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REMINDER: PRIVATE DATA ANALYSIS

(Figure inspired from R. Bassily)
Individuals
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...

queries
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machine learning model)

Algorithm

(ex: learning

algorithm)
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(ex: government,
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companies,
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• We have focused so far on “simple” aggregate statistics

• How about releasing machine learning models trained on private data?
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REMINDER: ML MODELS ARE NOT SAFE

• ML models are elaborate kinds of aggregate statistics!

• As such, they are susceptible to membership inference attacks, i.e. inferring the
presence of a known individual in the training set

• For instance, one can exploit the confidence in model predictions [Shokri et al., 2017]
[Carlini et al., 2022]

2



REMINDER: ML MODELS ARE NOT SAFE

• ML models are also susceptible to reconstruction attacks

• For instance, one can extract sensitive text from large language models
[Carlini et al., 2021] or run differencing attacks on ML models [Paige et al., 2020]
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TODAY’S LECTURE

1. Reminders on Empirical Risk Minimization (ERM)

2. Private ERM via output perturbation
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REMINDERS ON EMPIRICAL RISK
MINIMIZATION (ERM)



SUPERVISED LEARNING

• For convenience, we focus on supervised learning

• Consider an abstract data space X × Y where X is the input (feature) space and Y is
the output (label) space

• For instance, for binary classification with real-valued features: X ⊂ Rd, Y = {−1, 1}

• A predictor (model) is a function h : X → Y

• We measure the discrepancy between a prediction h(x) and the true label y using a
loss function L(h; x, y)
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STATISTICAL LEARNING FRAMEWORK

• We have access to a training set D = {(xi, yi)}ni=1 of n data points

• Each data point (xi, yi) is assumed to be drawn independently from a fixed but
unknown distribution µ

• The goal of ML is to find a predictor h with small expected risk:

R(h) = E
(x,y)∼µ

[L(h; x, y)]

• Since µ is unknown, we will use the training set to construct a proxy to R
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EMPIRICAL RISK MINIMIZATION (ERM)

• We thus define the empirical risk:

R̂(h;D) = 1
n

n∑
i=1

L(h; xi, yi)

• Assume that we work with predictors hθ : X → Y parameterized by θ ∈ Θ ⊆ Rp

• For notational convenience, we use L(θ; x, y), R(θ) and R̂(θ) to denote L(hθ; x, y),
R(hθ;D) and R̂(hθ;D), and omit the dependency on D when it is clear from the context

• Empirical Risk Minimization (ERM) consists in choosing the parameters

θ̂ ∈ argmin
θ∈Θ

[F(θ;D) := R̂(θ;D) + λψ(θ)]

• ψ is a regularizer and λ ≥ 0 a trade-off parameter
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USEFUL PROPERTIES

• We typically work with loss functions that are differentiable in θ: for (x, y) ∈ X × Y ,
we denote the gradient of L at θ by ∇L(θ; x, y) ∈ Rp

• We also like the loss function, its gradient and/or the regularizer to be Lipschitz

Definition (Lipschitz function)
Let l > 0. A function f is l-Lipschitz with respect to some norm ∥ · ∥ if if for all θ, θ′ ∈ Θ:

|f(θ)− f(θ′)| ≤ l∥θ − θ′∥.

If f is differentiable and ∥ · ∥ = ∥ · ∥2, the above property is equivalent to:

∥∇f(θ)∥2 ≤ l, ∀θ ∈ Θ.
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USEFUL PROPERTIES

• It is also useful when the loss and/or regularizer are convex or strongly convex

Definition (Strongly convex function)
Let s ≥ 0. A differentiable function f is s-strongly convex if for all θ, θ′ ∈ Θ:

f(θ′) ≥ f(θ) +∇f(θ)⊤(θ − θ′) +
s
2∥θ − θ′∥22,

or equivalently: (
∇f(θ)−∇f(θ′)

)⊤
(θ − θ′) ≥ s∥θ − θ′∥22,

For s = 0, we simply say that f is convex.
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EXAMPLE: LOGISTIC REGRESSION

• Let X ⊂ Rd and Y = {−1, 1}

• Pick a family of linear models hθ(x) = sign[θ⊤x+ b] for θ ∈ Θ = Rp

• Pick the logistic loss L(θ; x, y) = log(1+ e−y(θ⊤x+b)), which is ∥x∥-Lipschitz and convex

• For ψ(θ) = 0, the ERM problem gives logistic regression

• If we additionally set ψ(θ) = ∥θ∥22, we obtain ℓ2-regularized logistic regression

• Then ψ(θ) is 2-strongly convex and F(θ) = R̂(θ) + λψ(θ) is 2λ-strongly convex
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PRIVATE ERM VIA OUTPUT
PERTURBATION



DIFFERENTIALLY PRIVATE MACHINE LEARNING

• We would like to privately release a model trained on private data

• A differentially private machine learning algorithm A : N|X×Y| → Θ should guarantee
that for all neighboring datasets D,D′ and for all SΘ ⊆ Θ:

Pr[A(D) ∈ SΘ] ≤ eε Pr[A(D′) ∈ SΘ] + δ

• Important note: in ML, we consider a slightly different neighboring relation where
two neighboring datasets D,D′ ∈ (X ×Y)n have same size n and differ on one record

• This corresponds to replacing instead adding/removing one record
• This is for convenience: normalization term in empirical risk is 1/n for both D and D′
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DP AND GENERALIZATION

• Does DP seem compatible with the objective of ML?

• Yes! Intuitively, a model which does not change too much when trained on datasets
that differ by a single point should generalize well (because it does not overfit)

• This is related to the notion of algorithmic stability [Bousquet and Elisseeff, 2002],
which is known to be a sufficient condition for generalization

• There are formal connections between DP and algorithmic stability [Wang et al., 2016]:
in particular, “DP implies stability”
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DIFFERENTIALLY PRIVATE ERM VIA OUTPUT PERTUBATION

• ERM is a more complicated kind of “query” than those we have seen so far

• Still, can we re-use some ideas to construct DP-ERM algorithms?

• A natural approach is to rely on output perturbation:
Private
dataset

Black box

ERM

solver

Non-private model Private model
add noise

...

Formally: A(D) = θ̂ + η, where θ̂ ∈ argminθ∈Θ[F(θ;D) := R̂(θ;D) + λψ(θ)]

• To calibrate the noise, we need to bound the sensitivity of θ̂

• In some cases, this sensitivity may actually be quite high!
• Non-regularized objectives with expressive models (e.g., deep neural networks)
• ℓ1-regularized models such as LASSO, which are known to be unstable [Xu et al., 2012] 13



SENSITIVITY BOUND FOR SOME REGULARIZED ERM FORMULATIONS

Theorem (ℓ2 sensitivity for ERM [Chaudhuri et al., 2011])
Let Θ = Rp. If the regularizer ψ is differentiable and 1-strongly convex, and the loss
function L(·; x, y) is convex, differentiable and 1-Lipschitz w.r.t. the ℓ2 norm for all
x, y ∈ X × Y , then the ℓ2 sensitivity of argminθ F(θ) is at most 2/nλ.

• As expected, sensitivity decreases with n (the size of the dataset)

• Weak regularization leads to large upper bound on sensitivity

• Let’s prove this theorem!
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SENSITIVITY BOUND FOR SOME REGULARIZED ERM FORMULATIONS

Lemma
Let G(θ) and g(θ) be two vector-valued functions that are continuous and differentiable
everywhere. Assume that G(θ) and G(θ) + g(θ) are λ-strongly convex.

If θ1 = argminθ G(θ) and θ2 = argminθ G(θ) + g(θ), then ∥θ1 − θ2∥2 ≤ 1
λ maxθ ∥∇g(θ)∥2.

Proof.
• By the optimality of θ1 and θ2, we have ∇G(θ1) = ∇G(θ2) +∇g(θ2) = 0

• As G(θ) is strongly convex, we have
(
∇G(θ1)−∇G(θ2)

)⊤
(θ1 − θ2) ≥ λ∥θ1 − θ2∥22

• Using Cauchy-Schwartz inequality and the above two results, we obtain:

∥θ1 − θ2∥2∥∇g(θ2)∥2 ≥ (θ1 − θ2)
⊤∇g(θ2) =

(
∇G(θ1)−∇G(θ2)

)⊤
(θ1 − θ2) ≥ λ∥θ1 − θ2∥22

• Dividing both sides by λ∥θ1 − θ2∥ gives us the result
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SENSITIVITY BOUND FOR SOME REGULARIZED ERM FORMULATIONS

Proof of the theorem.
• Let D = {(x1, y1), . . . , (xn, yn)}, D′ = {(x′1, y′1), . . . , (xn, yn)} be two neighboring datasets
that differ only in their first point

• Denoting θ̂ = argminθ F(θ;D) and θ̂′ = argminθ F(θ;D′), we want to bound ∥θ̂ − θ̂′∥

• We define a convenient differentiable function

g(θ) = F(θ;D′)− F(θ;D) = 1
n

(
L(θ; x′1, y′1)− L(θ; x1, y1)

)
• By using the 1-Lipschitz property of L we have for any θ:

∥∇g(θ)∥ =
∥∥∥ 1
n

(
∇L(θ; x′1, y′1)−∇L(θ; x1, y1)

)∥∥∥ ≤ 2
n
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SENSITIVITY BOUND FOR SOME REGULARIZED ERM FORMULATIONS

Proof of the theorem.

• To complete the proof, we will show that ∥θ̂ − θ̂′∥ ≤ 1
λ maxθ ∥∇g(θ)∥

• Let G(θ) = F(θ;D) and recall the definition of g(θ) = F(θ;D′)− F(θ;D)

• Since L is convex and ψ is 1-strongly convex, G(θ) and G(θ) + g(θ) = F(θ;D′) are
λ-strongly convex (as well as differentiable)

• Furthermore, θ̂ and θ̂′ are their corresponding minimizers

• Hence we can apply the lemma, which gives us the desired result
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DP-ERM VIA OUTPUT PERTUBATION: ALGORITHM & PRIVACY GUARANTEES

Algorithm: DP-ERM via output perturbation ADP-ERM(D, L, ψ, λ, ε, δ)

1. Compute ERM solution θ̂ = argminθ∈Rp F(θ)

2. For j = 1, . . . ,p: draw Yj ∼ N (0, σ2) independently for each j, where σ =
2
√

2 ln(1.25/δ)
nλε

3. Output θ̂ + Y, where Y = (Y1, . . . , Yp) ∈ Rp

Theorem (DP guarantees for DP-ERM via output perturbation)
Let ε, δ > 0 and Θ = Rp. Let the loss function L and the regularizer ψ satisfy the
conditions of the previous theorem. Then ADP-ERM(·, L, ψ, ε, δ) is (ε, δ)-DP.

• Proof: a direct application of the Gaussian mechanism with the previous theorem
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DP-ERM VIA OUTPUT PERTUBATION: UTILITY GUARANTEES

• Utility is the excess (empirical or expected) risk w.r.t. the non-private solution

Theorem (Utility guarantees for DP-ERM via output perturbation [Chaudhuri et al., 2011])
Consider linear models with L(θ; x, y) := L(θ⊤x, y) and normalized data such that
∥x∥2 ≤ 1 for all x ∈ X . Let ψ(θ) = 1

2∥θ∥
2
2, γ > 0 and β > 0. Let L be differentiable and

1-Lipschitz w.r.t. the ℓ2 norm and ∇L be 1-Lipschitz w.r.t. the ℓ1 norm. Let θ∗ ∈ argminR(θ)
be a minimizer of the expected risk. If n is of order

O
(
max

(∥θ∗∥22 log( 1
β )

γ2
,
p log( pβ )∥θ

∗∥2
√

log( 1
δ )

γε
,
p log( pβ )∥θ

∗∥22
√

log( 1
δ )

γ3/2ε

))
,

then the output θpriv of ADP-ERM satisfies Pr[R(θpriv) ≤ R(θ∗) + γ] ≥ 1− 2β.

• The first term in the max is the sample size needed for non-private ERM

• This theorem shows that DP-ERM via output perturbation is well-founded: it matches
the utility of the non-private case at the cost of a larger training set 18



DP-ERM VIA OUTPUT PERTUBATION: DISCUSSION

• An advantage of DP-ERM via output perturbation is that it is simple to implement on
top of non-private algorithms

• However it requires restrictive assumptions on the loss function and regularizer

• In practice, ERM is not solved exactly but only to a certain precision using iterative
solvers like (stochastic) gradient descent

• Approximate solutions may have small sensitivity, even if no (strongly convex)
regularization is used [Zhang et al., 2017]
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OTHER APPROACHES TO DP-ERM

1. Objective perturbation [Chaudhuri et al., 2011]: output the solution to ERM with a
perturbed objective (not covered in the lectures)

2. Gradient perturbation [Bassily et al., 2014, Abadi et al., 2016]: perturb the gradients of a
gradient-based algorithm (next lecture!)
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