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REMINDER: DIFFERENTIAL PRIVACY

(Figure inspired from R. Bassily)
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Definition (Differential privacy [Dwork et al., 2006])

Let e > 0 and § € [0,1). A randomized algorithm A : NI¥I — O is (¢, §)-differentially
private (DP) if for all datasets D, D" € NI*I such that ||D — D’||; < 1and for all S C O:

PrlA(D) € 8] < e° PrlA(D’) € S] + 4, (1)

where the probability space is over the coin flips of A.



REMINDER: GLOBAL SENSITIVITY

Definition (Global ¢; sensitivity)
The global ¢ sensitivity of a query (function) f: NI*l — RK s

Aq(f) = IF(D) = f(D') Il

D,D’: HD D/H <1
Definition (Global ¢, sensitivity)
The global ¢, sensitivity of a query (function) f: NI¥l — R is

Ao(f) = IF(D) = A(D")I2

D,D’: HD D’H <i

- How much adding or removing a single record can change the value of the query,
measured in ¢, norm



REMINDER: LAPLACE MECHANISM

Algorithm: Laplace mechanism Apap(D, f: NI¥I — R¥ ¢)
1. Compute A = Aq(f)
2. Fork=1,... K draw Y, ~ Lap(A/e) independently for each k
3. Output f(D) + Y, where Y = (V1,..., Yx) € R

Theorem (DP guarantees for Laplace mechanism)
Lete > 0 and f: NI*I — RK. The Laplace mechanism Ayqp(-,f, €) satisfies e-DP.



REMINDER: GAUSSIAN MECHANISM

Algorithm: Gaussian mechanism Agayss(D, f : NI¥I — RK ¢ 4)

1. Compute A = Ay(f)

2. Fork=1,...,K: draw Y, ~ N(0,0?) independently for each k, where o = y2in(125/9)8

3. Output f(D) + Y, where Y = (V1,..., Yx) € RX

Theorem (DP guarantees for Gaussian mechanism)
lete, 6 > 0 and f: NI*¥I — RK The Gaussian mechanism Agauss(-,f, €,9) is (,68)-DP.



TODAY'S LECTURE

1. The exponential mechanism

2. Advanced composition results



THE EXPONENTIAL MECHANISM



LIMITATIONS OF OUTPUT PERTURBATION

- So far we have seen the Laplace and Gaussian mechanisms, which are based on
output perturbation: A(D) = f(D) + Y

- Can you think of some intrinsic limitations?
- First limitation: they only work for numeric queries

- Second limitation: they are useful only if the utility function is sufficiently regular



EXAMPLE QUERIES NOT WELL SUITED TO OUTPUT PERTURBATION

- Non-numeric queries

- What is the most popular website among Firefox users?
- What is the best set of hyperparameters to train my classifier on the dataset?

- Numeric queries for which two “similar” outputs can have very different utility

- Which date works better for a set of people to meet?
- Which price would make the most profit from a set of buyers?

- Profit if we set price to 3€: 3€

Buyer | Offer
e 3€ - Profit if we set price to 3.01€: 3.01€
Bob L€ - Profit if we set price to 4€: 4€

- Profit if we set price to 4.01€: 0€



NON-NUMERIC QUERIES

- We will now consider queries f: NI*l — @ with an abstract output space ©
- Example (websites): O = {'Google’,'Qwant’,'GitHub’, 'La Quadrature du Net’, ...}
- Example (prices): O = {3,3.01,4,4.01,...}
- Example (hair color): O = {'dark’, 'blond’, brown’, 'red’}

- Associated to O we have a score function (or utility function)

s:N*¥ x0-R

- For a dataset D € NI*l and an output 0 € O, s(D, 0) represents how good it is to
return o when the query is f(D)

- The function s can be arbitrary: it should be designed according to the use-case

- Of course, 0 = f(D) is usually assigned the maximum score



SENSITIVITY OF THE SCORE FUNCTION

Definition (Sensitivity of score function)
The sensitivity of as : NI*¥l x O = R is

A(S) = max ma Is(D,0) — s(D’, 0)]

X
0€O D,D’:||D=D’[|;<1
when adding or removing one record

- Note that sensitivity is only with respect to the dataset (scores can vary arbitrarily
across outputs)



THE EXPONENTIAL MECHANISM: ALGORITHM & PRIVACY GUARANTEES

Algorithm: Exponential mechanism Agp(D,f: N¥I — O, s : NI¥l x O — R, ¢)
1. Compute A = A(S)
2. Output o € O with probability:

exp (75(%2)'5 )

Prlo] = EGXDE
Soeo e (53<)
- Sample 0 € O with (denominator: normalization)
- Make , at a rate that depends on the

sensitivity of the score and the privacy parameter

Theorem (DP guarantees for exponential mechanism)
Lete >0,f:NI*l 5 Oand s : NI* x O = R Agg(-,f, s, €) satisfies e-DP,



THE EXPONENTIAL MECHANISM: ALGORITHM & PRIVACY GUARANTEES

Proof.

- For clarity, assume O is finite and let D, D’ such that ||[D — D’|j; < 1. For any o € O:

s(D,0’)-e (D,0)- (D/-O/)‘
Prldee(D,f,5,6) =0]  2ocoo® ( e ) €xp (SZA(S)E> 2o &P (S 2A(5) E)

/ — - S0 0).e D’, . ’ D, 7Y.
PrlAep(D',f,5,¢€) = 0] exp (4(24(5‘))*) e (S(zA(?)E) Yoo &P (S(zAO(s))E
oo (225)
D/ ’ .
(5(D,0) — (D', 0))e\  Looreo =P (25524
o )
2A(S) :




THE EXPONENTIAL MECHANISM: UTILITY GUARANTEES

- Fixing a dataset D, let s*(D) = maxqe S(D, 0)
- We show that , measured w.rt. s*(D)

Theorem (Utility guarantees for exponential mechanism)

lete >0, f: NI¥l - RKand s : NI¥l x ©® — R. Fix a dataset D € NI¥l and let
O*={0€ O :5(D,0) =s*(D)}. Then:

Pr |s*(D) — s(Ase(D. 1,5, ¢)) < 226) n 0] )| 21-8

€ pl1O*|

- Itis highly unlikely that we get utility score smaller than s*(D) by more than an

- Guarantees are better if several outputs have maximal score (i.e,,

0*| > 1)



THE EXPONENTIAL MECHANISM: UTILITY GUARANTEES

Proof.

- We want to show that Pr[s(Ag (D, f,s,€)) < c] < g for c = s*(D) — 280) | ( O] )
- Think about “bad”outputs 0 € O with s(D,0) < c¢

- Each such o has un-normalized probability mass at most exp(ec/2A(s)), hence the
entire set has total un-normalized probability mass at most |O| exp(ec/2A(S))

- In contrast, there is at least |O*| > 1 outputs o with s(D, 0) = s*(D), therefore:

Pr[s(Aexp(D.f, S, €)) < c] < |O] exp(c/2A(5))

|0+ exp(es*(D)/2A(s))
10| re(c—s*(D))
- |0*|ex"( 2A(s) )

=B O



THE EXPONENTIAL MECHANISM: UTILITY GUARANTEES

- Let O = {'dark’,’blond’, "brown’, 'red’} and consider the query “What is the most
common hair color?” with counts as scores

- Suppose that the most common color is 'dark’ (with count 500) and the second most
common is 'brown’ (with count 399)

- Fore = 0.1, what is the probability that Ag, returns 'dark’?
- Note that A(s) =1, |0| = 4 and |O*| =1

- Applying the theorem, we know that the probability of returning an output whose
score is larger than 400 = 500 — 201In(4/p) is at least 1 — 8

- This gives 8 = 4e—, hence the probability to get the correct answer is at least
1—B=0.973
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THE EXPONENTIAL MECHANISM: PRACTICAL CONSIDERATIONS

- The exponential mechanism is the natural building block for answering queries with
arbitrary utilities and arbitrary non-numeric range

- As we have seen, it is often quite easy to analyze

- The set O of possible outputs should not be specific to the particular dataset!
- Otherwise we violate DP
- Example of violation: possible prices for items based on actual bids

- The exponential mechanism can define a complex distribution over an arbitrary
large domain, so it is not always possible to implement it efficiently



ADVANCED COMPOSITION RESULTS



REMINDER: SIMPLE COMPOSITION

Theorem (Simple composition)

Let A,,..., Ak be K independently chosen algorithms where Ay, satisfies (eg, dx)-DP. For
any dataset D, let A be such that

A(D) = (Ar(D), ..., Ax(D)).

Then Ais (e,8)-DP with e = Y5 e, and 6 = SO5_, 6.

- But data science is inherently an - we would like to choose the next
analysis to do based on previous results!



SIMPLE ADAPTIVE COMPOSITION

- Consider the following algorithm 4,45, Which takes as input a dataset D and
Aq, ..., A, onD

Algorithm A,qap(D)
- Set initial state to sy (independent of D)

- Forke {1,...,K}:

- Ay + Pick_Alg(so,...,Sr_1) [/ choose A, based on previous outputs
* Sp .Ak(D)

- Return (s, ..., Sk)

Theorem (Simple adaptive composition)

If at each round k € {1,...,K}, the selected algorithm Ay is guaranteed to satisfy
(£ks Ok)-DP. then Aqgap is (€,6)-DP with e = Y"_,ep and 6 = 3"_, 0.



SIMPLE ADAPTIVE COMPOSITION

Proof.
- Llet D, D’ € NI*l such that ||D — D < 1

- LetS=(Sy,...,Sk) (resp. §') be a random variable that denotes the vector of outputs
of the K rounds when the input dataset is D (resp. D’)

- Fix an output s = (S, ..., k). Given So, ..., Sk_1, the algorithm Ay is determined by
the (possibly randomized) algorithm Pick_Alg. Fix any internal randomness in
Pick_Alg (i.e., we implicitly condition on fixed random coins of Pick_Alg)

- Goal: show that

K
Pr[S =s] < eXi = Pr[S' = 5] + Y 4
k=1



SIMPLE ADAPTIVE COMPOSITION

Proof.

- By the chain rule, we have

Pr[S =s] = Pr[S = (51, ..., 5k)]
K
= PF[S1 = 51] H PI’[Sk = Sg | 51 =Sy000 ,Sk_j = S[?_']]
k=2
K
= Pr[51 = S1|A1] H Pr[Sk = S | S1=51,...,51 = Sk,1,./4fg]
k=2

- Since Sy = Ag(D), and Sg is independent of Sy, ..., Sg_; given Ay, we have

Pr[S = 5] = [ ] Pr[Ax(D) = skl-Ar]
k=1



SIMPLE ADAPTIVE COMPOSITION

Proof.
- Consider the k-th term Pr[Ag(D) = si|Ag]. Since Ay, is (e, dr)-DP, we have
PI’[.A;Q(D) = ng|.Afg] < e°k Pr[Afg(D/) = SHA&] + g
< min (eek Pr[Ah(D’) = Sg|Ag] + O, 1)

< min (eEh Pr[Ax(D") = SHA&]J) + &g

- We can thus write:
K K
T] PriAx(D) = selAx] < ( min (e“ Pr{A(D) = s1] A1), 1) + 51) T] PriAx(D) = selAxl
k=1 k=2

K
< min (e& Pr{A:(D’) = s:| A1), 1) [T PrlAx(D) = sl A + &

k=2



SIMPLE ADAPTIVE COMPOSITION

Proof.

- Applying this recursively and using the conditional independence property used
earlier on Pr[S" = s], we get

K
Pr[S = s] = [ ] PrlAx(D) = el Al
k=1

K

< (min (ea’? Pr[Ak(D’) = sg|Axl, 1) 4 XK:(Sk

k=1 k=1

K K
< Xt = [T PrAn(D') = selAel + > &%
k=1 k=1
K
= eXia = Pr[S' =] + 5
k=1



ADVANCED COMPOSITION

- We can also prove another adaptive composition result known as
(see [Dwork and Roth, 2014] for the proof, which is more involved)

Theorem (Advanced composition)
Lete, 8,6’ > 0. If at each round k € {1,...,K}, the selected algorithm Ay, is guaranteed to

satisfy (e,8)-DP, then Aqgap IS (¢', K§ 4 6")-DP with

e’ =+/2KIn(1/8")e + Ke(e® — 1)

- For small enough ¢, the dominant term is y/2KIn(1/6")e, which is
(simple composition) [

- The result holds for § = 0 (composition of pure DP mechanisms) but requires 6’ > 0

- The two composition results do not conflict: they hold simultaneously
19



ADVANCED COMPOSITION

Corollary (see [Dwork and Roth, 2014])
Given target privacy parameters 0 < &’ < 1and ¢’ > 0, to ensure (¢’, Ko + ¢")-DP for the
composition of K mechanisms, it suffices that each mechanism is (e, 0)-DP with

6/

T 2 /2KIn(1/8")

- We can and use advanced composition to
by perturbing less each query (assuming we know K in advance)

- This corollary is convenient, but ,which
matters in practice!

- See [Kairouz et al,, 2015] for slightly tighter (optimal) composition results that also hold
when Ar is (th 5;?)*DP

20



EVEN BETTER COMPOSITION FOR GAUSSIAN MECHANISM

- These advanced composition results are not quite tight: they give somewhat loose
upper bounds on the privacy cost

- Some variants of (g,6)-DP, such Rényi DP [Mironov, 2017] and zero-concentrated DP
(zCDP) [Bun and Steinke, 2016], can enable tighter bounds

- In particular, they provide tighter composition results for the Gaussian mechanism

- Converting the privacy guarantees back to (g,4)-DP, this shaves off a logarithmic
factor in 6 and gives better constants

21
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