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REMINDER: EMPIRICAL RISK MINIMIZATION (ERM)

• D = {(xi, yi)}ni=1: training points drawn i.i.d. from distribution µ over X × Y

• Models hθ : X → Y parameterized by θ ∈ Θ ⊆ Rp

• L(θ; x, y): loss of model hθ on data point (x, y)

• R̂(θ;D) = 1
n
∑n

i=1 L(θ; xi, yi): empirical risk of model hθ

• ψ(θ): regularizer on model parameters (e.g., ℓ2 norm)

Empirical Risk Minimization (ERM)

θ̂ ∈ argmin
θ∈Θ

[F(θ;D) := R̂(θ;D) + λψ(θ)]

where λ ≥ 0 is a trade-off hyperparameter.

1



REMINDER: USEFUL PROPERTIES

• We typically work with loss functions that are differentiable in θ: for (x, y) ∈ X × Y ,
we denote the gradient of L at θ by ∇L(θ; x, y) ∈ Rp

• We also like the loss function, its gradient and/or the regularizer to be Lipschitz

Definition (Lipschitz function)
Let l > 0. A function f is l-Lipschitz with respect to some norm ∥ · ∥ if if for all θ, θ′ ∈ Θ:

|f(θ)− f(θ′)| ≤ l∥θ − θ′∥.

If f is differentiable and ∥ · ∥ = ∥ · ∥2, the above property is equivalent to:

∥∇f(θ)∥2 ≤ l, ∀θ ∈ Θ.
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REMINDER: USEFUL PROPERTIES

• It is also useful when the loss and/or regularizer are convex or strongly convex

Definition (Strongly convex function)
Let s ≥ 0. A differentiable function f is s-strongly convex if for all θ, θ′ ∈ Θ:

f(θ′) ≥ f(θ) +∇f(θ)⊤(θ − θ′) + s
2∥θ − θ

′∥22,

or equivalently: (
∇f(θ)−∇f(θ′)

)⊤
(θ − θ′) ≥ s∥θ − θ′∥22,

For s = 0, we simply say that f is convex.
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REMINDER: DP-ERM VIA OUTPUT PERTUBATION

Algorithm: DP-ERM via output perturbation ADP−ERM(D, L, ψ, λ, ε, δ)

1. Compute ERM solution θ̂ = argminθ∈Rp F(θ)

2. For j = 1, . . . ,p: draw Yj ∼ N (0, σ2) independently for each j, where σ =
2
√

2 ln(1.25/δ)
nλε

3. Output θ̂ + Y, where Y = (Y1, . . . , Yp) ∈ Rp

Theorem (DP guarantees for DP-ERM via output perturbation)
Let ε, δ > 0 and Θ = Rp. For ψ differentiable and 1-strongly convex, and L(·; x, y) convex,
differentiable and 1-Lipschitz, ADP−ERM(·, L, ψ, ε, δ) is (ε, δ)-DP.
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TODAY’S LECTURE

1. Differentially Private SGD

2. Summary of DP-ERM results
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DIFFERENTIALLY PRIVATE SGD



LIMITATIONS OF DP-ERM VIA OUTPUT PERTURBATION

1. It requires restrictive assumptions on the loss function and regularizer

2. The sensitivity is likely to be pessimistic as it treats ERM as a black box

Private
dataset

Black box

ERM

solver

Non-private model Private model
add noise

...
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ALTERNATIVE APPROACH: DIFFERENTIALLY PRIVATE ERM SOLVER

• Another approach is to design differentially private ERM solvers

• Such a solver (optimization algorithm) must interact with the data only through DP
mechanisms

• The idea is to perturb only the quantities accessed by a particular solver

Private
dataset

Differentially

private

ERM solver

Private model...

DP queries

answers
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NON-PRIVATE STOCHASTIC GRADIENT DESCENT (SGD)

• For simplicity, let us assume that ψ(θ) = 0 (no regularization)

• Denote by ΠΘ(θ) = argminθ′∈Θ ∥θ − θ′∥2 the projection operator onto Θ

Algorithm: Non-private (projected) SGD

• Initialize parameters to θ(0) ∈ Θ

• For t = 0, . . . , T− 1:
• Pick it ∈ {1, . . . ,n} uniformly at random
• θ(t+1) ← ΠΘ

(
θ(t) − γt∇L(θ(t); xit , yit)

)
• Return θ(T)

• SGD is a natural candidate solver: simple, flexible, scalable, heavily used in ML

• How to design a DP version of SGD?
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MAKING THE STOCHASTIC GRADIENT PRIVATE

• We have already seen ingredients to do this in previous lectures

• Assume that L(·; x, y) is l-Lipschitz with respect to the ℓ2 norm for any (x, y) ∈ X × Y

• Then we know that for all x, y, θ we have ∥∇L(θ; x, y)∥ ≤ l

• Therefore, at any step t of SGD, the ℓ2 sensitivity of individual gradients is bounded:

sup
x,y,x′,y′

∥∇L(θ; x, y)−∇L(θ; x′, y′)∥ ≤ 2l, ∀θ ∈ Θ

and we can use the Gaussian mechanism

• It feels like we can do better...
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PRIVACY AMPLIFICATION BY SUBSAMPLING

Theorem (Amplification by subsampling [Balle et al., 2018])
Let X be a data domain and S : X n → Xm be a procedure such that S(D) returns a
random subset of m records sampled uniformly without replacement from D. Let A be
an (ε, δ)-DP algorithm. Then A ◦ S satisfies (ε′, mn δ)-DP with ε′ = ln

(
1+ m

n (e
ε − 1)

)
.

• The amplification effect is due to the secrecy of the samples

• For simplicity of exposition, we will use the following approximation: when ε ≤ 1,
ln
(
1+ m

n (e
ε − 1)

)
≤ 2m

n ε (but in practice the tight version above should be used!)

• The proof and results with other sampling schemes can be found in [Balle et al., 2018]
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DIFFERENTIALLY PRIVATE SGD: ALGORITHM & PRIVACY GUARANTEES

Algorithm: Differentially Private SGD ADP-SGD(D, L, ε, δ)

• Initialize parameters to θ(0) ∈ Θ (must be independent of D)
• For t = 0, . . . , T− 1:

• Pick it ∈ {1, . . . ,n} uniformly at random
• η(t) ← (η

(t)
1 , . . . , η

(t)
p ) ∈ Rp where each η

(t)
j ∼ N (0, σ2) with σ =

16l
√

T ln(2/δ) ln(2.5T/δn)
nε

• θ(t+1) ← ΠΘ

(
θ(t) − γt

(
∇L(θ(t); xit , yit) + η(t)))

• Return θ(T)

• More data (larger n)→ less noise added to each gradient

• More iterations (larger T)→ more noise added to each gradient

Theorem (DP guarantees for DP-SGD)
Let ε ≤ 1, δ > 0. Let the loss function L(·; x, y) be l-Lipschitz w.r.t. the ℓ2 norm for all
x, y ∈ X × Y . Then ADP-SGD(·, L, ε, δ) is (ε, δ)-DP.
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DIFFERENTIALLY PRIVATE SGD: ALGORITHM & PRIVACY GUARANTEES

Proof.
• Recall that for a query with ℓ2 sensitivity ∆, achieving (ε′, δ′) with the Gaussian
mechanism requires to add noise with standard deviation σ′ =

√
2 ln(1.25/δ′)∆

ε′

• So with ∆ = 2l, σ =
16l
√

T ln(2/δ) ln(2.5T/δn)
nε , each noisy gradient is

(
nε

4
√

2T ln(2/δ)
, δn2T

)
-DP

• Now, taking into account the randomness in the choice of it using privacy
amplification by subsampling, each noisy gradient is in fact

(
ε

2
√

2T ln(2/δ)
, δ
2T

)
-DP

• DP-SGD is an adaptive composition of T DP mechanisms, so by advanced
composition (using the simple corollary in lecture 3) we obtain that it is (ε, δ)-DP
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DIFFERENTIALLY PRIVATE SGD: UTILITY GUARANTEES

Theorem (Utility guarantees for DP-SGD [Bassily et al., 2014])
Let Θ be a convex domain of diameter bounded by R, and let the loss function L be
convex and l-Lipschitz over Θ. For T = n2 and γt = O(R/

√
t), DP-SGD guarantees:

E[F(θ(T)]−min
θ∈Θ

F(θ) ≤ O
(
lR
√
p ln(1/δ) ln3/2(n/δ)

nε

)
.

If the objective F is also s-strongly convex, then for T = n2 and γt = 1/st we have:

E[F(θ(T)]−min
θ∈Θ

F(θ) ≤ O
(
l2p ln(1/δ) ln2(n/δ)

sε2n2

)
.

• The utility gap with respect to the non-private model reduces with n

• Privacy induces a larger cost for high-dimensional models

• We see notable differences between the convex and strongly convex cases 13



DIFFERENTIALLY PRIVATE SGD: UTILITY GUARANTEES

• We will rely on a very general lemma giving convergence rates for SGD algorithms

Lemma ([Shamir and Zhang, 2013])
Let F be a convex function over a convex domain Θ with diameter bounded by R.
Consider any SGD algorithm θ(t+1) ← ΠΘ(θ

(t) − γtgt) where gt satisfies E[gt] = ∇F(θ(t))
and E[∥gt∥2] ≤ G2. By setting γt = R

G
√
t , we have

E[F(θ(T)]−min
θ∈Θ

F(θ) ≤ 2RG
(2+ log T√

T

)
.

If F is also s-strongly convex, then setting γt = 1
st gives

E[F(θ(T)]−min
θ∈Θ

F(θ) ≤ 17G2(1+ log T)
sT .
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DIFFERENTIALLY PRIVATE SGD: UTILITY GUARANTEES

Proof of the theorem.

• Denote by gt = ∇L(θ(t); xit , yit) + η(t) the noisy gradient at step t

• Let us examine E[gt] and E[∥gt∥2]

• We have E[gt] =
1
n
∑n

i=1∇L(θ(t); xi, yi) + E[η(t)] = ∇F(θ(t);D), hence gt is an unbiased
estimate of the gradient of the objective function at θ(t)

• Furthermore, since ∇L(θ(t); xit , yit) and η(t) are independent and L is l-Lipschitz:

E[∥gt∥2] = E[∥∇L(θ(t); xit , yit)∥2] + E[∥η(t)∥2]

≤ l2 + p256l
2T ln(2/δ) ln(2.5T/δn)

ε2n2
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DIFFERENTIALLY PRIVATE SGD: UTILITY GUARANTEES

Proof of the theorem.
• It remains to plug our results in the previous lemma and to set T appropriately

• For the convex case, we get:

E[F(θ(T)]−min
θ∈Θ

F(θ) ≤ O
(
lR ln T√

T
+

lR
√
pT ln(T) ln(1/δ) ln(T/δn)

nε
√
T

)
• For the s-strongly case, we get:

E[F(θ(T)]−min
θ∈Θ

F(θ) ≤ O
(
l2 ln T
sT +

l2pT ln(T) ln(1/δ) ln(T/δn)
ε2n2sT

)
• In both cases, choosing T = n2 balances the two terms (“optimization error” and
“privacy error”) and gives the result

15



DIFFERENTIALLY PRIVATE SGD: IMPROVEMENTS

• In practice one should apply the tighter versions of amplification by subsampling
and advanced composition to obtain better performance

• Using moments accountant [Abadi et al., 2016] or Rényi DP [Wang et al., 2019], one can
further save a factor O(

√
ln T/δ) in the composition and get better constants

• There are some straightforward extensions of DP-SGD:
• Mini-batch version: same analysis applies with minor modifications
• Regularization: can be readily incorporated into the algorithm
• Non-differentiable loss: if L is only sub-differentiable (e.g., hinge loss, ReLU), one can use
a subgradient instead of the gradient

• Non-Lipschitz loss: if L is not Lipschitz (or the constant is hard to bound as in deep neural
nets), one can use gradient clipping before adding the noise, see [Abadi et al., 2016]

• It is also possible to improve the O(n2) gradient complexity, e.g., down to O(n log n)
using variance reduction techniques [Wang et al., 2017]
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SUMMARY OF DP-ERM RESULTS



DP-ERM: SOME RESULTS FOR THE STRONGLY CONVEX CASE

• Assume convex 1-Lipschitz loss with 1-Lipschitz gradient, 1-strongly convex objective

• Tight lower bound for (ε, δ)-DP: Ω(min{1, p
n2ε2 })

• Upper bounds (ignoring multiplicative dependence on log(1/δ)):
Paper Technique Excess risk

[Chaudhuri et al., 2011] Black box output perturbation O
(

p
n2ε2

)
[Chaudhuri et al., 2011] Objective perturbation O

(
p

n2ε2

)
[Bassily et al., 2014] Gradient perturbation (this lecture) O

(
p ln2(n)
n2ε2

)
[Wang et al., 2017] Gradient perturbation with MA + VR O

(
p ln(n)
n2ε2

)
(MA: Moments Accountant, VR: Variance Reduction)
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DP-ERM: SOME RESULTS FOR THE CONVEX CASE

• Assume convex 1-Lipschitz loss with 1-Lipschitz gradient

• Tight lower bound for (ε, δ)-DP: Ω(min{1,
√p
nε })

• Upper bounds (ignoring multiplicative dependence on log(1/δ)):
Paper Technique Excess risk

[Chaudhuri et al., 2011] Objective perturbation O
(√p

nε

)
[Bassily et al., 2014] Gradient perturbation (this lecture) O

(√p ln3/2(n)
nε

)
[Wang et al., 2017] Gradient perturbation with MA + VR O

(√p
nε

)
[Feldman et al., 2018] Gradient perturbation with amp. by iteration O

(√p
nε2

)
• More results can be found in [Bassily et al., 2014, Wang et al., 2017]

• For problems with more structure, other gradient perturbation algorithms and lower
bounds exist, see e.g. [Talwar et al., 2015, Mangold et al., 2022]
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