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CONTEXT & MOTIVATION



PRIVACY

Ability of an individual
to seclude themselves or to withhold information about themselves

(“right to be let alone”)
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PRIVACY IN THE BIG DATA ERA

• Massive collection of personal data by companies and public organizations, driven
by the progress of data science and AI

• Data is increasingly sensitive and detailed: browsing history, purchase history, social
network posts, speech, geolocation, health...

• It is sometimes shared unknowingly and without a clear understanding of the risks
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SOME RISKS OF PRIVACY BREACHES

• Improper disclosure of data can have adverse consequences for individuals:
• Credentials

• Examples: credit card number, home access code, passwords
• Risks: stealing personal property

• Identification information
• Examples: name, bank information, biometric data
• Risks: identity theft

• Information about an individual
• Examples: medical status, religious beliefs, political opinions, sexual preferences
• Risks: discrimination, blackmailing, unsolicited micro-targeting, public shame...

• Some of these risks can affect anyone (even if they think they have “nothing to
hide”) and without individuals knowing it (cf. Cambridge Analytica scandal)
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PRIVACY VERSUS UTILITY

• There is increasing regulation to address privacy-related harms related to the
collection, use and release of personal data

• General regulations (e.g., adoption of GDPR by the EU in 2018)
• Sector- and context-specific regulations, e.g. in health, education, research, finance...

• Privacy has a cost on the utility of the analysis, but ideally it should not destroy it

• One of the main goals of privacy research is to find good trade-offs between utility
and privacy so we can better protect individuals and unlock new applications
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PRIVATE DATA ANALYSIS

(Figure inspired from R. Bassily)
Individuals

(data subjects)

...

queries

answers
(ex: aggregate statistics,

machine learning model)

Algorithm

(ex: learning

algorithm)

Data users
(ex: government,

researchers,

companies,

or

adversary)

• Goal: achieve utility while preserving privacy (conflicting objectives!)

• This is separate from security concerns (e.g., unauthorized access to the system)
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DATA “ANONYMIZATION” IS NOT SAFE

Name Birth date Zip code Gender Diagnosis ...
Ewen Jordan 1993-09-15 13741 M Asthma ...
Lea Yang 1999-11-07 13440 F Type-1 diabetes ...
William Weld 1945-07-31 02110 M Cancer ...
Clarice Mueller 1950-03-13 02061 F Cancer ...

• Anonymization: removing personally identifiable information before publishing data

• First solution: strip attributes that uniquely identify an individual (e.g., name, social
security number...)

• Now we cannot know that William Weld has cancer!

• Or can we?

7



DATA “ANONYMIZATION” IS NOT SAFE

Name Birth date Zip code Gender Diagnosis ...

Ewen Jordan

1993-09-15 13741 M Asthma ...

Lea Yang

1999-11-07 13440 F Type-1 diabetes ...

William Weld

1945-07-31 02110 M Cancer ...

Clarice Mueller

1950-03-13 02061 F Cancer ...

• Anonymization: removing personally identifiable information before publishing data

• First solution: strip attributes that uniquely identify an individual (e.g., name, social
security number...)

• Now we cannot know that William Weld has cancer!

• Or can we?

7



DATA “ANONYMIZATION” IS NOT SAFE

(Figure inspired from C. Palamidessi)

DATASET 1
anonymized
medical data

DATASET 2
public voters list

ZIP

Birth date

Gender

Name

   Date last voted

    Date registered

   Party affiliation

Address

Diagnosis

Visit date   

Medication     

Procedure   

Doctor seen

• Problem: susceptible to linkage attacks, i.e. uniquely linking a record in the
anonymized dataset to an identified record in a public dataset

• For instance, an estimated 87% of the US population is uniquely identified by the
combination of their gender, birthdate and zip code

• In the late 90s, L. Sweeney managed to re-identify the medical record of the governor
of Massachusetts using a public voters list 8



DATA “ANONYMIZATION” IS NOT SAFE

Name Birth date Zip code Gender Diagnosis ...

Ewen Jordan

1993-09-15 13741 M Asthma ...

Lea Yang

1999-11-07 13440 F Type-1 diabetes ...

William Weld

1945-07-31 02110 M Cancer ...

Clarice Mueller

1950-03-13 02061 F Cancer ...

• Second solution: k-anonymity [Sweeney, 2002]
1. Define a set of attributes as quasi-identifiers (QIs)
2. Suppress/generalize attributes and/or add dummy records to make every record in the

dataset indistinguishable from at least k− 1 other records with respect to QIs

• Better now?

• No! Can still infer that W. Weld has cancer (everyone in the group has cancer)
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DATA “ANONYMIZATION” IS NOT SAFE

Quasi identifiers Sensitive attribute
Name Age Zip code Gender Diagnosis ...

Ewen Jordan

20-30 13*** Asthma ...

Lea Yang

20-30 13*** Type-1 diabetes ...

William Weld

70-80 02*** Cancer ...

Clarice Mueller

70-80 02*** Cancer ...

• Second solution: k-anonymity [Sweeney, 2002]
1. Define a set of attributes as quasi-identifiers (QIs)
2. Suppress/generalize attributes and/or add dummy records to make every record in the

dataset indistinguishable from at least k− 1 other records with respect to QIs

• Better now?

• No! Can still infer that W. Weld has cancer (everyone in the group has cancer)
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DATA “ANONYMIZATION” IS NOT SAFE

• Variants of k-anonymity (t-closeness, ℓ-diversity) try to address the previous issue
but require to modify the original data even more, which often destroys utility

• In high-dimensional and sparse datasets, any combination of attributes is a
potential PII that can be exploited using appropriate auxiliary knowledge

• De-anonymization of Netflix dataset protected with k-anonymity using a few public
ratings from IMDB [Narayanan and Shmatikov, 2008]

• De-anonymization of Twitter graph using Flickr [Narayanan and Shmatikov, 2009]
• 4 spatio-temporal points uniquely identify most people [de Montjoye et al., 2013]

• Conclusion: data cannot be fully anonymized AND remain useful
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AGGREGATE STATISTICS ARE NOT SAFE

• Queries about specific individuals cannot be safely answered with accuracy. But how
about aggregate statistics about many individuals?

• Problem 1: differencing attacks, i.e. combining aggregate queries to obtain precise
information about specific individuals (note: this can be hard to detect)

• Average salary in a company before and after an employee joins

• Problem 2: membership inference attacks, i.e. inferring presence of known individual
in a dataset from (high-dimensional) aggregate statistics

• Statistics about genomic variants [Homer et al., 2008]

11



MACHINE LEARNING MODELS ARE NOT SAFE

• Machine Learning (ML) models are elaborate kinds of aggregate statistics!

• As such, they are susceptible to membership inference attacks, i.e. inferring the
presence of a known individual in the training set

• For instance, one can exploit the confidence in model predictions [Shokri et al., 2017]
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MACHINE LEARNING MODELS ARE NOT SAFE

• ML models are also susceptible to reconstruction attacks, i.e. inferring some of the
points used to train the model

• For instance, one can run differencing attacks on ML models [Paige et al., 2020]
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ORDINARY FACTS ARE NOT ALWAYS SAFE

• As hinted to before, revealing ordinary facts may also be problematic if an individual
is followed over time

• Example: Alice buys bread every day for 20 years and then stops

• An analyst might conclude that Alice has been diagnosed with type 2 diabetes

• This may be wrong, but in any case Alice could be harmed (e.g., charged with higher
insurance premiums)
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SUMMARY OF THE KEY ISSUES

1. Auxiliary knowledge: we need to be robust to whatever knowledge the adversary may
have, since we cannot predict what an adversary knows or might know in the future

2. Multiple analyses: we need to be able to track how much information is leaked when
asking several questions about the same data, and avoid catastrophic leaks
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DIFFERENTIAL PRIVACY (DP)



A FEW NOTATIONS

• X : abstract data domain

• Dataset D ∈ X n: multiset of n elements (records, or rows) from X

• Can also see a dataset as a histogram: D ∈ N|X |

• We say that two datasets D,D′ ∈ N|X | are neighboring if ∥D− D′∥1 ≤ 1 (i.e., they differ
on at most one record)

• Note: a common variant considers pairs of datasets D,D′ ∈ X n of same size which
differ on one record (i.e., replacing instead adding/removing one record)
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DIFFERENTIAL PRIVACY
(Figure inspired from R. Bassily)

Randomized
algorithm

A

x1

x2

xn

random coins

A(D)

distribution of A(D)

...

Randomized
algorithm

A

x1

xn

random coins

A(D')

distribution of A(D')

...

• Neighboring datasets D = {x1, x2, . . . , xn} and D′ = {x1, x3, . . . , xn}

• Requirement: A(D) and A(D′) should have “close” distribution

output range of A

p
ro

b
a
b
ili

ty

ratio bounded

17



DIFFERENTIAL PRIVACY

Definition (Differential privacy [Dwork et al., 2006])
Let ε > 0 and δ ∈ (0, 1). A randomized algorithm A is (ε, δ)-differentially private (DP) if
for all datasets D,D′ ∈ N|X | such that ∥D− D′∥1 ≤ 1 and for all S ⊆ O:

Pr[A(D) ∈ S] ≤ eε Pr[A(D′) ∈ S] + δ, (1)

where the probability space is over the coin flips of A.

• DP is a property of the analysis, not of a particular output

• A non-trivial differentially private algorithm must be randomized

• For meaningful guarantees
• δ should be o(1/n)
• Generally recommend ϵ ≤ 1 but concrete guarantees depend a lot on the use-case
[Abowd, 2018] [Garfinkel et al., 2018] [Jayaraman and Evans, 2019]
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PROPERTIES OF DP: ROBUSTNESS TO AUXILIARY KNOWLEDGE

• DP guarantees are intrinsically robust to arbitrary auxiliary knowledge
• Knowledge of all the dataset except one record
• All external sources of knowledge, present and future

• The algorithm A can be public: only the randomness needs to remain hidden
• A key requirement of modern security (“security by obscurity” has long been rejected)
• Allows to openly discuss the algorithms and their guarantees
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PROPERTIES OF DP: RESILIENCE TO POSTPROCESSING

Theorem (Postprocessing)
Let A : N|X | → O be (ε, δ)-DP and let f : O → O′ be an arbitrary (randomized) function.
Then

f ◦ A : N|X | → O′

is (ε, δ)-DP.

• “Thinking about” the output of a differentially private algorithm cannot make it less
differentially private

• This holds regardless of attacker strategy and computational power
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PROPERTIES OF DP: SEQUENTIAL COMPOSITION

Theorem (Simple composition)
Let A1, . . . ,AK be such that Ak satisfies (εk, δk)-DP. For any dataset D, let A be such that
A(D) = (A1(D), . . . ,Ak(D)). Then A is (ε, δ)-DP with ε =

∑K
k=1 εk and δ =

∑K
k=1 δk.

Theorem (Advanced composition)
Let ϵ, δ, δ′ > 0. If Ak satisfies (ε, δ)-DP, then Aadap is (ε′, Kδ + δ′)-DP with

ε′ =
√

2K ln(1/δ′)ε+ Kε(eε − 1)

• Sequence of algorithms can be chosen adaptively

• This allows to control the cumulative privacy loss over multiple analyses run on the
same dataset, including complex multi-step algorithms

• This is worst-case: in specific cases one can do better (e.g., algorithms operating on
distinct inputs as in marginal queries)
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DIFFERENTIAL PRIVACY IN THE REAL WORLD

• DP has become a gold standard metric of privacy in fundamental science but is also
being increasingly used in real-world deployments

• Thousands of scientific papers in the fields of privacy, security, databases, data
mining, machine learning...

• DP is deployed for computing/releasing statistics (including by tech giants...):
• Adoption by the US Census Bureau in 2020 [Abowd, 2018]
• Telemetry in Google Chrome [Erlingsson et al., 2014]
• Keyboard statistics in iOS and macOS [Differential Privacy Team, Apple, 2017]
• Application usage statistics by Microsoft [Ding et al., 2017]

• Open source software for DP in machine learning: TensorFlow Privacy, OpenMined...
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DESIGNING DP ALGORITHMS



HOW TO DESIGN DP ALGORITHMS?

Individuals
(data subjects)

...

queries

answers
(ex: summary statistics,

machine learning model)

Data users
(ex: government,

researchers,

companies,

or

adversary)

?
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ANSWERING NUMERIC QUERIES WITH OUTPUT PERTURBATION

• Suppose we want to compute a numeric function f : N|X | → RK of a private dataset D

Definition (Global ℓp sensitivity)
Let p ≥ 1. The global ℓp sensitivity of a query (function) f : N|X | → RK is

∆p(f) = max
D,D′:∥D−D′∥1≤1

∥f(D)− f(D′)∥p

• Output perturbation: use global sensitivity to calibrate noise added to the
(non-private) query output
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LAPLACE MECHANISM

Algorithm: Laplace mechanism ALap(D, f : N|X | → RK, ε)

1. Compute ∆ = ∆1(f)
2. For k = 1, . . . , K: draw Yk ∼ Lap(∆/ε) independently for each k
3. Output f(D) + Y, where Y = (Y1, . . . , YK) ∈ RK

Theorem (DP guarantees for Laplace mechanism)
Let ε > 0 and f : N|X | → RK. The Laplace mechanism ALap(·, f, ε) satisfies ε-DP.

• Utility guarantees follow from properties of Laplace distribution, for instance:

E[∥ALap(D, f, ε)− f(D)∥1] ≤ K∆1(f)
ε
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GAUSSIAN MECHANISM

Algorithm: Gaussian mechanism AGauss(D, f : N|X | → RK, ε, δ)

1. Compute ∆ = ∆2(f)

2. For k = 1, . . . , K: draw Yk ∼ N (0, σ2) independently for each k, where σ =

√
2 ln(1.25/δ)∆

ε

3. Output f(D) + Y, where Y = (Y1, . . . , YK) ∈ RK

Theorem (DP guarantees for Gaussian mechanism)
Let ε, δ > 0 and f : N|X | → RK. The Gaussian mechanism AGauss(·, f, ε, δ) is (ε, δ)-DP.

• Slightly weaker guarantee but Gaussian has useful properties which make it easier to
analyze when used as building block in a more complex algorithm
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LIMITATIONS OF OUTPUT PERTURBATION

• We have seen approaches based on output perturbation: A(D) = f(D) + Y

• This only works for numeric queries

• It does not work if the utility function is irregular (e.g., think about auctions)
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NON-NUMERIC QUERIES

• We can instead consider queries f : N|X | → O with an abstract output space O

• We have a score function (or utility function) representing the quality of each output

s : N|X | ×O → R

Definition (Sensitivity of score function)
The sensitivity of a s : N|X | ×O → R is

∆(s) = max
o∈O

max
D,D′:∥D−D′∥1≤1

|s(D,o)− s(D′,o)|
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EXPONENTIAL MECHANISM

Algorithm: Exponential mechanism AExp(D, f : N|X | → O, s : N|X | ×O → R, ε)

1. Compute ∆ = ∆(s)
2. Output o ∈ O with probability:

Pr[o] =
exp

(
s(D,o)·ε

2∆

)
∑

o′∈O exp
(
s(D,o′)·ε

2∆

)

• Make high quality outputs exponentially more likely, at a rate that depends on the
sensitivity of the score and the privacy parameter

Theorem (DP guarantees for exponential mechanism)
Let ε > 0, f : N|X | → RK and s : N|X | ×O → R. AExp(·, f, s, ε) satisfies ε-DP.
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APPLICATION: EMPIRICAL RISK MINIMIZATION

• D = {(xi, yi)}ni=1: training points drawn i.i.d. from distribution µ over Z = X × Y

• Models hθ : X → Y parameterized by θ ∈ Θ ⊆ Rp

• L(θ; x, y): loss of model hθ on data point (x, y)

• R̂(θ;D) = 1
n
∑n

i=1 L(θ; xi, yi): empirical risk of model hθ

• Empirical Risk Minimization (ERM) consists in choosing the parameters

θ̂ ∈ argmin
θ∈Θ

[F(θ;D) := R̂(θ;D) + λψ(θ)]
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DIFFERENTIALLY PRIVATE ERM SOLVER

• Basic DP building blocks can be used to design differentially private ERM solvers

• Such a solver (optimization algorithm) must interact with the data only through DP
mechanisms

Private
dataset

Differentially

private

ERM solver

Private model...

DP queries

answers
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NON-PRIVATE STOCHASTIC GRADIENT DESCENT (SGD)

• For simplicity, let us assume that ψ(θ) = 0 (no regularization)

• Denote by ΠΘ(θ) = argminθ′∈Θ ∥θ − θ′∥2 the projection operator onto Θ

Algorithm: Non-private (projected) SGD

• Initialize parameters to θ(0) ∈ Θ

• For t = 0, . . . , T− 1:
• Pick it ∈ {1, . . . ,n} uniformly at random
• θ(t+1) ← ΠΘ

(
θ(t) − γt∇L(θ(t); xit , yit)

)
• Return θ(T)

• SGD is a natural candidate solver: simple, flexible, scalable, heavily used in ML

• How to design a DP version of SGD?
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DIFFERENTIALLY PRIVATE SGD

Algorithm: Differentially Private SGD ADP-SGD(D, L, ε, δ)

• Initialize parameters to θ(0) ∈ Θ (must be independent of D)
• For t = 0, . . . , T− 1:

• Pick it ∈ {1, . . . ,n} uniformly at random
• η(t) ← (η

(t)
1 , . . . , η

(t)
p ) ∈ Rp where each η

(t)
j ∼ N (0, σ2) with σ =

16l
√

T ln(2/δ) ln(1.25T/δn)
nε

• θ(t+1) ← ΠΘ

(
θ(t) − γt

(
∇L(θ(t); xit , yit) + η(t)))

• Return θ(T)

• More data (larger n)→ less noise added to each gradient

• More iterations (larger T)→ more noise added to each gradient

Theorem (DP guarantees for DP-SGD)
Let ε ≤ 1, δ > 0. Let the loss function L(·; x, y) be l-Lipschitz w.r.t. the ℓ2 norm for all
x, y ∈ X × Y . Then ADP-SGD(·, L, ε, δ) is (ε, δ)-DP.
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DIFFERENTIALLY PRIVATE SGD

Sketch of proof.
• Recall that for a query with ℓ2 sensitivity ∆, achieving (ε′, δ′) with the Gaussian
mechanism requires to add noise with standard deviation σ′ =

√
2 ln(1.25/δ′)∆

ε′

• The loss function L is l-Lipschitz, which implies that ℓ2-norm of gradients is bounded
by l and therefore ∆ = 2l

• Hence, with σ =
16l
√

T ln(2/δ) ln(1.25T/δn)
nε , each noisy gradient is

(
nε

4
√

2T ln(2/δ)
, δn2T

)
-DP

• Using privacy amplification by subsampling [Balle et al., 2018] allows to leverage the
randomness in the choice of it: each noisy gradient is in fact

(
ε

2
√

2T ln(2/δ)
, δ
2T

)
-DP

• DP-SGD is an adaptive composition of T DP mechanisms, so by advanced
composition we obtain that it is (ε, δ)-DP
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DIFFERENTIALLY PRIVATE SGD

Theorem (Utility guarantees for DP-SGD [Bassily et al., 2014])
Let Θ be a convex domain of diameter bounded by R, and let the loss function L be
convex and l-Lipschitz over Θ. For T = n2 and γt = O(R/

√
t), DP-SGD guarantees:

E[F(θ(T)]−min
θ∈Θ

F(θ) ≤ O
(
lR
√
p ln(1/δ) ln3/2(n/δ)

nε

)
.

• Proof: plug variance of stochastic gradients in analysis of SGD [Shamir and Zhang, 2013]

• The utility gap with respect to the non-private model reduces with n at rate Õ(1/n)

• Privacy induces a larger cost for high-dimensional models
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DP WITHOUT A TRUSTED CURATOR



REMINDER: TRUSTED VS. UNTRUSTED CURATOR

Trusted curator model (also called
global model or centralized model):
A is differentially private wrt dataset D

Individuals
(or organizations)

... A

Trusted
curator

A(D)

x1

x2

xn

Untrusted curator model (also called
local model or distributed model):
Each Ri is differentially private wrt
record (or local dataset) xi

Individuals
(or organizations)

... A

Untrusted
curator

A(Z)

x1

x2

xn

R1

R2

Rn

z1

z2

zn
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LOCAL DIFFERENTIAL PRIVACY

• As always, let X denote an abstract data domain

• A local randomizer R : X → Z is a randomized function which maps an input x ∈ X
to an output z ∈ Z

Definition (Local Differential Privacy [Kasiviswanathan et al., 2008, Duchi et al., 2013])
Let ε > 0 and δ ∈ (0, 1). A local randomizer algorithm R is (ε, δ)-locally differentially
private (LDP) if for all x, x′ ∈ X and any possible z ∈ Z :

Pr[R(x) = z] ≤ eε Pr[R(x′) = z] + δ.

• Equivalent to (ε, δ)-DP for datasets of size 1

• LDP is a much stronger model than central DP: data analyst does not see raw data

• LDP allows participants to have plausible deniability even if the curator is
compromised: they can deny having value x on the basis of lack of evidence 37
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AVERAGING QUERIES IN LDP

• Let f be a public function from X to a bounded numeric range (say f : X → [0, 1])

• We want to compute an averaging query f̄ = 1
n
∑n

i=1 f(xi)

• This is the key primitive needed in distributed/federated learning [Kairouz et al., 2019]

• We can readily use the Laplace and Gaussian mechanisms: seeing each input as a
dataset of size 1, we have

∆1(f) = max
x,x′
|f(x)− f(x′)| = 1, and similarly ∆2(f) = 1

• For instance, with the Laplace mechanism, we get an estimate of f̄ with variance 2/nε2
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THE COST OF THE LOCAL MODEL

• There is a large utility gap between the central and the local model of DP: it is
typically a factor of O(1/

√
n) in ℓ1 error (or O(1/n) in ℓ2 error)

• In particular, for averaging queries
• In the local model, we have seen that we get a variance of O(1/n)
• In the central model, we can compute the exact f̄ and add Laplace noise calibrated to its
ℓ1 sensitivity ∆1(̄f) = 1/n, hence we get a variance of O(1/n2)

• This gap is known to be unavoidable [Chan et al., 2012]

• This restricts the usefulness of LDP to applications where n is very large
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BETTER UTILITY FOR DP AVERAGING WITHOUT TRUSTED CURATOR: GOPA [SABATER ET AL., 2020]

Algorithm 1 GOPA protocol
Parameters: graph G, variances σ2

∆, σ
2
η ∈ R+

for all neighboring parties {i, j} in G do
i and j draw y ∼ N (0, σ2

∆)

set ∆i,j ← y, ∆j,i ← −y
for each user i do
i draws ηi ∼ N (0, σ2

η)

i reveals f(x̂i)← f(xi) +
∑

j∼i∆i,j + ηi

1. Neighbors {i, j} in G securely exchange
pairwise-canceling Gaussian noise

2. Each user i generates personal Gaussian
noise

3. User i reveals the sum of private value,
pairwise and personal noise terms

• Accurate: the result f̂ = 1
n
∑

i f(x̂i) can match the accuracy of the centralized setting

• Scalable: it is sufficient for each user to communicate with O(log n) others

• Robust: it can handle some collusions, dropouts and malicious behavior
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COMPUTING u-STATISTICS IN THE LOCAL MODEL OF DP

• Most work on local DP focuses on statistics that are separable across individual
users (sums, histograms...) [Bassily and Smith, 2015, Kulkarni et al., 2019, Bassily et al., 2017]

• This is not the case when considering U-statistics (of degree 2):

Uf,n :=
2

n(n− 1)
∑
i<j

f(xi, xj)

where the pairwise function f is called the kernel

• Examples of such statistics: sample variance, Gini mean difference, Kendall’s τ ,
Wilcoxon Mann-Whitney hypothesis test, Area under the ROC Curve (AUC)...

• Also used as risk measures in pairwise learning problems such as metric learning
and bipartite ranking [Kar et al., 2013, Clémençon et al., 2016]

• Computing U-statistics in LDP cannot generally be addressed by resorting to
standard local randomizers due to the pairwise nature of the terms
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GENERIC LDP PROTOCOL FOR u-STATISTICS [BELL ET AL., 2020]

0 1

1. Discretize domain into k bins

2. Local randomization: each user answers a random bin with prob. β

3. Estimation: Compute U-statistic on randomized answers and debias the result
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GENERIC LDP PROTOCOL FOR u-STATISTICS [BELL ET AL., 2020]
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GENERIC LDP PROTOCOL FOR u-STATISTICS [BELL ET AL., 2020]

Theorem

For simplicity, assume bounded domain X = [0, 1] and kernel values f(x, y) ∈ [0, 1] for all
x, y ∈ X . Let π correspond to simple rounding, ε > 0, k ≥ 1 and β = k/(k+ eε − 1). Then
the algorithm satisfies ε-LDP. Furthermore:

• If f is Lf-Lipschitz, then MSE(Ûf,n) ≤ 1
n(1−β)2 +

(1+β)2

2n(n−1)(1−β)4 +
L2f
2k2 .

• If dµ/dλ is Lµ-Lipschitz, then MSE(Ûf,n) ≤ 1
n(1−β)2 +

(1+β)2

2n(n−1)(1−β)4 +
4L2µ
k2 +

4L4µ
k4 .

Corollary

For ϵ ≤ 1 and large enough n, taking k = n1/4√Lϵ leads to MSE(Ûf,n) = O(L/
√
nϵ), where

L corresponds to Lf or Lµ depending on the assumption.

• Sum of errors from randomized response and quantization

• See paper for other algorithms, e.g. for AUC on large discrete domains 43



WRAPPING UP



CONCLUDING REMARKS

• Any personal information can be sensitive, and anonymization is hard

• Differential privacy provides a robust mathematical definition of privacy and a strong
algorithmic framework allowing to design complex private algorithms

• When there is no trusted curator, DP can be deployed locally at the participants’
level so as to analyze data while keeping it decentralized and confidential

• There are lots of cool open problems at the intersection of privacy, algorithms,
statistics and machine learning
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GOPA: PRIVACY GUARANTEES

• Adversary: proportion 1− ρ of colluding malicious parties who observe all
communications they take part in

• Denote by H the set of honest-but-curious parties, and by GH the honest subgraph

• GOPA can achieve (ε, δ)-DP for any ε, δ > 0 for connected GH and large enough σ2
η, σ

2
∆

• We show that σ2
η can be as small as in the centralized setting (matching its utility)

• We show that the required σ2
∆ depends on the topology of GH
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GOPA: PRIVACY GUARANTEES

Theorem (Case of random k-out graph)
Let ε, δ′ ∈ (0, 1) and let:

• G be obtained by letting all parties randomly choose k = O(log(ρn)/ρ) neighbors
• σ2

η so as to satisfy (ε, δ)-DP in the centralized (trusted curator) setting
• σ2

∆ = O(σ2
η|H|/k)

Then GOPA is (ε, δ)-differentially private for δ = O(δ′).

• Trusted curator utility with logarithmic number of messages per user

• Our theoretical results give practical values for k and σ2
∆
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GOPA: ENSURING CORRECTNESS

• Utility can be compromised by malicious parties tampering with the protocol (e.g.,
sending incorrect values to bias the outcome)

• It is impossible to force a user to give the “right” input (this also holds in the trusted
curator setting)

• We enable each user u to prove the following properties:

f(xi) ∈ [0, 1], ∀i ∈ {1, . . . ,n}
∆i,j = −∆j,i, ∀{i, j} neighbors in G

ηi ∼ N (0, σ2
η), ∀i ∈ {1, . . . ,n}

f(x̂k) = f(xk) +
∑
j∼i

∆i,j + ηi, ∀i ∈ {1, . . . ,n}
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GOPA: ENSURING CORRECTNESS

• Parties publish an encrypted log of the computation using Pedersen commitments
[Blum, 1983, Pedersen, 1991], which are additively homomorphic

• Based on these commitments, parties prove that the computation was done
correctly using zero knowledge proofs

Theorem (Informal)
A user i that passes the verification proves that f(x̂i) was computed correctly.
Additionally, by doing so, i does not reveal any additional information about xi.

• Costs per user remain linear in the number of neighbors

• Can prove consistency across multiple runs on same/similar data

• Can handle drop out
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u-STATISTICS IN THE LOCAL MODEL: ALGORITHM [BELL ET AL., 2020]

Algorithm 2 LDP algorithm based on quantization and private histograms
Public parameters: Privacy budget ε, quantization scheme π, number of bins k

for each user i ∈ [n] do
Form quantized input π(xi) ∈ [k]
For β = k/(k+ eϵ − 1), generate x̃i ∈ [k] s.t.

P(x̃i = i) =
{

1− β for i = π(xi),
β/k for i ̸= π(xi).

(2)

Send x̃i to untrusted curator
return Ûf,n = 2

n(n−1)
∑

1≤i<j≤n f̂A(x̃i, x̃j), where f̂A(R(x1),R(x2)) = (1 − β)−2(eR(x1) −
b)TA(eR(x2) − b), A ∈ Rk×k with Aij = f(i, j), and b = β

k 1
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