,, 2011] Objective perturbation O(\n/—f)
[Bassily et al.,, 2014] Gradient perturbation (this lecture) O(ﬁ'”;/z(”))
[Wang et al., 2017] Gradient perturbation with MA + VR 0 n—‘/f
[Feldman et al, 2018] | Gradient perturbation with amp. by iteration OE@%

- More results can be found in [Bassily et al, 2014, Wang et al,, 2017]

- For problems with more structure, other gradient perturbation algorithms and lower
bounds exist, see e.g. [Talwar et al, 2015, Mangold et al,, 2022]
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