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REMINDER: PRIVATE DATA ANALYSIS

(Figure inspired from R. Bassily)
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- We have focused so far on “simple” aggregate statistics

- How about ?



REMINDER: ML MODELS ARE NOT SAFE

- ML models are elaborate kinds of aggregate statistics!

- As such, they are susceptible to membership inference attacks, i.e. inferring the
presence of a known individual in the training set

- For instance, one can exploit the confidence in model predictions [Shokri et al,, 2017]

[Carlini et al,, 2022]

predict(data)

,,,,,,,,,,,,,,,,,,,,

prediction

Attack Model

data € training set 7



REMINDER: ML MODELS ARE NOT SAFE

- ML models are also susceptible to

For instance, one can

[Carlini et al., 2021] or [Paige et al,, 2020]
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TODAY'S LECTURE

1. Reminders on Empirical Risk Minimization (ERM)

2. Private ERM via output perturbation



REMINDERS ON EMPIRICAL RISK
MINIMIZATION (ERM)



SUPERVISED LEARNING

- For convenience, we focus on supervised learning

- Consider an abstract data space X x Y where X" is the input (feature) space and ) is
the output (label) space
- For instance, for binary classification with real-valued features: X c RY, Y = {-1,1}

- A predictor (model) is a function h: X — Y

- We measure the discrepancy between a prediction h(x) and the true label y using a
loss function L(h; x,y)



STATISTICAL LEARNING FRAMEWORK

- We have access to a training set D = {(x;,y;)}[_, of n data points

- Each data point (x;,y;) is assumed to be drawn independently from a fixed but
unknown distribution u

- The goal of ML is to find a predictor h with small expected risk:

Rh) = E_[L(hixy)]

- Since p is unknown, we will use the training set to construct a proxy to R



EMPIRICAL RISK MINIMIZATION (ERM)

- We thus define the empirical risk:
,] n
R(h;D) = EZ;L(h;Xf7yi)
1=

- Assume that we work with predictors hy : X — Y parameterized by 6 € © C RP

- For notational convenience, we use L(6;x,y), R(9) and R(6) to denote L(hg; x,y),
R(hg; D) and R(hg; D), and omit the dependency on D when it is clear from the context

- Empirical Risk Minimization (ERM) consists in choosing the parameters

0 € argmin[F(0; D) := R(0; D) + \y(0)]
0co

- 4 is aregularizer and A > 0 a trade-off parameter



USEFUL PROPERTIES

- We typically work with loss functions that are cfor (x,y) € X x ),
we denote the gradient of L at 6 by VL(0;x,y) € RP

- We also like the loss function, its gradient and/or the regularizer to be

Definition (Lipschitz function)
Let [ > 0. A function fis [-Lipschitz with respect to some norm || - || if if for all 6,6’ € ©:

f(0) =[O < 16 —¢']l.
If fis differentiable and || - || = || - ||, the above property is equivalent to:

IVAO)IL <1, Woee.



USEFUL PROPERTIES

- It is also useful when the loss and/or regularizer are or

Definition (Strongly convex function)
Let s > 0. A differentiable function f is s-strongly convex if for all 6,6’ € ©:

f8') > f(8) + VAO) (0 — 0) + 2110 — '3,

or equivalently:
ny T / /
(VA(8) — VA(8")) (6 —-6) =5/ 015,

For s = 0, we simply say that f is convex.



EXAMPLE: LOGISTIC REGRESSION

- letX cR%and Y = {-1,1}

- Pick a family of linear models hg(x) = sign[@Tx + b] for § € © = RP

- Pick the logistic loss L(8; x,y) = log(1 + e=¥®"*+)) which is ||x|-Lipschitz and convex
- For ¢(0) = 0, the ERM problem gives logistic regression

- If we additionally set (8) = ||0]|5, we obtain ¢,-regularized logistic regression

- Then ¢(8) is 2-strongly convex and F(8) = R(8) + A(8) is 2A-strongly convex



PRIVATE ERM VIA OUTPUT
PERTURBATION



DIFFERENTIALLY PRIVATE MACHINE LEARNING

- We would like to privately release a model trained on private data

- A differentially private machine learning algorithm A : NI¥>*Yl 5 @ should guarantee
that for all neighboring datasets D, D’ and for all Sg¢ C ©:

PrlA(D) € Se] < € PrlA(D') € Se] + 6

- Important note: in ML, we consider a slightly different neighboring relation where
two neighboring datasets D, D’ € (X x Y)" have same size n and differ on one record

- This corresponds to replacing instead adding/removing one record
- This is for convenience: normalization term in empirical risk is 1/n for both D and D’
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DP AND GENERALIZATION

- Does DP seem compatible with the objective of ML?

- Yes! Intuitively, a model which does not change too much when trained on datasets
that differ by a single point should generalize well (because it does not overfit)

- This is related to the notion of algorithmic stability [Bousquet and Elisseeff, 2002],
which is known to be a sufficient condition for generalization

- There are formal connections between DP and algorithmic stability [Wang et al, 2016]:
in particular, “DP implies stability”



DIFFERENTIALLY PRIVATE ERM VIA OUTPUT PERTUBATION

- ERM is a more complicated kind of “query” than those we have seen so far
- Still, can we re-use some ideas to construct DP-ERM algorithms?

- A natural approach is to rely on output perturbation:

Private
dataset

()
-
& . add noise
Non-private model Private model
(]

Formally: A(D) = 6 + 7, where § € arg minycg[F(6; D) := R(6; D) + Ay(6)]
- To calibrate the noise, we need to bound the sensitivity of 4

- In some cases, this sensitivity may actually be quite high!
- Non-regularized objectives with expressive models (e.g.,, deep neural networks)
- ¢r-regularized models such as LASSO, which are known to be unstable [Xu et al., 2012] 3



SENSITIVITY BOUND FOR SOME REGULARIZED ERM FORMULATIONS

Theorem (¢, sensitivity for ERM [Chaudhuri et al., 2011])

Let © = RP. If the regularizer +) is differentiable and 1-strongly convex, and the loss
function L(+; x,y) is convex, differentiable and 1-Lipschitz w.r.t. the ¢, norm for all
X,y € X x Y, then the ¢, sensitivity of arg min, F(0) is at most 2/n\.

- As expected, sensitivity decreases with n (the size of the dataset)
- Weak regularization leads to large upper bound on sensitivity

- Let's prove this theorem!
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SENSITIVITY BOUND FOR SOME REGULARIZED ERM FORMULATIONS

Lemma

Let G(0) and g(0) be two vector-valued functions that are continuous and differentiable
everywhere. Assume that G(0) and G(0) + g(0) are A-strongly convex.

If 6; = arg ming G(#) and 6, = arg miny G() + g(6), then ||61 — 65]|, < + maxg [[Vg(6)]>-

Proof.

- By the optimality of 6, and 6,, we have VG(6,) = VG(6,) + Vg(6,) =0

- As G(9) is strongly convex, we have (VG(6) — VG(&Z))T(91 —6,) > \|61 — 643

- Using Cauchy-Schwartz inequality and the above two results, we obtain:

161 = 0211V g(8)1l2 = (6 — 62)TVg(62) = (VG(61) — VG(6:)) " (61— ) = A1 — 62l

- Dividing both sides by A||6; — 6;]| gives us the result



SENSITIVITY BOUND FOR SOME REGULARIZED ERM FORMULATIONS

Proof of the theorem.

- letD={ yeoos(Xnyyn)} DF =4 s+ (Xn,¥n)} be two neighboring datasets
that differ only in their first point

- Denoting § = arg min, F(0; D) and @’ = arg min, F(6; D), we want to bound ||§ — &'||

- We define a convenient differentiable function

1

9(8) = F(6: ') = F(8:0) = = (L(6: . ¥4) ~ L(B:.,31))

- By using the 1-Lipschitz property of L we have for any 6:

IV9)1 = ||+ (VL:x, 1) - 916 ,3) | <

SN



SENSITIVITY BOUND FOR SOME REGULARIZED ERM FORMULATIONS

Proof of the theorem.

- To complete the proof, we will show that [|§ — 8’| < I max, [|[Vg(0)|
- Let G(8) = F(#; D) and recall the definition of g(6) = F(8; D") — F(6; D)

- Since L is convex and ¢ is 1-strongly convex, G(#) and G(6) + g(6) = F(8; D’) are
A-strongly convex (as well as differentiable)

- Furthermore, # and 6 are their corresponding minimizers

- Hence we can apply the lemma, which gives us the desired result



DP-ERM VIA OUTPUT PERTUBATION: ALGORITHM & PRIVACY GUARANTEES

Algorithm: DP-ERM via output perturbation App-grm(D, L, 1, A, €, 5)
1. Compute ERM solution 8 = arg minggs F(6)

2. Forj=1,...,p: draw Y; ~ N(0,0?) independently for each j, where o = 27”';(;525/0)
3. Outputd + Y, where Y = (Yr,...,Yp) €RP

Theorem (DP guarantees for DP-ERM via output perturbation)

Lete,d > 0 and © = RP. Let the loss function L and the regularizer + satisfy the

conditions of the previous theorem. Then App-grm(+, L, 1, €,8) is (,0)-DP.

- Proof: a direct application of the with the previous theorem



DP-ERM VIA OUTPUT PERTUBATION: UTILITY GUARANTEES

- Utility is the
Theorem (Utility guarantees for DP-ERM via output perturbation [Chaudhuri et al., 2011])

Consider linear models with L(6; x,y) := L(6Tx,y) and normalized data such that

Xl < 1forall x € X. Let 4(0) = 3||0]3, v > 0 and B > 0. Let L be differentiable and
1-Lipschitz w.rt. the ¢; norm and VL be 1-Lipschitz w.r.t. the ¢, norm. Let 8* € arg min R(0)
be a minimizer of the expected risk. If n is of order

1673 1og(5) Plog(5)116%[121/log(5) Plog(§)16°(134/log(5)
O(max( ));

2 ’ ve ’ y3/2¢

then the output 6, of App-erm satisfies Pr[R(0,) < R(6*) ++] > 1—28.

- The first term in the max is the sample size needed for non-private ERM

- This theorem shows that DP-ERM via output perturbation is well-founded: it



DP-ERM VIA OUTPUT PERTUBATION: DISCUSSION

- An advantage of DP-ERM via output perturbation is that it is simple to implement on
top of non-private algorithms

- However it requires restrictive assumptions on the loss function and regularizer

- In practice, ERM is not solved exactly but only to a certain precision using iterative
solvers like (stochastic) gradient descent

- Approximate solutions may have small sensitivity, even if no (strongly convex)
regularization is used [Zhang et al,, 2017]
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OTHER APPROACHES TO DP-ERM

1. Objective perturbation [Chaudhuri et al,, 2011]: output the solution to ERM with a
perturbed objective (not covered in the lectures)

2. Gradient perturbation [Bassily et al,, 2014, Abadi et al,, 2016]: perturb the gradients of a
gradient-based algorithm (next lecture!)
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