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REMINDER: PRIVATE DATA ANALYSIS

(Figure inspired from R. Bassily)
Individuals
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...
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algorithm)
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companies,

or
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Goal: achieve utility while preserving privacy (conflicting objectives!)
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REMINDER: REQUIREMENTS FOR PRIVACY DEFINITION

1. Robustness to any auxiliary knowledge the adversary may have, since one cannot
predict what an adversary knows or might know in the future

2. Composition over multiple analyses: keep track of the “privacy budget” when asking
several questions about the same data
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TODAY’S LECTURE

1. Differential Privacy (DP)

2. DP algorithms via output perturbation
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DIFFERENTIAL PRIVACY (DP)



DATASETS

• Let X denote an abstract data domain

• A dataset D ∈ X n is a multiset of n elements (records, or rows) from X

• Sometimes it will be convenient to represent D as a histogram: D ∈ N|X |

• For instance: if X = {v1, . . . , vK}, for each k ∈ {1, . . . , K}, Dk = |{x ∈ D : x = vk}|

• The size of the dataset then corresponds to its ℓ1-norm: n = ∥D∥1 =
∑|X |

k=1 Dk

• Any two D,D′ such that ∥D− D′∥1 ≤ 1 differ on at most one record (we say that D and
D′ are neighboring)
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RANDOMIZED ALGORITHM

Randomized
algorithm

A

x1

x2

xn

random coins

A(D)

distribution of A(D)

...

Definition (Randomized algorithm)
A randomized algorithm A is a mapping A : N|X | → O where O is a probability space. In
other words, for any dataset D ∈ N|X |, A(D) is a random variable taking values in O.

• Example: for a counting algorithm returning (an estimate of) the number of records
in D matching some condition, we have O = N

• The output space O may be the same as the input space N|X |
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DIFFERENTIAL PRIVACY

(Figure inspired from R. Bassily)
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DIFFERENTIAL PRIVACY

Definition (Differential privacy [Dwork et al., 2006b])
Let ε > 0 and δ ∈ [0, 1). A randomized algorithm A : N|X | → O is (ε, δ)-differentially
private (DP) if for all datasets D,D′ ∈ N|X | such that ∥D− D′∥1 ≤ 1 and for all S ⊆ O:

Pr[A(D) ∈ S] ≤ eε Pr[A(D′) ∈ S] + δ, (1)

where the probability space is over the coin flips of A.

• (1) must hold for all pairs of neighboring datasets and all possible outputs of A

• A non-trivial differentially private algorithm must be randomized

• Note: a common variant of DP considers pairs of datasets D,D′ ∈ X n of same size
which differ on one record (i.e., replacing instead adding/removing one record)
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INTERPRETING DP: THE PRIVACY LOSS

• (ε, 0)-DP ensures that, for every run of the algorithm A(D), the output is almost
equally likely to be observed on every neighboring dataset simultaneously

• (ε, 0)-DP is called pure ε-DP. How can we interpret approximate (ε, δ)-DP?

• Consider the following quantity, which is often referred to as the privacy loss
incurred by observing an output o ∈ O:

LoA(D),A(D′) = ln
( Pr[A(D) = o]
Pr[A(D′) = o]

)
• A sufficient condition to satisfy (ε, δ)-DP is that the absolute value of the privacy loss
is bounded by ε with probability at least 1− δ over o ∼ A(D)

• See [Meiser, 2018] for more details and subtleties in interpreting (ε, δ)-DP
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INTERPRETING DP: VALUES OF ε AND δ

• For meaningful privacy guarantees, δ should be o(1/n)

• Indeed, setting δ of order 1/n allows to release the records of a small number of
individuals in the dataset preserves privacy (“just a few” principle)

• For ε, there are some rules of thumb:
• ε = 1 (i.e., eε ≈ 2.7) is considered to be a good guarantee
• ε = 0.1 (i.e., eε ≈ 1.1) is considered to be a very strong guarantee

• Concrete guarantees depend a lot on the use-case, see [Abowd, 2018]
[Garfinkel et al., 2018] [Jayaraman and Evans, 2019] [Nasr et al., 2021] empirical studies
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PROPERTIES OF DP: ROBUSTNESS TO AUXILIARY KNOWLEDGE

• DP guarantees are intrinsically robust to arbitrary auxiliary knowledge: it bounds the
relative advantage that an adversary gets from observing the output of an algorithm

• Adversary may know all the dataset except one record
• Adversary may know all external sources of knowledge, present and future

• The algorithm A can be public: only the randomness needs to remain hidden
• A key requirement of modern security (“security by obscurity” has long been rejected)
• Allows to openly discuss the algorithms and their guarantees
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PROPERTIES OF DP: RESILIENCE TO POSTPROCESSING

Theorem (Postprocessing)
Let A : N|X | → O be (ε, δ)-DP and let f : O → O′ be an arbitrary (randomized) function
independent of A. Then

f ◦ A : N|X | → O′

is (ε, δ)-DP.

• “Thinking about” the output of a differentially private algorithm cannot make it less
differentially private → can let data users do whatever they want with it

• This holds regardless of attacker strategy and computational power
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PROPERTIES OF DP: RESILIENCE TO POSTPROCESSING

Proof.
• Let D,D′ such that ∥D− D′∥1 ≤ 1 and assume for now that f is deterministic
• Fix any output S ′ ⊆ O′ and let S = {o ∈ O : f(o) ∈ S ′}
• We have:

Pr[f(A(D)) ∈ S ′] = Pr[A(D) ∈ S]
≤ eε Pr[A(D′) ∈ S] + δ

= eε Pr[f(A(D′)) ∈ S ′] + δ

• For randomized f, the result follows from expressing f as a convex combination of
deterministic functions and the observation that a convex combination of (ε, δ)-DP
algorithms is itself (ε, δ)-DP
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PROPERTIES OF DP: SEQUENTIAL COMPOSITION

Theorem (Simple composition)
Let A1, . . . ,AK be K independently chosen algorithms where Ak satisfies (εk, δk)-DP. For
any dataset D, let A be such that

A(D) = (A1(D), . . . ,Ak(D)).

Then A is (ε, δ)-DP with ε =
∑K

k=1 εk and δ =
∑K

k=1 δk.

• This allows to control the cumulative privacy loss over multiple analyses run on the
same dataset, including complex multi-step algorithms

• Proof: the pure ε-DP case follows directly from the definition of DP (for the general
case, see [Dwork and Roth, 2014])

• In the next lecture, we will study adaptive composition (where algorithms can be
chosen adaptively) and advanced composition (where ε scales sublinearly with K)
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PROPERTIES OF DP: PARALLEL COMPOSITION

• The previous composition result is worst-case (assumes correlated outputs)

• If A1, . . . ,AK operate on distinct inputs, then A(D) is (maxk εk,maxk δk)-DP

• Example: counts of people broken down by gender and hair color
Blond Dark Brown Red

Female 20 32 27 9
Male 18 40 35 10

• If for each count the algorithm generating it satisfies ε-DP, then releasing the entire
table is also ε-DP (as opposed to 8ε-DP with sequential composition!)
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PROPERTIES OF DP: PROTECTING GROUPS

Theorem (Group DP)
Any (ε, δ)-DP algorithm A is (Kε, KeKεδ)-DP for groups of size K, i.e., for all D,D′ such that
∥D− D′∥1 ≤ K and for all S ⊆ O:

Pr[A(D) ∈ S] ≤ exp(Kε) Pr[A(D′) ∈ S] + KeKεδ.

• Group DP addresses situations where one wants to hide the participation of an
individual who contributes several records

• It can also be relevant for studies that involve groups of people whose data may be
strongly correlated (e.g., multiple family members)

• This is different from composition

15



PROPERTIES OF DP: PROTECTING GROUPS

Proof.
• We use a so-called hybrid argument. Let D0, . . . ,DK be such that D0 = D, DK = D′ and
for each 0 ≤ k ≤ K− 1, Dk+1 is obtained from Dk by changing one record

• For all S ⊆ O, we have:

Pr[A(D0) ∈ S] ≤ eε Pr[A(D1) ∈ S] + δ

≤ eε(eε Pr[A(D2) ∈ S] + δ) + δ

...
≤ eKε Pr[A(DK) ∈ S] + (1+ eε + e2ε + · · ·+ e(K−1)ε)δ

≤ eKε Pr[A(DK) ∈ S] + KeKεδ
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WHAT DIFFERENTIAL PRIVACY DOES *NOT* PROMISE

1. Create privacy where none previously exists

2. Provide freedom from harm (remember Bob the smoker in the first lecture)

3. Replace policy decisions on which data collection and analyses should be allowed
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DIFFERENTIAL PRIVACY IN THE REAL WORLD

• DP has become a gold standard metric of privacy in fundamental science but is also
being increasingly used in real-world deployments

• Thousands of scientific papers in the fields of privacy, security, databases, data
mining, machine learning...

• DP is deployed for computing/releasing statistics (including by tech giants...):
• Adoption by the US Census Bureau starting in 2020 [Abowd, 2018]
• Telemetry in Google Chrome [Erlingsson et al., 2014]
• Keyboard statistics in iOS and macOS [Differential Privacy Team, Apple, 2017]
• Application usage statistics by Microsoft [Ding et al., 2017]

• Open source software for DP in ML: TensorFlow Privacy, Opacus, PySyft...
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DP ALGORITHMS VIA OUTPUT PERTURBATION



HOW TO DESIGN DP ALGORITHMS?

Individuals
(data subjects)

...

queries

answers
(ex: aggregate statistics,

machine learning model)

Data users
(ex: government,

researchers,

companies,

or

adversary)

?
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ANSWERING NUMERIC QUERIES

• Suppose we want to compute a numeric function f : N|X | → RK of a private dataset D

• How to construct a DP algorithm (or mechanism) for computing f(D)?
• How much randomness (error) do we add?
• How to introduce this randomness in the output?
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GLOBAL SENSITIVITY

Definition (Global ℓ1 sensitivity)
The global ℓ1 sensitivity of a query (function) f : N|X | → RK is

∆1(f) = max
D,D′:∥D−D′∥1≤1

∥f(D)− f(D′)∥1

• How much one record can affect the value of the function

• Intuitively, it gives the amount of uncertainty needed to hide any single contribution

• Think about the sensitivity of the following queries:
• How many people have blond hair?
• How many males, how many people with blond hair?
• How many people have blond hair, how many people have dark hair, how many people
have brown hair, how many people have red hair?

• What is the average salary?
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THE LAPLACE DISTRIBUTION

Definition (Laplace distribution)
The Laplace distribution Lap(b) (centered at 0) with scale b is the distribution with
probability density function:

p(y;b) = 1
2b exp

(
− |y|

b

)
, y ∈ R.

• It is a symmetric version of the exponential distribution

• For Y ∼ Lap(b), we have E[Y] = 0, E[|Y|] = b, E[Y2] = 2b2

• Tail bound: Pr[|Y| > tb] ≤ e−t

• Useful property for pure DP: Pr[Y = y]/Pr[Y+ a = y] can
be bounded by something which does not depend on y 0
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THE LAPLACE MECHANISM: ALGORITHM & PRIVACY GUARANTEES

Algorithm: Laplace mechanism ALap(D, f : N|X | → RK, ε)

1. Compute ∆ = ∆1(f)
2. For k = 1, . . . , K: draw Yk ∼ Lap(∆/ε) independently for each k
3. Output f(D) + Y, where Y = (Y1, . . . , YK) ∈ RK

• Idea: perturb each entry of f(D) with independent Laplace noise calibrated to global
ℓ1 sensitivity ∆ of f and the privacy parameter ε

Theorem (DP guarantees for Laplace mechanism)
Let ε > 0 and f : N|X | → RK. The Laplace mechanism ALap(·, f, ε) satisfies ε-DP.
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THE LAPLACE MECHANISM: ALGORITHM & PRIVACY GUARANTEES

Proof.

• Consider any pair of datasets D,D′ such that ∥D− D′∥1 ≤ 1 and any S ⊆ RK

• Denoting by g and g′ the p.d.f. of ALap(D, f, ε) and ALap(D′, f, ε) respectively:

Pr[ALap(D) ∈ S]
Pr[ALap(D′) ∈ S]

=

∫
o∈S g(o)∫
o∈S g′(o) ≤ max

o∈S

g(o)
g′(o)

• Let p denote the p.d.f. of Lap(∆/ε) and fix some o = (o1, . . . , oK) ∈ S . Then we have:

g(o) =
K∏

k=1

p(ok − fk(D)) and g′(o) =
K∏

k=1

p(ok − fk(D′)),

where fk(·) denotes the k-th entry of f(·)

24



THE LAPLACE MECHANISM: ALGORITHM & PRIVACY GUARANTEES

Proof.
• Plugging the definition of g and g′, then using the triangle inequality, the definition
of ∆ and the fact that ∥D− D′∥1 ≤ 1, we get:

g(o)
g′(o) =

K∏
k=1

p(ok − fk(D))
p(ok − fk(D′))

=
K∏

k=1

exp(− ε
∆ |ok − fk(D)|)

exp(− ε
∆ |ok − fk(D′)|)

= exp
( ε

∆

K∑
k=1

|ok − fk(D′)| − |ok − fk(D)|
)

≤ exp
( ε

∆

K∑
k=1

|fk(D)− fk(D′)|
)
= exp

( ε

∆
∥f(D)− f(D′)∥1

)
≤ exp

( ε

∆
∆
)
= eε
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THE LAPLACE MECHANISM: UTILITY GUARANTEES

• This is great but what is the error incurred when using ALap(D, f, ε) to answer f(D)?

• For a given output of ALap(D, f, ε), we can consider the ℓ1 error ∥ALap(D, f, ε)− f(D)∥1

Theorem (Expected ℓ1 error of the Laplace mechanism)
Let ε > 0. For a query f : N|X | → RK and any dataset D ∈ N|X |, the Laplace mechanism
ALap(D, f, ε) has the following utility guarantee:

E[∥ALap(D, f, ε)− f(D)∥1] = K∆1(f)
ε

.

• The Laplace mechanism can answer low sensitivity queries, say ∆1(f) = O(1) or
smaller, with high utility (as long as ε is not too small)

• Proof: exercise!
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THE LAPLACE MECHANISM: UTILITY GUARANTEES

• We can also have a high probability bound on ℓ∞ error: for some α > 0, β ∈ [0, 1]

Pr[∥ALap(D, f, ε)− f(D)∥∞ < α] ≥ 1− β

Theorem (High probability bound on ℓ∞ error of the Laplace mechanism)
Let ε > 0. For a query f : N|X | → RK and any dataset D ∈ N|X |, the Laplace mechanism
ALap(D, f, ε) has the following utility guarantee:

Pr
[
∥ALap(D, f, ε)− f(D)∥∞ < ln(K/β)∆1(f)

ε

]
≥ 1− β.

• Proof: exercise! (hint: use the Laplace tail bound and a union bound)
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THE LAPLACE MECHANISM: ILLUSTRATION

• Suppose we wish to calculate which first names, from a list of 10,000 potential
names, are most common among participants of the 2018 French census

• We can think of this as a query f : N|X | → R10000

• This is a histogram query with sensitivity ∆1(f) = 1

• We can answer this query with 1-DP and, using the previous theorem, with probability
0.95 no estimate will be off by more than an additive error of ln(10000/.05) ≈ 12

• This is pretty low for a country of more than 66, 000, 000 people!
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APPROXIMATE DP FOR NUMERIC QUERIES

• We will see an output perturbation technique that only achieves (ε, δ)-DP with δ > 0

• This mechanism is based on adding Gaussian noise

• But why is this useful?
• Sum of Gaussian random variables is Gaussian: better/simpler analysis when used as
building block in complex algorithms

• Same type as other sources of noise, e.g. regression noise, measurement noise...
• Allows tighter composition results (more on this in the next lecture)
• For small enough δ, the “price” of approximate DP is never experienced in practice
(compared to pure DP)
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GLOBAL ℓ2 SENSITIVITY

Definition (Global ℓ2 sensitivity)
The global ℓ2 sensitivity of a query (function) f : N|X | → RK is

∆2(f) = max
D,D′:∥D−D′∥1≤1

∥f(D)− f(D′)∥2
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THE GAUSSIAN DISTRIBUTION

Definition (Gaussian distribution)
For µ ∈ R, σ2 > 0, The Gaussian distribution N (µ, σ2) with mean µ and variance σ2 is
the distribution with probability density function:

p(y;µ, σ2) =
1√
2πσ

exp
(
− (y− µ)2

2σ2

)
, y ∈ R.

• If Y ∼ N (µ, σ2), then E[Y] = µ, Var[Y] = σ2

• Tail bound: Pr[|Y− µ| > tσ] ≤ 2e− t2
2
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THE GAUSSIAN MECHANISM: ALGORITHM & PRIVACY GUARANTEES

Algorithm: Gaussian mechanism AGauss(D, f : N|X | → RK, ε, δ)

1. Compute ∆ = ∆2(f)

2. For k = 1, . . . , K: draw Yk ∼ N (0, σ2) independently for each k, where σ =

√
2 ln(1.25/δ)∆

ε

3. Output f(D) + Y, where Y = (Y1, . . . , YK) ∈ RK

• This is similar to Laplace, but noise is calibrated using ℓ2 sensitivity and both ε and δ

• The dependence of σ2 on 1/δ is logarithmic, which is good since we want δ very small!

• It is not possible to achieve δ = 0

Theorem (DP guarantees for Gaussian mechanism)
Let ε, δ > 0 and f : N|X | → RK. The Gaussian mechanism AGauss(·, f, ε, δ) is (ε, δ)-DP.
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THE GAUSSIAN MECHANISM: ALGORITHM & PRIVACY GUARANTEES

Proof sketch (see [Dwork and Roth, 2014], Appendix A for details).
• Consider any pair of datasets D,D′ such that ∥D− D′∥1 ≤ 1

• Let K = 1 for simplicity. We can write the absolute privacy loss of observing output
f(D) + y as follows:∣∣∣∣ ln Pr[A(D) = f(D) + y]

Pr[A(D′) = f(D) + y]

∣∣∣∣ ≤ ∣∣∣∣ ln e−(1/2σ2)y2

e−(1/2σ2)(y+∆2(f))2

∣∣∣∣ = ∣∣∣∣ 1
2σ2 (2y∆2(f) + ∆2(f)2)

∣∣∣∣
• This is bounded by ε whenever y < σ2ε/∆2(f)−∆2(f)/2

• To guarantee (ε, δ)-DP, it is sufficient to prove that

Pr[|y| ≥ σ2ε/∆2(f)−∆2(f)/2] ≤ δ

• We bound the left hand side using the Gaussian tail bound and verify that the
condition is satisfied for the choice of σ 32



THE GAUSSIAN MECHANISM: UTILITY GUARANTEES

Theorem (High probability bound on ℓ∞ error of the Gaussian mechanism)
Let ε > 0. For a query f : N|X | → RK and any dataset D ∈ N|X |, the Gaussian mechanism
AGauss(D, f, ε) has the following utility guarantee:

Pr
[
∥AGauss(D, f, ε)− f(D)∥∞ <

√
2 ln(1.25/δ) ln(K/β)∆2(f)

ε

]
≥ 1− β.

• Proof: same technique as for Laplace
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MECHANISMS FOR (BOUNDED) INTEGER QUERIES

• Some queries output integers (or natural numbers), possibly in a bounded range

• For instance, a counting query over a dataset D ∈ X n outputs an integer in [0..n]

• By the post-processing property, rounding and/or truncating the outputs of a private
mechanism preserves DP as long as these operations are independent of the dataset

• Alternatively, we can use mechanisms that directly operate in a (bounded) integer
domain, such as:

• the (truncated) Geometric mechanism [Ghosh et al., 2012]
• the binomial mechanism [Dwork et al., 2006a]
• the discrete Gaussian mechanism [Canonne et al., 2020]
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