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ABOUT MYSELF

• Researcher at Inria Lille

• Member of the Magnet team (Machine learning in information networks) on ML
in/with graphs and applications to NLP

• My current research topics of interest:
• Privacy-preserving ML
• Decentralized and Federated ML
• Representation learning for NLP & speech
• Fairness in ML

• More details and contact info on my homepage
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COURSE MECHANICS

• 12 sessions of 2 hours, roughly one per week until January 12, 2023

• Lectures and lab sessions

• Evaluation:
• 1 practical (50%)
• 1 report & presentation of research paper (50%)

• Course page (with lecture slides, practicals, textbook references, etc):
http://researchers.lille.inria.fr/abellet/teaching/private_machine_learning_course.html
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TODAY’S LECTURE

1. Context & motivation

2. Course overview
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CONTEXT & MOTIVATION



PRIVACY

Ability of an individual
to seclude themselves or to withhold information about themselves

(“right to be let alone”)
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PRIVACY IN THE BIG DATA ERA

• Massive collection of personal data by companies and public organizations, driven
by the progress of data science and AI

• Data is increasingly sensitive and detailed: browsing history, purchase history, social
network posts, speech, geolocation, health...

• It is sometimes shared unknowingly and without a clear understanding of the risks

5



SOME RISKS OF PRIVACY BREACHES

• Improper disclosure of data can have adverse consequences for individuals:
• Credentials

• Examples: credit card number, home access code, passwords
• Risks: stealing personal property

• Identification information
• Examples: name, bank information, biometric data
• Risks: identity theft

• Information about an individual
• Examples: medical status, religious beliefs, political opinions, sexual preferences
• Risks: discrimination, blackmailing, unsolicited micro-targeting, public shame...

• Some of these risks can affect anyone (even if they think they have “nothing to
hide”) and without individuals knowing it (cf. Cambridge Analytica scandal)
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https://en.wikipedia.org/wiki/Nothing_to_hide_argument
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PRIVACY VERSUS UTILITY

• There is increasing regulation to address privacy-related harms related to the
collection, use and release of personal data

• General regulations (e.g., adoption of GDPR by the EU in 2018)
• Sector- and context-specific regulations, e.g. in health, education, research, finance...

• Privacy has a cost on the utility of the analysis, but ideally it should not destroy it

• One of the main goals of privacy research is to find good trade-offs between utility
and privacy so we can better protect individuals and also unlock new applications
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PRIVATE DATA ANALYSIS

(Figure inspired from R. Bassily)
Individuals

(data subjects)

...

queries

answers
(ex: aggregate statistics,

machine learning model)

Algorithm

(ex: learning

algorithm)

Data users
(ex: government,

researchers,

companies,

or

adversary)

• Goal: achieve utility while preserving privacy (conflicting objectives!)

• This is separate from security concerns (e.g., unauthorized access to the system)

• Any ideas on how to do this?
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DATA “ANONYMIZATION” IS NOT SAFE

Name Birth date Zip code Gender Diagnosis ...
Ewen Jordan 1993-09-15 13741 M Asthma ...
Lea Yang 1999-11-07 13440 F Type-1 diabetes ...
William Weld 1945-07-31 02110 M Cancer ...
Clarice Mueller 1950-03-13 02061 F Cancer ...

• Anonymization: removing personally identifiable information before publishing data

• First solution: strip attributes that uniquely identify an individual (e.g., name, social
security number...)

• Now we cannot know that William Weld has cancer!

• Or can we?
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DATA “ANONYMIZATION” IS NOT SAFE

(Figure inspired from C. Palamidessi)

DATASET 1
anonymized
medical data

DATASET 2
public voters list

ZIP

Birth date

Gender

Name

   Date last voted

    Date registered

   Party affiliation

Address

Diagnosis

Visit date   

Medication     

Procedure   

Doctor seen

• Problem: susceptible to linkage attacks, i.e. uniquely linking a record in the
anonymized dataset to an identified record in a public dataset

• For instance, an estimated 87% of the US population is uniquely identified by the
combination of their gender, birthdate and zip code

• In the late 90s, L. Sweeney managed to re-identify the medical record of the governor
of Massachusetts using a public voters list 10



DATA “ANONYMIZATION” IS NOT SAFE

Name Birth date Zip code Gender Diagnosis ...

Ewen Jordan

1993-09-15 13741 M Asthma ...

Lea Yang

1999-11-07 13440 F Type-1 diabetes ...

William Weld

1945-07-31 02110 M Cancer ...

Clarice Mueller

1950-03-13 02061 F Cancer ...

• Second solution: k-anonymity [Sweeney, 2002]
1. Define a set of attributes as quasi-identifiers (QIs)
2. Suppress/generalize attributes and/or add dummy records to make every record in the

dataset indistinguishable from at least k− 1 other records with respect to QIs

• Better now?

• No! Can still infer that W. Weld has cancer (everyone in the group has cancer)
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DATA “ANONYMIZATION” IS NOT SAFE

Quasi identifiers Sensitive attribute
Name Age Zip code Gender Diagnosis ...

Ewen Jordan

20-30 13*** Asthma ...

Lea Yang

20-30 13*** Type-1 diabetes ...

William Weld

70-80 02*** Cancer ...

Clarice Mueller

70-80 02*** Cancer ...

• Second solution: k-anonymity [Sweeney, 2002]
1. Define a set of attributes as quasi-identifiers (QIs)
2. Suppress/generalize attributes and/or add dummy records to make every record in the

dataset indistinguishable from at least k− 1 other records with respect to QIs

• Better now?

• No! Can still infer that W. Weld has cancer (everyone in the group has cancer)
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DATA “ANONYMIZATION” IS NOT SAFE

• Variants of k-anonymity (t-closeness, ℓ-diversity) try to address the previous issue
but require to modify the original data even more, which often destroys utility

• In high-dimensional and sparse datasets, any combination of attributes is a
potential PII that can be exploited using appropriate auxiliary knowledge

• De-anonymization of Netflix dataset protected with k-anonymity using a few public
ratings from IMDB [Narayanan and Shmatikov, 2008]

• De-anonymization of Twitter graph using Flickr [Narayanan and Shmatikov, 2009]
• 4 spatio-temporal points uniquely identify most people [de Montjoye et al., 2013]

• Conclusion: data cannot be fully anonymized AND remain useful
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AGGREGATE STATISTICS ARE NOT SAFE

• How about releasing aggregate statistics about many individuals?

• Problem 1: differencing attacks, i.e. combining aggregate queries to obtain precise
information about specific individuals (note: this can be hard to detect)

• Average salary in a company before and after an employee joins

• Problem 2: membership inference attacks, i.e. inferring presence of known individual
in a dataset from (high-dimensional) aggregate statistics

• Statistics about genomic variants [Homer et al., 2008]

• Problem 3: reconstruction attacks, i.e. inferring (part of) the dataset from the output
of many aggregate queries [Dinur and Nissim, 2003]

• See this short video to understand the basic idea of the Dinur-Nissim
• See this blog post and longer video to learn how this was applied by the US Census
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https://www.youtube.com/watch?v=pT19VwBAqKA
https://desfontain.es/privacy/us-census-reconstruction-attack.html
https://www.census.gov/data/academy/webinars/2021/disclosure-avoidance-series/simulated-reconstruction-abetted-re-identification-attack-on-the-2010-census.html


ML MODELS ARE NOT SAFE

• ML models are elaborate kinds of aggregate statistics!

• As such, they are susceptible to membership inference attacks, i.e. inferring the
presence of a known individual in the training set

• For instance, one can exploit the confidence in model predictions [Shokri et al., 2017]
[Carlini et al., 2022]
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ML MODELS ARE NOT SAFE

• ML models are also susceptible to reconstruction attacks

• For instance, one can extract sensitive text from large language models
[Carlini et al., 2021] or run differencing attacks on ML models [Paige et al., 2020]

15



ORDINARY FACTS ARE NOT ALWAYS SAFE

• Revealing ordinary facts to inappropriate parties may also be problematic, especially
if an individual is followed over time

• Example: Alice buys bread every day for 20 years and then stops
• An analyst might conclude that Alice has been diagnosed with type 2 diabetes
• This may be wrong, but in any case Alice could be harmed (e.g., charged with higher
insurance premiums)
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SUMMARY OF THE KEY ISSUES / REQUIREMENTS

1. Auxiliary knowledge (also called background knowledge or side information): we
need to be robust to whatever knowledge the adversary may have, since we cannot
predict what an adversary knows or might know in the future

2. Multiple analyses: we need to be able to track how much information is leaked when
asking several questions about the same data, and avoid catastrophic leaks
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COURSE OVERVIEW



IN THIS COURSE YOU WILL LEARN...

1. How to mathematically define “privacy” in a robust manner

2. What are the basic building blocks of a private algorithm

3. How to design algorithms that provide high utility while preserving privacy

4. How to apply these concepts to data analytics and machine learning
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ATTEMPTS AT PRIVACY DEFINITION

First attempt at privacy definition
“An analysis of a dataset is private if the result reveals no more about an individual
than what was already known about him/her before the analysis.”

• Bayesian version: posterior belief same as prior belief

• Problem 1: Impossible to reveal exactly nothing if the result is to depend at all on
the data (otherwise we get zero utility)
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ATTEMPTS AT PRIVACY DEFINITION

First attempt at privacy definition
“An analysis of a dataset is private if the result reveals no more about an individual
than what was already known about him/her before the analysis.”

• Problem 2: “Before/after” requirement unachievable under auxiliary knowledge

• Think of “stupid priors” (e.g., a person’s height is between 10 and 20 meters)

• Think about whether Bob’s privacy was violated in the following example:
• Suppose an insurance company knows that Bob is a smoker
• A medical data analysis reveals that smoking and cancer are correlated
• The insurance company decides to raise Bob’s rates

• This happens even if Bob’s data wasn’t included in the analysis!

• Such correlations are precisely the kind of things we want to be able to learn
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ATTEMPTS AT PRIVACY DEFINITION

Second attempt at privacy definition
“An analysis of a dataset is private if what can be learned about an individual in the
dataset is not much more than what would be learned if the same analysis was
conducted without him/her in the dataset.”

• Intuition: cannot infer the presence/absence of an individual in the dataset, or
anything “specific” about an individual (here, ‘specific” refers to information that
cannot be inferred unless the individual’s data is used in the analysis)

• Note: to be robust to auxiliary knowledge, randomization is necessary
• Consider a deterministic algorithm which is non-trivial (i.e., there exists a query and two
datasets that yield different results)

• Changing one record at a time, we see there exists a pair of datasets differing only in a
single record on which the same query yields different results

• An adversary knowing that the dataset is one of these two learns the differing record
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DIFFERENTIAL PRIVACY
(Figure inspired from R. Bassily)
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• Neighboring datasets D = {x1, x2, . . . , xn} and D′ = {x1, x3, . . . , xn}

• Requirement: A(D) and A(D′) should have “close” distribution

output range of A

p
ro

b
a
b
ili

ty

ratio bounded

21



DIFFERENTIAL PRIVACY

Definition (informal)
A is (ε, δ)-differentially private (DP) if for all neighboring datasets D,D′ and all sets S:

Pr[A(D) ∈ S] ≤ eε Pr[A(D′) ∈ S] + δ.

• For meaningful privacy guarantees, think of ε ≤ 1 and δ ≪ 1/n

• We refer to “pure” ε-DP when δ = 0

• Key principle: privacy is a property of the analysis, not of a particular output (in
contrast to e.g., k-anonymization)

• First proposed in [Dwork et al., 2006] by Dwork, McSherry, Nissim and Smith (who won
the Gödel prize in 2017)
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KEY PROPERTIES OF DIFFERENTIAL PRIVACY

• DP is immune to post-processing: it is impossible to compute a function of the
output of the private algorithm and make it less differentially private

• DP is robust to arbitrary auxiliary knowledge: it bounds the relative advantage that
an adversary gets from observing the output of an algorithm

• DP is robust under composition: if multiple analyses are performed on the same
data, as long as each one satisfies DP, all the information released taken together
will still satisfy DP (albeit with a degradation in the parameters)
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COMPOSITION RESULTS FOR DIFFERENTIAL PRIVACY

• Suppose that A(D) = (A1(D), . . . ,AK(D)) where each Ak is (ε, δ)-DP

• What are the privacy guarantees of A?

• Simple composition: A is (Kε, Kδ)-DP (simple proof)

• Advanced composition: A is (ε′, Kδ + δ′)-DP with ε′ ≈
√
K log(1/δ′)ε (more involved)
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BASIC BUILDING BLOCKS OF DIFFERENTIALLY PRIVATE ALGORITHMS

Private computation of numeric functions via output perturbation (noise addition)

• Laplace mechanism: A(D) = f(D) + Y with Y ∼ Lap(C/ε) → A is ε-DP

• Gaussian mechanism: A(D) = f(D) + Y with Y ∼ N (0, C · log(1/δ)
ε2 ) → A is (ε, δ)-DP

Private computation of non-numeric functions via sampling from a distribution

• Exponential mechanism
• For every possible output r of the function f(D), assign a score s(r,D)
• Sample an output r with probability proportional to exp(s(r,D) · ε)
• This mechanism is ε-DP
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PRIVACY PRESERVING MACHINE LEARNING

• We will mainly consider Empirical Risk Minimization (ERM):

θ̂ ∈ argmin
θ

{
F(θ) := 1

n

n∑
i=1

L(θ; xi, yi)
}

• Output perturbation: adding noise to θ̂

• Objective pertubation: adding noise to F(θ)

• Gradient perturbation: adding noise to ∇F(θt) + composition over iterations

• Privacy amplification by subsampling and by iteration

• Results on the utility/privacy trade-offs in ERM
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UNTRUSTED CURATOR SETTING

Trusted curator model (also called
global model or centralized model):
A is differentially private wrt dataset D

Individuals
(or organizations)

... A

Trusted
curator

A(D)

x1

x2

xn

Untrusted curator model (also called
local model or distributed model):
Each Ri is differentially private wrt
record (or local dataset) xi

Individuals
(or organizations)

... A

Untrusted
curator

A(Z)

x1

x2

xn

R1

R2

Rn

z1

z2

zn
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UNTRUSTED CURATOR SETTING

• Local differential privacy (LDP): extreme case where each participant holds a dataset
of size 1 (e.g., his/her own personal record)

• Large utility gap between global and local models
• Example: for averaging, error is Θε(1/n) in global model and Θε(1/

√
n) in local model

• LDP only useful for very large n (e.g., large-scale industrial applications)

• Can consider intermediate trust models and/or use cryptographic primitives to
obtain better utility

• Secure aggregation: curator only observes average of messages
• Shuffling: curator cannot tie a message to a particular participant

• Applications to federated learning [Kairouz et al., 2021]
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OTHER TOPICS (IF TIME PERMITS)

• Theoretical limits in the trade-off between utility and privacy (lower bounds)

• Variants of differential privacy

• Inference attacks on ML models

• Robustness to malicious participants

• Learning anonymized representations
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QUICK ADVERTISEMENT

Many opportunities to work on privacy-preserving ML and federated learning in Magnet:

• Master internships

• PhD positions

• Engineer positions

• ...

Talk to me if you’re interested!
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