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REMINDER: DIFFERENTIAL PRIVACY

(Figure inspired from R. Bassily)
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Definition (Differential privacy [Dwork et al., 2006])
Let ε > 0 and δ ∈ [0, 1). A randomized algorithm A : N|X | → O is (ε, δ)-differentially
private (DP) if for all datasets D,D′ ∈ N|X | such that ∥D− D′∥1 ≤ 1 and for all S ⊆ O:

Pr[A(D) ∈ S] ≤ eε Pr[A(D′) ∈ S] + δ, (1)

where the probability space is over the coin flips of A.
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REMINDER: GLOBAL SENSITIVITY

Definition (Global ℓ1 sensitivity)
The global ℓ1 sensitivity of a query (function) f : N|X | → RK is

∆1(f) = max
D,D′:∥D−D′∥1≤1

∥f(D)− f(D′)∥1

Definition (Global ℓ2 sensitivity)
The global ℓ2 sensitivity of a query (function) f : N|X | → RK is

∆2(f) = max
D,D′:∥D−D′∥1≤1

∥f(D)− f(D′)∥2

• How much adding or removing a single record can change the value of the query,
measured in ℓp norm
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REMINDER: LAPLACE MECHANISM

Algorithm: Laplace mechanism ALap(D, f : N|X | → RK, ε)

1. Compute ∆ = ∆1(f)
2. For k = 1, . . . , K: draw Yk ∼ Lap(∆/ε) independently for each k
3. Output f(D) + Y, where Y = (Y1, . . . , YK) ∈ RK

Theorem (DP guarantees for Laplace mechanism)
Let ε > 0 and f : N|X | → RK. The Laplace mechanism ALap(·, f, ε) satisfies ε-DP.
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REMINDER: GAUSSIAN MECHANISM

Algorithm: Gaussian mechanism AGauss(D, f : N|X | → RK, ε, δ)

1. Compute ∆ = ∆2(f)

2. For k = 1, . . . , K: draw Yk ∼ N (0, σ2) independently for each k, where σ =

√
2 ln(1.25/δ)∆

ε

3. Output f(D) + Y, where Y = (Y1, . . . , YK) ∈ RK

Theorem (DP guarantees for Gaussian mechanism)
Let ε, δ > 0 and f : N|X | → RK. The Gaussian mechanism AGauss(·, f, ε, δ) is (ε, δ)-DP.

4



TODAY’S LECTURE

1. The exponential mechanism

2. Advanced composition results
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THE EXPONENTIAL MECHANISM



LIMITATIONS OF OUTPUT PERTURBATION

• So far we have seen the Laplace and Gaussian mechanisms, which are based on
output perturbation: A(D) = f(D) + Y

• Can you think of some intrinsic limitations?

• First limitation: they only work for numeric queries

• Second limitation: they are useful only if the utility function is sufficiently regular
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EXAMPLE QUERIES NOT WELL SUITED TO OUTPUT PERTURBATION

• Non-numeric queries
• What is the most popular website among Firefox users?
• What is the best set of hyperparameters to train my classifier on the dataset?

• Numeric queries for which two “similar” outputs can have very different utility
• Which date works better for a set of people to meet?
• Which price would make the most profit from a set of buyers?

Buyer Offer
Alice 3€
Bob 4€

• Profit if we set price to 3€: 3€

• Profit if we set price to 3.01€: 3.01€

• Profit if we set price to 4€: 4€

• Profit if we set price to 4.01€: 0€
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NON-NUMERIC QUERIES

• We will now consider queries f : N|X | → O with an abstract output space O
• Example (websites): O = {’Google’, ’Qwant’, ’GitHub’, ’La Quadrature du Net’, . . . }
• Example (prices): O = {3, 3.01, 4, 4.01, . . . }
• Example (hair color): O = {’dark’, ’blond’, ’brown’, ’red’}

• Associated to O we have a score function (or utility function)

s : N|X | ×O → R

• For a dataset D ∈ N|X | and an output o ∈ O, s(D,o) represents how good it is to
return o when the query is f(D)

• The function s can be arbitrary: it should be designed according to the use-case

• Of course, o = f(D) is usually assigned the maximum score
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SENSITIVITY OF THE SCORE FUNCTION

Definition (Sensitivity of score function)
The sensitivity of a s : N|X | ×O → R is

∆(s) = max
o∈O

max
D,D′:∥D−D′∥1≤1

|s(D,o)− s(D′,o)|

• Worst-case change of score of an output when adding or removing one record

• Note that sensitivity is only with respect to the dataset (scores can vary arbitrarily
across outputs)
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THE EXPONENTIAL MECHANISM: ALGORITHM & PRIVACY GUARANTEES

Algorithm: Exponential mechanism AExp(D, f : N|X | → O, s : N|X | ×O → R, ε)

1. Compute ∆ = ∆(s)
2. Output o ∈ O with probability:

Pr[o] =
exp

(
s(D,o)·ε

2∆

)
∑

o′∈O exp
(

s(D,o′)·ε
2∆

)

• Sample o ∈ O with probability proportional to its score (denominator: normalization)

• Make high quality outputs exponentially more likely, at a rate that depends on the
sensitivity of the score and the privacy parameter

Theorem (DP guarantees for exponential mechanism)
Let ε > 0, f : N|X | → O and s : N|X | ×O → R. AExp(·, f, s, ε) satisfies ε-DP.
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THE EXPONENTIAL MECHANISM: ALGORITHM & PRIVACY GUARANTEES

Proof.
• For clarity, assume O is finite and let D,D′ such that ∥D− D′∥1 ≤ 1. For any o ∈ O:

Pr[AExp(D, f, s, ε) = o]
Pr[AExp(D′, f, s, ε) = o] =

exp

(
s(D,o)·ε
2∆(s)

)
∑

o′∈O exp

(
s(D,o′)·ε
2∆(s)

)
exp

(
s(D′,o)·ε
2∆(s)

)
∑

o′∈O exp

(
s(D′,o′)·ε

2∆(s)

) =
exp

(
s(D,o)·ε
2∆(s)

)
exp

(
s(D′,o)·ε
2∆(s)

) ·

∑
o′∈O exp

(
s(D′,o′)·ε
2∆(s)

)
∑

o′∈O exp
(

s(D,o′)·ε
2∆(s)

)

= exp
( (s(D,o)− s(D′,o))ε

2∆(s)

)
·

∑
o′∈O exp

(
s(D′,o′)·ε
2∆(s)

)
∑

o′∈O exp
(

s(D,o′)·ε
2∆(s)

)
≤ exp

(ε
2

)
· exp

(ε
2

)
·

∑
o′∈O exp

(
s(D,o′)·ε
2∆(s)

)
∑

o′∈O exp
(

s(D,o′)·ε
2∆(s)

) = eε
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THE EXPONENTIAL MECHANISM: UTILITY GUARANTEES

• Fixing a dataset D, let s∗(D) = maxo∈ s(D,o)

• We show that it is unlikely that AExp returns a “bad” output, measured w.r.t. s∗(D)

Theorem (Utility guarantees for exponential mechanism)
Let ε > 0, f : N|X | → RK and s : N|X | ×O → R. Fix a dataset D ∈ N|X | and let
O∗ = {o ∈ O : s(D,o) = s∗(D)}. Then:

Pr

[
s∗(D)− s(AExp(D, f, s, ε)) ≤

2∆(s)
ε

ln
( |O|
β|O∗|

)]
≥ 1− β

• It is highly unlikely that we get utility score smaller than s∗(D) by more than an
additive factor of O((∆(s)/ε) ln(|O|))

• Guarantees are better if several outputs have maximal score (i.e., |O∗| ≥ 1)
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THE EXPONENTIAL MECHANISM: UTILITY GUARANTEES

Proof.

• We want to show that Pr[s(AExp(D, f, s, ε)) ≤ c] ≤ β for c = s∗(D)− 2∆(s)
ε ln

(
|O|

β|O∗|

)
• Think about “bad”outputs o ∈ O with s(D,o) ≤ c

• Each such o has un-normalized probability mass at most exp(εc/2∆(s)), hence the
entire set has total un-normalized probability mass at most |O| exp(εc/2∆(s))

• In contrast, there is at least |O∗| ≥ 1 outputs o with s(D,o) = s∗(D), therefore:

Pr[s(AExp(D, f, s, ε)) ≤ c] ≤ |O| exp(εc/2∆(s))
|O∗| exp(εs∗(D)/2∆(s))

=
|O|
|O∗|

exp
(ε(c− s∗(D))

2∆(s)

)
= β

13



THE EXPONENTIAL MECHANISM: UTILITY GUARANTEES

• Let O = {’dark’, ’blond’, ’brown’, ’red’} and consider the query “What is the most
common hair color?” with counts as scores

• Suppose that the most common color is ’dark’ (with count 500) and the second most
common is ’brown’ (with count 399)

• For ε = 0.1, what is the probability that AExp returns ’dark’?

• Note that ∆(s) = 1, |O| = 4 and |O∗| = 1

• Applying the theorem, we know that the probability of returning an output whose
score is larger than 400 = 500− 20 ln(4/β) is at least 1− β

• This gives β = 4e−5, hence the probability to get the correct answer is at least
1− β = 0.973
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THE EXPONENTIAL MECHANISM: PRACTICAL CONSIDERATIONS

• The exponential mechanism is the natural building block for answering queries with
arbitrary utilities and arbitrary non-numeric range

• As we have seen, it is often quite easy to analyze

• The set O of possible outputs should not be specific to the particular dataset!
• Otherwise we violate DP
• Example of violation: possible prices for items based on actual bids

• The exponential mechanism can define a complex distribution over an arbitrary
large domain, so it is not always possible to implement it efficiently
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ADVANCED COMPOSITION RESULTS



REMINDER: SIMPLE COMPOSITION

Theorem (Simple composition)
Let A1, . . . ,AK be K independently chosen algorithms where Ak satisfies (εk, δk)-DP. For
any dataset D, let A be such that

A(D) = (A1(D), . . . ,Ak(D)).

Then A is (ε, δ)-DP with ε =
∑K

k=1 εk and δ =
∑K

k=1 δk.

• But data science is inherently an adaptive process: we would like to choose the next
analysis to do based on previous results!
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SIMPLE ADAPTIVE COMPOSITION

• Consider the following algorithm Aadap which takes as input a dataset D and runs K
adaptively chosen DP mechanisms A1, . . . ,Ak on D

Algorithm Aadap(D)

• Set initial state to s0 (independent of D)
• For k ∈ {1, . . . , K}:

• Ak ← Pick_Alg(s0, . . . , sk−1) // choose Ak based on previous outputs
• sk ← Ak(D)

• Return (s1, . . . , sK)

Theorem (Simple adaptive composition)
If at each round k ∈ {1, . . . , K}, the selected algorithm Ak is guaranteed to satisfy
(εk, δk)-DP, then Aadap is (ε, δ)-DP with ε =

∑K
k=1 εk and δ =

∑K
k=1 δk.
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SIMPLE ADAPTIVE COMPOSITION

Proof.

• Let D,D′ ∈ N|X | such that ∥D− D′∥1 ≤ 1

• Let S = (S1, . . . , SK) (resp. S′) be a random variable that denotes the vector of outputs
of the K rounds when the input dataset is D (resp. D′)

• Fix an output s = (s1, . . . , sK). Given s0, . . . , sk−1, the algorithm Ak is determined by
the (possibly randomized) algorithm Pick_Alg. Fix any internal randomness in
Pick_Alg (i.e., we implicitly condition on fixed random coins of Pick_Alg)

• Goal: show that

Pr[S = s] ≤ e
∑K

k=1 εk Pr[S′ = s] +
K∑

k=1

δk
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SIMPLE ADAPTIVE COMPOSITION

Proof.
• By the chain rule, we have

Pr[S = s] = Pr[S = (s1, . . . , sK)]

= Pr[S1 = s1]
K∏

k=2

Pr[Sk = sk | S1 = s1, . . . , Sk−1 = sk−1]

= Pr[S1 = s1|A1]
K∏

k=2

Pr[Sk = sk | S1 = s1, . . . , Sk−1 = sk−1,Ak]

• Since Sk = Ak(D), and Sk is independent of S1, . . . , Sk−1 given Ak, we have

Pr[S = s] =
K∏

k=1

Pr[Ak(D) = sk|Ak]
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SIMPLE ADAPTIVE COMPOSITION

Proof.
• Consider the k-th term Pr[Ak(D) = sk|Ak]. Since Ak is (εk, δk)-DP, we have

Pr[Ak(D) = sk|Ak] ≤ eεk Pr[Ak(D′) = sk|Ak] + δk

≤ min
(
eεk Pr[Ak(D′) = sk|Ak] + δk, 1

)
≤ min

(
eεk Pr[Ak(D′) = sk|Ak], 1

)
+ δk

• We can thus write:

K∏
k=1

Pr[Ak(D) = sk|Ak] ≤
(
min

(
eε1 Pr[A1(D′) = s1|A1], 1

)
+ δ1

) K∏
k=2

Pr[Ak(D) = sk|Ak]

≤ min
(
eε1 Pr[A1(D′) = s1|A1], 1

) K∏
k=2

Pr[Ak(D) = sk|Ak] + δ1

18



SIMPLE ADAPTIVE COMPOSITION

Proof.
• Applying this recursively and using the conditional independence property used
earlier on Pr[S′ = s], we get

Pr[S = s] =
K∏

k=1

Pr[Ak(D) = sk|Ak]

≤
K∏

k=1

(
min

(
eεk Pr[Ak(D′) = sk|Ak], 1

)
+

K∑
k=1

δk

≤ e
∑K

k=1 εk

K∏
k=1

Pr[Ak(D′) = sk|Ak] +
K∑

k=1

δk

= e
∑K

k=1 εk Pr[S′ = s] +
K∑

k=1

δk
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ADVANCED COMPOSITION

• We can also prove another adaptive composition result known as advanced
composition (see [Dwork and Roth, 2014] for the proof, which is more involved)

Theorem (Advanced composition)
Let ϵ, δ, δ′ > 0. If at each round k ∈ {1, . . . , K}, the selected algorithm Ak is guaranteed to
satisfy (ε, δ)-DP, then Aadap is (ε′, Kδ + δ′)-DP with

ε′ =
√
2K ln(1/δ′)ε+ Kε(eε − 1)

• For small enough ϵ, the dominant term is
√
2K ln(1/δ′)ε, which is much better than Kε

(simple composition) for large K!

• The result holds for δ = 0 (composition of pure DP mechanisms) but requires δ′ > 0

• The two composition results do not conflict: they hold simultaneously
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ADVANCED COMPOSITION

Corollary (see [Dwork and Roth, 2014])
Given target privacy parameters 0 < ε′ < 1 and δ′ > 0, to ensure (ε′, Kδ + δ′)-DP for the
composition of K mechanisms, it suffices that each mechanism is (ε, δ)-DP with

ε =
ε′

2
√
2K ln(1/δ′)

• We can fix the final privacy guarantee and use advanced composition to get much
better utility by perturbing less each query (assuming we know K in advance)

• This corollary is convenient, but using the theorem directly yields tighter ε, which
matters in practice!

• See [Kairouz et al., 2015] for slightly tighter (optimal) composition results that also hold
when Ak is (εk, δk)-DP
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EVEN BETTER COMPOSITION FOR GAUSSIAN MECHANISM

• These advanced composition results are not quite tight: they give somewhat loose
upper bounds on the privacy cost

• Some variants of (ε, δ)-DP, such Rényi DP [Mironov, 2017] and zero-concentrated DP
(zCDP) [Bun and Steinke, 2016], can enable tighter bounds

• In particular, they provide tighter composition results for the Gaussian mechanism

• Converting the privacy guarantees back to (ε, δ)-DP, this shaves off a logarithmic
factor in δ and gives better constants
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