PRIVACY PRESERVING MACHINE LEARNING

LECTURE 4: DIFFERENTIALLY PRIVATE EMPIRICAL RISK MINIMIZATION

Aurélien Bellet (Inria)

Master 2 Data Science, University of Lille

REMINDER: PRIVATE DATA ANALYSIS

- We have focused so far on "simple" aggregate statistics
- · How about releasing machine learning models trained on private data?

REMINDER: ML MODELS ARE NOT SAFE

- ML models are elaborate kinds of aggregate statistics!
- As such, they are susceptible to membership inference attacks, i.e. inferring the presence of a known individual in the training set
- For instance, one can exploit the confidence in model predictions [Shokri et al., 2017] [Carlini et al., 2022]

REMINDER: ML MODELS ARE NOT SAFE

- ML models are also susceptible to reconstruction attacks
- For instance, one can extract sensitive text from large language models [Carlini et al., 2021] or run differencing attacks on ML models [Paige et al., 2020]

TODAY'S LECTURE

- 1. Reminders on Empirical Risk Minimization (ERM)
- 2. Private ERM via output perturbation

MINIMIZATION (ERM)

REMINDERS ON EMPIRICAL RISK

SUPERVISED LEARNING

- · For convenience, we focus on supervised learning
- Consider an abstract data space $\mathcal{X} \times \mathcal{Y}$ where \mathcal{X} is the input (feature) space and \mathcal{Y} is the output (label) space
 - For instance, for binary classification with real-valued features: $\mathcal{X} \subset \mathbb{R}^d$, $\mathcal{Y} = \{-1, 1\}$
- A predictor (model) is a function $h: \mathcal{X} \to \mathcal{Y}$
- We measure the discrepancy between a prediction h(x) and the true label y using a loss function L(h;x,y)

STATISTICAL LEARNING FRAMEWORK

- We have access to a training set $D = \{(x_i, y_i)\}_{i=1}^n$ of n data points
- Each data point (x_i, y_i) is assumed to be drawn independently from a fixed but unknown distribution μ
- The goal of ML is to find a predictor *h* with small expected risk:

$$R(h) = \underset{(x,y) \sim \mu}{\mathbb{E}} [L(h; x, y)]$$

 \cdot Since μ is unknown, we will use the training set to construct a proxy to R

EMPIRICAL RISK MINIMIZATION (ERM)

• We thus define the empirical risk:

$$\hat{R}(h; D) = \frac{1}{n} \sum_{i=1}^{n} L(h; x_i, y_i)$$

- Assume that we work with predictors $h_{\theta}: \mathcal{X} \to \mathcal{Y}$ parameterized by $\theta \in \Theta \subseteq \mathbb{R}^p$
- For notational convenience, we use $L(\theta; x, y)$, $R(\theta)$ and $\hat{R}(\theta)$ to denote $L(h_{\theta}; x, y)$, $R(h_{\theta}; D)$ and $\hat{R}(h_{\theta}; D)$, and omit the dependency on D when it is clear from the context
- · Empirical Risk Minimization (ERM) consists in choosing the parameters

$$\hat{\theta} \in \operatorname*{arg\,min}_{\theta \in \Theta} [\mathit{F}(\theta; \mathit{D}) := \hat{\mathit{R}}(\theta; \mathit{D}) + \lambda \psi(\theta)]$$

• ψ is a regularizer and $\lambda \geq 0$ a trade-off parameter

USEFUL PROPERTIES

- We typically work with loss functions that are differentiable in θ : for $(x,y) \in \mathcal{X} \times \mathcal{Y}$, we denote the gradient of L at θ by $\nabla L(\theta; x, y) \in \mathbb{R}^p$
- We also like the loss function, its gradient and/or the regularizer to be Lipschitz

Definition (Lipschitz function)

Let l > 0. A function f is l-Lipschitz with respect to some norm $\|\cdot\|$ if if for all $\theta, \theta' \in \Theta$:

$$|f(\theta) - f(\theta')| \le l||\theta - \theta'||.$$

If f is differentiable and $\|\cdot\| = \|\cdot\|_2$, the above property is equivalent to:

$$\|\nabla f(\theta)\|_2 \leq l, \quad \forall \theta \in \Theta.$$

USEFUL PROPERTIES

• It is also useful when the loss and/or regularizer are convex or strongly convex

Definition (Strongly convex function)

Let $s \ge 0$. A differentiable function f is s-strongly convex if for all $\theta, \theta' \in \Theta$:

$$f(\theta') \ge f(\theta) + \nabla f(\theta)^{\top} (\theta - \theta') + \frac{s}{2} \|\theta - \theta'\|_2^2,$$

or equivalently:

$$(\nabla f(\theta) - \nabla f(\theta'))^{\top} (\theta - \theta') \ge s \|\theta - \theta'\|_2^2,$$

For s = 0, we simply say that f is convex.

9

EXAMPLE: LOGISTIC REGRESSION

- · Let $\mathcal{X} \subset \mathbb{R}^d$ and $\mathcal{Y} = \{-1, 1\}$
- Pick a family of linear models $h_{\theta}(x) = \text{sign}[\theta^{\top}x + b]$ for $\theta \in \Theta = \mathbb{R}^p$
- Pick the logistic loss $L(\theta; x, y) = \log(1 + e^{-y(\theta^{\top}x + b)})$, which is ||x||-Lipschitz and convex
- For $\psi(\theta) = 0$, the ERM problem gives logistic regression
- · If we additionally set $\psi(\theta) = \|\theta\|_2^2$, we obtain ℓ_2 -regularized logistic regression
- Then $\psi(\theta)$ is 2-strongly convex and $F(\theta) = \hat{R}(\theta) + \lambda \psi(\theta)$ is 2λ -strongly convex

PRIVATE ERM VIA OUTPUT

PERTURBATION

DIFFERENTIALLY PRIVATE MACHINE LEARNING

- · We would like to privately release a model trained on private data
- A differentially private machine learning algorithm $\mathcal{A}: \mathbb{N}^{|\mathcal{X} \times \mathcal{Y}|} \to \Theta$ should guarantee that for all neighboring datasets D, D' and for all $S_{\Theta} \subseteq \Theta$:

$$\Pr[\mathcal{A}(D) \in S_{\Theta}] \leq e^{\varepsilon} \Pr[\mathcal{A}(D') \in S_{\Theta}] + \delta$$

- Important note: in ML, we consider a slightly different neighboring relation where two neighboring datasets $D, D' \in (\mathcal{X} \times \mathcal{Y})^n$ have same size n and differ on one record
 - · This corresponds to replacing instead adding/removing one record
 - This is for convenience: normalization term in empirical risk is 1/n for both D and D'

DP AND GENERALIZATION

- · Does DP seem compatible with the objective of ML?
- Yes! Intuitively, a model which does not change too much when trained on datasets that differ by a single point should generalize well (because it does not overfit)
- This is related to the notion of algorithmic stability [Bousquet and Elisseeff, 2002], which is known to be a sufficient condition for generalization
- There are formal connections between DP and algorithmic stability [Wang et al., 2016]: in particular, "DP implies stability"

DIFFERENTIALLY PRIVATE ERM VIA OUTPUT PERTUBATION

- ERM is a more complicated kind of "query" than those we have seen so far
- · Still, can we re-use some ideas to construct DP-ERM algorithms?
- A natural approach is to rely on output perturbation:

Formally:
$$\mathcal{A}(D) = \hat{\theta} + \eta$$
, where $\hat{\theta} \in \arg\min_{\theta \in \Theta} [F(\theta; D) := \hat{R}(\theta; D) + \lambda \psi(\theta)]$

- \cdot To calibrate the noise, we need to bound the sensitivity of $\hat{ heta}$
- In some cases, this sensitivity may actually be quite high!
 - · Non-regularized objectives with expressive models (e.g., deep neural networks)
 - \cdot ℓ_1 -regularized models such as LASSO, which are known to be unstable [Xu et al., 2012]

Theorem (ℓ_2 sensitivity for ERM [Chaudhuri et al., 2011])

Let $\Theta = \mathbb{R}^p$. If the regularizer ψ is differentiable and 1-strongly convex, and the loss function $L(\cdot; x, y)$ is convex, differentiable and 1-Lipschitz w.r.t. the ℓ_2 norm for all $x, y \in \mathcal{X} \times \mathcal{Y}$, then the ℓ_2 sensitivity of $\arg \min_{\theta} F(\theta)$ is at most $2/n\lambda$.

- As expected, sensitivity decreases with *n* (the size of the dataset)
- · Weak regularization leads to large upper bound on sensitivity
- · Let's prove this theorem!

Lemma

Let $G(\theta)$ and $g(\theta)$ be two vector-valued functions that are continuous and differentiable everywhere. Assume that $G(\theta)$ and $G(\theta) + g(\theta)$ are λ -strongly convex.

If
$$\theta_1 = \arg\min_{\theta} G(\theta)$$
 and $\theta_2 = \arg\min_{\theta} G(\theta) + g(\theta)$, then $\|\theta_1 - \theta_2\|_2 \leq \frac{1}{\lambda} \max_{\theta} \|\nabla g(\theta)\|_2$.

Proof.

- By the optimality of θ_1 and θ_2 , we have $\nabla G(\theta_1) = \nabla G(\theta_2) + \nabla G(\theta_2) = 0$
- · As $G(\theta)$ is strongly convex, we have $(\nabla G(\theta_1) \nabla G(\theta_2))^{\top}(\theta_1 \theta_2) \ge \lambda \|\theta_1 \theta_2\|_2^2$
- Using Cauchy-Schwartz inequality and the above two results, we obtain:

$$\|\theta_1 - \theta_2\|_2 \|\nabla g(\theta_2)\|_2 \geq (\theta_1 - \theta_2)^\top \nabla g(\theta_2) = \left(\nabla G(\theta_1) - \nabla G(\theta_2)\right)^\top (\theta_1 - \theta_2) \geq \lambda \|\theta_1 - \theta_2\|_2^2$$

• Dividing both sides by $\lambda \|\theta_1 - \theta_2\|$ gives us the result

Proof of the theorem.

- Let $D = \{(x_1, y_1), \dots, (x_n, y_n)\}$, $D' = \{(x'_1, y'_1), \dots, (x_n, y_n)\}$ be two neighboring datasets that differ only in their first point
- · Denoting $\hat{\theta} = \arg\min_{\theta} F(\theta; D)$ and $\hat{\theta}' = \arg\min_{\theta} F(\theta; D')$, we want to bound $\|\hat{\theta} \hat{\theta}'\|$
- · We define a convenient differentiable function

$$g(\theta) = F(\theta; D') - F(\theta; D) = \frac{1}{n} \Big(L(\theta; X'_1, Y'_1) - L(\theta; X_1, Y_1) \Big)$$

• By using the 1-Lipschitz property of L we have for any θ :

$$\|\nabla g(\theta)\| = \left\|\frac{1}{n} \left(\nabla L(\theta; X_1', y_1') - \nabla L(\theta; X_1, y_1)\right)\right\| \le \frac{2}{n}$$

16

Proof of the theorem.

- To complete the proof, we will show that $\|\hat{\theta} \hat{\theta}'\| \leq \frac{1}{\lambda} \max_{\theta} \|\nabla g(\theta)\|$
- · Let $G(\theta) = F(\theta; D)$ and recall the definition of $g(\theta) = F(\theta; D') F(\theta; D)$
- Since L is convex and ψ is 1-strongly convex, $G(\theta)$ and $G(\theta) + g(\theta) = F(\theta; D')$ are λ -strongly convex (as well as differentiable)
- · Furthermore, $\hat{\theta}$ and $\hat{\theta}'$ are their corresponding minimizers
- · Hence we can apply the lemma, which gives us the desired result

DP-ERM VIA OUTPUT PERTUBATION: ALGORITHM & PRIVACY GUARANTEES

Algorithm: DP-ERM via output perturbation $\mathcal{A}_{\text{DP-ERM}}(D, L, \psi, \lambda, \varepsilon, \delta)$

- 1. Compute ERM solution $\hat{ heta} = \arg\min_{ heta \in \mathbb{R}^p} \mathit{F}(heta)$
- 2. For $j=1,\ldots,p$: draw $Y_j \sim \mathcal{N}(0,\sigma^2)$ independently for each j, where $\sigma=\frac{2\sqrt{2\ln(1.25/\delta)}}{n\lambda\varepsilon}$
- 3. Output $\hat{\theta}$ + Y, where Y = $(Y_1, \dots, Y_p) \in \mathbb{R}^p$

Theorem (DP guarantees for DP-ERM via output perturbation)

Let $\varepsilon, \delta > 0$ and $\Theta = \mathbb{R}^p$. Let the loss function L and the regularizer ψ satisfy the conditions of the previous theorem. Then $\mathcal{A}_{DP\text{-}ERM}(\cdot, \mathsf{L}, \psi, \varepsilon, \delta)$ is (ε, δ) -DP.

· Proof: a direct application of the Gaussian mechanism with the previous theorem

DP-ERM VIA OUTPUT PERTUBATION: UTILITY GUARANTEES

• Utility is the excess (empirical or expected) risk w.r.t. the non-private solution

Theorem (Utility guarantees for DP-ERM via output perturbation [Chaudhuri et al., 2011])

Consider linear models with $L(\theta; x, y) := L(\theta^{\top} x, y)$ and normalized data such that $\|x\|_2 \le 1$ for all $x \in \mathcal{X}$. Let $\psi(\theta) = \frac{1}{2} \|\theta\|_2^2$, $\gamma > 0$ and $\beta > 0$. Let L be differentiable and 1-Lipschitz w.r.t. the ℓ_2 norm and ∇L be 1-Lipschitz w.r.t. the ℓ_1 norm. Let $\theta^* \in \arg\min R(\theta)$ be a minimizer of the expected risk. If n is of order

$$O\bigg(\max\bigg(\frac{\|\theta^*\|_2^2\log(\frac{1}{\beta})}{\gamma^2},\frac{p\log(\frac{p}{\beta})\|\theta^*\|_2\sqrt{\log(\frac{1}{\delta})}}{\gamma\varepsilon},\frac{p\log(\frac{p}{\beta})\|\theta^*\|_2^2\sqrt{\log(\frac{1}{\delta})}}{\gamma^{3/2}\varepsilon}\bigg)\bigg),$$

then the output θ_{priv} of A_{DP-ERM} satisfies $\Pr[R(\theta_{priv}) \leq R(\theta^*) + \gamma] \geq 1 - 2\beta$.

- The first term in the max is the sample size needed for non-private ERM
- This theorem shows that DP-ERM via output perturbation is well-founded: it matches the utility of the non-private case at the cost of a larger training set

DP-ERM VIA OUTPUT PERTUBATION: DISCUSSION

- An advantage of DP-ERM via output perturbation is that it is simple to implement on top of non-private algorithms
- However it requires restrictive assumptions on the loss function and regularizer
- In practice, ERM is not solved exactly but only to a certain precision using iterative solvers like (stochastic) gradient descent
- Approximate solutions may have small sensitivity, even if no (strongly convex) regularization is used [Zhang et al., 2017]

OTHER APPROACHES TO DP-ERM

- 1. Objective perturbation [Chaudhuri et al., 2011]: output the solution to ERM with a perturbed objective (not covered in the lectures)
- 2. Gradient perturbation [Bassily et al., 2014, Abadi et al., 2016]: perturb the gradients of a gradient-based algorithm (next lecture!)

REFERENCES I

[Abadi et al., 2016] Abadi, M., Chu, A., Goodfellow, I. J., McMahan, H. B., Mironov, I., Talwar, K., and Zhang, L. (2016).

Deep learning with differential privacy.

In CCS

III CCS

[Bassily et al., 2014] Bassily, R., Smith, A. D., and Thakurta, A. (2014).

Private Empirical Risk Minimization: Efficient Algorithms and Tight Error Bounds.

In FOCS.

[Bousquet and Elisseeff, 2002] Bousquet, O. and Elisseeff, A. (2002).

Stability and Generalization.

Journal of Machine Learning Research, 2:499-526.

[Carlini et al., 2022] Carlini, N., Chien, S., Nasr, M., Song, S., Terzis, A., and Tramer, F. (2022).

Membership inference attacks from first principles.

In S&P.

[Carlini et al., 2021] Carlini, N., Tramèr, F., Wallace, E., Jagielski, M., Herbert-Voss, A., Lee, K., Roberts, A., Brown, T., Song, D., Erlingsson, Ú., Oprea, A., and Raffel, C. (2021).

Extracting training data from large language models.

In USENIX Security.

REFERENCES II

[Chaudhuri et al., 2011] Chaudhuri, K., Monteleoni, C., and Sarwate, A. D. (2011).

Differentially Private Empirical Risk Minimization.

Journal of Machine Learning Research, 12:1069–1109.

[Paige et al., 2020] Paige, B., Bell, J., Bellet, A., Gascón, A., and Ezer, D. (2020).
Reconstructing Genotypes in Private Genomic Databases from Genetic Risk Scores.
In International Conference on Research in Computational Molecular Biology RECOMB.

[Shokri et al., 2017] Shokri, R., Stronati, M., Song, C., and Shmatikov, V. (2017).

Membership inference attacks against machine learning models.

In IEEE Symposium on Security and Privacy (S&P).

[Wang et al., 2016] Wang, Y.-X., Lei, J., and Fienberg, S. E. (2016).

Learning with Differential Privacy: Stability, Learnability and the Sufficiency and Necessity of ERM Principle.

Journal of Machine Learning Research, 17(183):1–40.

[Xu et al., 2012] Xu, H., Caramanis, C., and Mannor, S. (2012).
Sparse Algorithms Are Not Stable: A No-Free-Lunch Theorem.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 34(1):187–193.

REFERENCES III

[Zhang et al., 2017] Zhang, J., Zheng, K., Mou, W., and Wang, L. (2017). Efficient Private ERM for Smooth Objectives. In IJCAI.