PRIVACY PRESERVING MACHINE LEARNING

LECTURE 3: THE EXPONENTIAL MECHANISM & ADVANCED COMPOSITION

Aurélien Bellet (Inria) Master 2 Data Science, University of Lille

REMINDER: DIFFERENTIAL PRIVACY

Definition (Differential privacy [Dwork et al., 2006])

Let $\varepsilon > 0$ and $\delta \in [0, 1)$. A randomized algorithm $\mathcal{A} : \mathbb{N}^{|\mathcal{X}|} \to \mathcal{O}$ is (ε, δ) -differentially private (DP) if for all datasets $D, D' \in \mathbb{N}^{|\mathcal{X}|}$ such that $\|D - D'\|_1 \leq 1$ and for all $\mathcal{S} \subseteq \mathcal{O}$:

$$\Pr[\mathcal{A}(D) \in \mathcal{S}] \le e^{\varepsilon} \Pr[\mathcal{A}(D') \in \mathcal{S}] + \delta, \tag{1}$$

where the probability space is over the coin flips of \mathcal{A} .

REMINDER: GLOBAL SENSITIVITY

Definition (Global ℓ_1 sensitivity)

The global ℓ_1 sensitivity of a query (function) $f : \mathbb{N}^{|\mathcal{X}|} \to \mathbb{R}^{K}$ is

$$\Delta_1(f) = \max_{D,D': \|D-D'\|_1 \le 1} \|f(D) - f(D')\|_1$$

Definition (Global ℓ_2 sensitivity)

The global ℓ_2 sensitivity of a query (function) $f : \mathbb{N}^{|\mathcal{X}|} \to \mathbb{R}^{K}$ is

$$\Delta_2(f) = \max_{D,D': \|D-D'\|_1 \le 1} \|f(D) - f(D')\|_2$$

- How much adding or removing a single record can change the value of the query, measured in ℓ_{p} norm

Algorithm: Laplace mechanism $\mathcal{A}_{Lap}(D, f : \mathbb{N}^{|\mathcal{X}|} \to \mathbb{R}^{\mathcal{K}}, \varepsilon)$

- 1. Compute $\Delta = \Delta_1(f)$
- 2. For k = 1, ..., K: draw $Y_k \sim \text{Lap}(\Delta/\varepsilon)$ independently for each k
- 3. Output f(D) + Y, where $Y = (Y_1, \ldots, Y_K) \in \mathbb{R}^K$

Theorem (DP guarantees for Laplace mechanism)

Let $\varepsilon > 0$ and $f : \mathbb{N}^{|\mathcal{X}|} \to \mathbb{R}^{K}$. The Laplace mechanism $\mathcal{A}_{Lap}(\cdot, f, \varepsilon)$ satisfies ε -DP.

Algorithm: Gaussian mechanism $\mathcal{A}_{\text{Gauss}}(D, f : \mathbb{N}^{|\mathcal{X}|} \to \mathbb{R}^{\mathcal{K}}, \varepsilon, \delta)$

- 1. Compute $\Delta = \Delta_2(f)$
- 2. For k = 1, ..., K: draw $Y_k \sim \mathcal{N}(0, \sigma^2)$ independently for each k, where $\sigma = \frac{\sqrt{2 \ln(1.25/\delta)\Delta}}{\varepsilon}$
- 3. Output f(D) + Y, where $Y = (Y_1, \ldots, Y_K) \in \mathbb{R}^K$

Theorem (DP guarantees for Gaussian mechanism)

Let $\varepsilon, \delta > 0$ and $f : \mathbb{N}^{|\mathcal{X}|} \to \mathbb{R}^{K}$. The Gaussian mechanism $\mathcal{A}_{\text{Gauss}}(\cdot, f, \varepsilon, \delta)$ is (ε, δ) -DP.

- 1. The exponential mechanism
- 2. Advanced composition results

THE EXPONENTIAL MECHANISM

- So far we have seen the Laplace and Gaussian mechanisms, which are based on output perturbation: A(D) = f(D) + Y
- Can you think of some intrinsic limitations?
- First limitation: they only work for numeric queries
- Second limitation: they are useful only if the utility function is sufficiently regular

Non-numeric queries

- What is the most popular website among Firefox users?
- What is the best set of hyperparameters to train my classifier on the dataset?
- · Numeric queries for which two "similar" outputs can have very different utility
 - Which date works better for a set of people to meet?
 - Which price would make the most profit from a set of buyers?

Buyer	Offer
Alice	3€
Bob	4€

- Profit if we set price to 3€: 3€
- Profit if we set price to 3.01€: 3.01€
- Profit if we set price to 4€: 4€
- Profit if we set price to 4.01€: 0€

NON-NUMERIC QUERIES

- We will now consider queries $f : \mathbb{N}^{|\mathcal{X}|} \to \mathcal{O}$ with an abstract output space \mathcal{O}
 - Example (websites): $\mathcal{O} = \{$ 'Google', 'Qwant', 'GitHub', 'La Quadrature du Net', ... $\}$
 - Example (prices): $\mathcal{O} = \{3, 3.01, 4, 4.01, \dots\}$
 - Example (hair color): $\mathcal{O} = \{$ 'dark', 'blond', 'brown', 'red' $\}$
- Associated to \mathcal{O} we have a score function (or utility function)

$$\mathsf{s}:\mathbb{N}^{|\mathcal{X}|}\times\mathcal{O}\to\mathbb{R}$$

- For a dataset $D \in \mathbb{N}^{|\mathcal{X}|}$ and an output $o \in \mathcal{O}$, s(D, o) represents how good it is to return o when the query is f(D)
- The function s can be arbitrary: it should be designed according to the use-case
- Of course, o = f(D) is usually assigned the maximum score

Definition (Sensitivity of score function)

The sensitivity of a $s:\mathbb{N}^{|\mathcal{X}|}\times\mathcal{O}\to\mathbb{R}$ is

$$\Delta(s) = \max_{o \in \mathcal{O}} \max_{D,D': ||D-D'||_1 \le 1} |s(D,o) - s(D',o)|$$

- · Worst-case change of score of an output when adding or removing one record
- Note that sensitivity is only with respect to the dataset (scores can vary arbitrarily across outputs)

THE EXPONENTIAL MECHANISM: ALGORITHM & PRIVACY GUARANTEES

Algorithm: Exponential mechanism $\mathcal{A}_{Exp}(D, f : \mathbb{N}^{|\mathcal{X}|} \to \mathcal{O}, s : \mathbb{N}^{|\mathcal{X}|} \times \mathcal{O} \to \mathbb{R}, \varepsilon)$

- 1. Compute $\Delta = \Delta(s)$
- 2. Output $o \in \mathcal{O}$ with probability:

$$\Pr[o] = \frac{\exp\left(\frac{s(D,o)\cdot\varepsilon}{2\Delta}\right)}{\sum_{o'\in\mathcal{O}}\exp\left(\frac{s(D,o')\cdot\varepsilon}{2\Delta}\right)}$$

- Sample $o \in O$ with probability proportional to its score (denominator: normalization)
- Make high quality outputs *exponentially* more likely, at a rate that depends on the sensitivity of the score and the privacy parameter

Theorem (DP guarantees for exponential mechanism) Let $\varepsilon > 0, f : \mathbb{N}^{|\mathcal{X}|} \to \mathcal{O}$ and $s : \mathbb{N}^{|\mathcal{X}|} \times \mathcal{O} \to \mathbb{R}$. $\mathcal{A}_{Exp}(\cdot, f, s, \varepsilon)$ satisfies ε -DP.

THE EXPONENTIAL MECHANISM: ALGORITHM & PRIVACY GUARANTEES

Proof.

• For clarity, assume \mathcal{O} is finite and let D, D' such that $||D - D'||_1 \leq 1$. For any $o \in \mathcal{O}$:

$$\frac{\Pr[\mathcal{A}_{\text{Exp}}(D, f, S, \varepsilon) = o]}{\Pr[\mathcal{A}_{\text{Exp}}(D', f, S, \varepsilon) = o]} = \frac{\frac{\exp\left(\frac{s(D, o') \cdot \varepsilon}{2\Delta(S)}\right)}{\sum_{o' \in \mathcal{O}} \exp\left(\frac{s(D', o') \cdot \varepsilon}{2\Delta(S)}\right)}}{\frac{\exp\left(\frac{s(D', o') \cdot \varepsilon}{2\Delta(S)}\right)}{\sum_{o' \in \mathcal{O}} \exp\left(\frac{s(D', o') \cdot \varepsilon}{2\Delta(S)}\right)}} = \frac{\exp\left(\frac{s(D, o) \cdot \varepsilon}{2\Delta(S)}\right)}{\exp\left(\frac{s(D', o) \cdot \varepsilon}{2\Delta(S)}\right)} \cdot \frac{\sum_{o' \in \mathcal{O}} \exp\left(\frac{s(D', o') \cdot \varepsilon}{2\Delta(S)}\right)}{\sum_{o' \in \mathcal{O}} \exp\left(\frac{s(D, o) \cdot \varepsilon}{2\Delta(S)}\right)}$$
$$= \exp\left(\frac{\left(s(D, o) - s(D', o)\right)\varepsilon}{2\Delta(S)}\right) \cdot \frac{\sum_{o' \in \mathcal{O}} \exp\left(\frac{s(D', o') \cdot \varepsilon}{2\Delta(S)}\right)}{\sum_{o' \in \mathcal{O}} \exp\left(\frac{s(D, o') \cdot \varepsilon}{2\Delta(S)}\right)}$$
$$\leq \exp\left(\frac{\varepsilon}{2}\right) \cdot \exp\left(\frac{\varepsilon}{2}\right) \cdot \frac{\sum_{o' \in \mathcal{O}} \exp\left(\frac{s(D, o') \cdot \varepsilon}{2\Delta(S)}\right)}{\sum_{o' \in \mathcal{O}} \exp\left(\frac{s(D, o') \cdot \varepsilon}{2\Delta(S)}\right)} = e^{\varepsilon}$$

THE EXPONENTIAL MECHANISM: UTILITY GUARANTEES

- Fixing a dataset D, let $s^*(D) = \max_{o \in} s(D, o)$
- We show that it is unlikely that A_{Exp} returns a "bad" output, measured w.r.t. $s^*(D)$

Theorem (Utility guarantees for exponential mechanism) Let $\varepsilon > 0, f : \mathbb{N}^{|\mathcal{X}|} \to \mathbb{R}^{K}$ and $s : \mathbb{N}^{|\mathcal{X}|} \times \mathcal{O} \to \mathbb{R}$. Fix a dataset $D \in \mathbb{N}^{|\mathcal{X}|}$ and let $\mathcal{O}^{*} = \{o \in \mathcal{O} : s(D, o) = s^{*}(D)\}$. Then:

$$\Pr\left[s^*(D) - s(\mathcal{A}_{Exp}(D, f, s, \varepsilon)) \le \frac{2\Delta(s)}{\varepsilon} \ln\left(\frac{|\mathcal{O}|}{\beta |\mathcal{O}^*|}\right)\right] \ge 1 - \beta$$

- It is highly unlikely that we get utility score smaller than $s^*(D)$ by more than an additive factor of $O((\Delta(s)/\varepsilon) \ln(|\mathcal{O}|))$
- Guarantees are better if several outputs have maximal score (i.e., $|\mathcal{O}^*| \ge 1$)

THE EXPONENTIAL MECHANISM: UTILITY GUARANTEES

Proof.

- We want to show that $\Pr[s(\mathcal{A}_{Exp}(D, f, s, \varepsilon)) \le c] \le \beta$ for $c = s^*(D) \frac{2\Delta(s)}{\varepsilon} \ln\left(\frac{|\mathcal{O}|}{\beta|\mathcal{O}^*|}\right)$
- Think about "bad" outputs $o \in \mathcal{O}$ with $s(D, o) \leq c$
- Each such o has un-normalized probability mass at most exp(εc/2Δ(s)), hence the entire set has total un-normalized probability mass at most |O| exp(εc/2Δ(s))
- In contrast, there is at least $|\mathcal{O}^*| \ge 1$ outputs o with $s(D, o) = s^*(D)$, therefore:

$$\Pr[s(\mathcal{A}_{\mathsf{Exp}}(D, f, s, \varepsilon)) \le c] \le \frac{|\mathcal{O}| \exp(\varepsilon c/2\Delta(s))}{|\mathcal{O}^*| \exp(\varepsilon s^*(D)/2\Delta(s))} \\ = \frac{|\mathcal{O}|}{|\mathcal{O}^*|} \exp\left(\frac{\varepsilon(c - s^*(D))}{2\Delta(s)}\right) \\ = \beta$$

THE EXPONENTIAL MECHANISM: UTILITY GUARANTEES

- Let $\mathcal{O} = \{$ 'dark', 'blond', 'brown', 'red' $\}$ and consider the query "What is the most common hair color?" with counts as scores
- Suppose that the most common color is 'dark' (with count 500) and the second most common is 'brown' (with count 399)
- For $\varepsilon = 0.1$, what is the probability that A_{Exp} returns 'dark'?
- Note that $\Delta(s) = 1$, $|\mathcal{O}| = 4$ and $|\mathcal{O}^*| = 1$
- Applying the theorem, we know that the probability of returning an output whose score is larger than $400 = 500 20 \ln(4/\beta)$ is at least 1β
- This gives $\beta = 4e^{-5}$, hence the probability to get the correct answer is at least $1 \beta = 0.973$

THE EXPONENTIAL MECHANISM: PRACTICAL CONSIDERATIONS

- The exponential mechanism is the natural building block for answering queries with arbitrary utilities and arbitrary non-numeric range
- As we have seen, it is often quite easy to analyze
- The set \mathcal{O} of possible outputs should **not** be specific to the particular dataset!
 - Otherwise we violate DP
 - Example of violation: possible prices for items based on actual bids
- The exponential mechanism can define a complex distribution over an arbitrary large domain, so it is not always possible to implement it efficiently

Advanced composition results

Theorem (Simple composition)

Let A_1, \ldots, A_K be K independently chosen algorithms where A_k satisfies $(\varepsilon_k, \delta_k)$ -DP. For any dataset D, let A be such that

 $\mathcal{A}(D) = (\mathcal{A}_1(D), \ldots, \mathcal{A}_k(D)).$

Then \mathcal{A} is (ε, δ) -DP with $\varepsilon = \sum_{k=1}^{K} \varepsilon_k$ and $\delta = \sum_{k=1}^{K} \delta_k$.

• But data science is inherently an adaptive process: we would like to choose the next analysis to do based on previous results!

 Consider the following algorithm A_{adap} which takes as input a dataset D and runs K adaptively chosen DP mechanisms A₁,..., A_k on D

Algorithm $\mathcal{A}_{adap}(D)$

- Set initial state to s_0 (independent of *D*)
- For $k \in \{1, \ldots, K\}$:
 - $\cdot \mathcal{A}_k \leftarrow \mathsf{Pick}_\mathsf{Alg}(s_0, \dots, s_{k-1})$ // choose \mathcal{A}_k based on previous outputs
 - · $s_k \leftarrow \mathcal{A}_k(D)$
- Return (s_1, \ldots, s_K)

Theorem (Simple adaptive composition)

If at each round $k \in \{1, ..., K\}$, the selected algorithm \mathcal{A}_k is guaranteed to satisfy $(\varepsilon_k, \delta_k)$ -DP, then \mathcal{A}_{adap} is (ε, δ) -DP with $\varepsilon = \sum_{k=1}^{K} \varepsilon_k$ and $\delta = \sum_{k=1}^{K} \delta_k$.

Proof.

- Let $D, D' \in \mathbb{N}^{|\mathcal{X}|}$ such that $||D D'||_1 \leq 1$
- Let $S = (S_1, ..., S_K)$ (resp. S') be a random variable that denotes the vector of outputs of the K rounds when the input dataset is D (resp. D')
- Fix an output $s = (s_1, \ldots, s_k)$. Given s_0, \ldots, s_{k-1} , the algorithm \mathcal{A}_k is determined by the (possibly randomized) algorithm Pick_Alg. Fix any internal randomness in Pick_Alg (i.e., we implicitly condition on fixed random coins of Pick_Alg)
- Goal: show that

$$\Pr[S=s] \le e^{\sum_{k=1}^{K} \varepsilon_k} \Pr[S'=s] + \sum_{k=1}^{K} \delta_k$$

Proof.

• By the chain rule, we have

$$Pr[S = s] = Pr[S = (s_1, ..., s_k)]$$

= $Pr[S_1 = s_1] \prod_{k=2}^{K} Pr[S_k = s_k | S_1 = s_1, ..., S_{k-1} = s_{k-1}]$
= $Pr[S_1 = s_1 | A_1] \prod_{k=2}^{K} Pr[S_k = s_k | S_1 = s_1, ..., S_{k-1} = s_{k-1}, A_k]$

• Since $S_k = A_k(D)$, and S_k is independent of S_1, \ldots, S_{k-1} given A_k , we have

$$\Pr[S=s] = \prod_{k=1}^{K} \Pr[\mathcal{A}_k(D) = s_k | \mathcal{A}_k]$$

Proof.

• Consider the k-th term $\Pr[\mathcal{A}_k(D) = s_k | \mathcal{A}_k]$. Since \mathcal{A}_k is $(\varepsilon_k, \delta_k)$ -DP, we have

$$\begin{aligned} \Pr[\mathcal{A}_{k}(D) &= s_{k}|\mathcal{A}_{k}] \leq e^{\varepsilon_{k}} \Pr[\mathcal{A}_{k}(D') = s_{k}|\mathcal{A}_{k}] + \delta_{k} \\ &\leq \min\left(e^{\varepsilon_{k}} \Pr[\mathcal{A}_{k}(D') = s_{k}|\mathcal{A}_{k}] + \delta_{k}, 1\right) \\ &\leq \min\left(e^{\varepsilon_{k}} \Pr[\mathcal{A}_{k}(D') = s_{k}|\mathcal{A}_{k}], 1\right) + \delta_{k}\end{aligned}$$

 \cdot We can thus write:

$$\prod_{k=1}^{K} \Pr[\mathcal{A}_{k}(D) = s_{k} | \mathcal{A}_{k}] \leq \left(\min\left(e^{\varepsilon_{1}} \Pr[\mathcal{A}_{1}(D') = s_{1} | \mathcal{A}_{1}], 1\right) + \delta_{1} \right) \prod_{k=2}^{K} \Pr[\mathcal{A}_{k}(D) = s_{k} | \mathcal{A}_{k}] \\ \leq \min\left(e^{\varepsilon_{1}} \Pr[\mathcal{A}_{1}(D') = s_{1} | \mathcal{A}_{1}], 1\right) \prod_{k=2}^{K} \Pr[\mathcal{A}_{k}(D) = s_{k} | \mathcal{A}_{k}] + \delta_{1}$$

Ρ

Proof.

• Applying this recursively and using the conditional independence property used earlier on Pr[S' = s], we get

$$r[S = s] = \prod_{k=1}^{K} \Pr[\mathcal{A}_{k}(D) = s_{k} | \mathcal{A}_{k}]$$

$$\leq \prod_{k=1}^{K} \left(\min\left(e^{\varepsilon_{k}} \Pr[\mathcal{A}_{k}(D') = s_{k} | \mathcal{A}_{k}], 1\right) + \sum_{k=1}^{K} \delta_{k}\right)$$

$$\leq e^{\sum_{k=1}^{K} \varepsilon_{k}} \prod_{k=1}^{K} \Pr[\mathcal{A}_{k}(D') = s_{k} | \mathcal{A}_{k}] + \sum_{k=1}^{K} \delta_{k}$$

$$= e^{\sum_{k=1}^{K} \varepsilon_{k}} \Pr[S' = s] + \sum_{k=1}^{K} \delta_{k}$$

ADVANCED COMPOSITION

• We can also prove another adaptive composition result known as advanced composition (see [Dwork and Roth, 2014] for the proof, which is more involved)

Theorem (Advanced composition)

Let $\epsilon, \delta, \delta' > 0$. If at each round $k \in \{1, \dots, K\}$, the selected algorithm \mathcal{A}_k is guaranteed to satisfy (ε, δ) -DP, then \mathcal{A}_{adap} is $(\varepsilon', K\delta + \delta')$ -DP with

 $\varepsilon' = \sqrt{2K\ln(1/\delta')}\varepsilon + K\varepsilon(e^{\varepsilon} - 1)$

- For small enough ϵ , the dominant term is $\sqrt{2K \ln(1/\delta')}\epsilon$, which is much better than $K\epsilon$ (simple composition) for large K!
- \cdot The result holds for $\delta=0$ (composition of pure DP mechanisms) but requires $\delta'>0$
- The two composition results do not conflict: they hold simultaneously

Corollary (see [Dwork and Roth, 2014])

Given target privacy parameters $0 < \varepsilon' < 1$ and $\delta' > 0$, to ensure $(\varepsilon', K\delta + \delta')$ -DP for the composition of K mechanisms, it suffices that each mechanism is (ε, δ) -DP with

$$\varepsilon = rac{\varepsilon'}{2\sqrt{2K\ln(1/\delta')}}$$

- We can fix the final privacy guarantee and use advanced composition to get much better utility by perturbing less each query (assuming we know *K* in advance)
- This corollary is convenient, but using the theorem directly yields tighter ε , which matters in practice!
- See [Kairouz et al., 2015] for slightly tighter (optimal) composition results that also hold when A_k is $(\varepsilon_k, \delta_k)$ -DP

- These advanced composition results are not quite tight: they give somewhat loose upper bounds on the privacy cost
- Some variants of (ε, δ) -DP, such Rényi DP [Mironov, 2017] and zero-concentrated DP (zCDP) [Bun and Steinke, 2016], can enable tighter bounds
- In particular, they provide tighter composition results for the Gaussian mechanism
- Converting the privacy guarantees back to (ε , δ)-DP, this shaves off a logarithmic factor in δ and gives better constants

```
[Bun and Steinke, 2016] Bun, M. and Steinke, T. (2016).
```

Concentrated differential privacy: simplifications, extensions, and lower bounds. In $\ensuremath{\mathit{TCC}}$

```
[Dwork et al., 2006] Dwork, C., McSherry, F., Nissim, K., and Smith, A. (2006).
Calibrating noise to sensitivity in private data analysis.
In Theory of Cryptography (TCC).
```

[Dwork and Roth, 2014] Dwork, C. and Roth, A. (2014). The Algorithmic Foundations of Differential Privacy. Foundations and Trends in Theoretical Computer Science, 9(3–4):211–407.
[Kairouz et al., 2015] Kairouz, P., Oh, S., and Viswanath, P. (2015). The Composition Theorem for Differential Privacy. In ICML.
[Mironov, 2017] Mironov, I. (2017). Renyi differential privacy.

In CSF.