Metric Learning
(and incidentally some distributed optimization)

Aurélien Bellet

Joint work with A. Habrard and M. Sebban (LaHC St-Etienne), A.
Bagheri Garakani, K. Liu, F. Sha and Y. Shi (USC), Y. Liang
(Princeton), M.-F. Balcan (CMU)

November 12, 2014

A bit about me

» PhD in Computer Science (Dec 2012)

» Université Jean Monnet, Saint-Etienne
» Advisors: Marc Sebban, Amaury Habrard

» Postdoc in 2013-2014 (18 months)

» University of Southern California, Los Angeles
» Working with Fei Sha

» Joined Télécom ParisTech on October 15

» Chaire “Machine Learning for Big Data”
» Working with Stéphan

Outline of the talk

1. Metric learning

» Problem statement
» Some contributions

2. Interlude: the Frank-Wolfe algorithm

3. Leveraging Frank-Wolfe in large-scale learning

» Similarity learning for sparse high-dimensional data
» Distributed and communication-efficient sparse learning

Metric learning

Motivation

» Distance and similarity functions are everywhere in machine
learning and data mining
» Nearest neighbors, clustering, kernel methods, ranking,
dimensionality reduction, visualization. ..

» How to define an appropriate similarity score?
» Crucial to performance of above algorithms
» Obviously, problem-dependent
» Let's learn it from datal

Metric learning

Basic recipe

1. Pick a parametric form of distance or similarity function
» (Generalized) Mahalanobis distance

dm(x,x') = \/(x — x')TM(x — x') with M symmetric PSD
» Bilinear similarity
Sm(x,x") = x"Mx" with M ¢ R¥*¢

2. Collect similarity judgements on data pairs/triplets
» x; and x; are similar (or dissimilar)
> x; is more similar to x; than to x

3. Estimate parameters such that metric best satisfies them
» Convex optimization and the like

Metric learning

lllustration

Metric learning

A statistical view (pairwise case)

» Training data {z; = (x;, y;)}"_; drawn from an unknown
distribution i over X x) () is the label set)

» Minimize the empirical risk

R’(M):n(nz_l) S Tlr(yiy)(dmxi) — 1) > 0
1<i<j<n

where r(y,y’) =1if y =y’ and -1 otherwise

» Hope to achieve small expected risk

RM)= E [1[rly.y)(dm(x.x) ~ 1) > 0]]

z,z'~p

» (In practice: convex loss function and regularization on M)

Metric learning

Some contributions — Similarity learning for linear classification

Data Learned Learned
Underlying sample | Metric learning | metric | Metric-based | predictor .
L . —P . Prediction
distribution algorithm H algorithm !

,\

\
5,- Consistency guarantees for the learned metric 5

v

Learn a similarity function S for a linear classifier h

h(x) =sign | E y'w(x")S(x,x")
z'~p

v

Build upon theory of learning with good similarity functions
[Balcan and Blum, 2006, Balcan et al., 2008]

v

Bounds on the expected risk of both the metric and the
classifier (using algorithmic stability)

v

Efficient algorithms for data represented as numerical vectors
but also structured objects (strings, trees)

Metric learning

Some contributions — Learning multiple metrics

Training data Extracted basis set w LT T8 Global metric learning
K dimensional sparse vector
wy
—p Multi-task metric learning
wr
by by br \A 2 +—— w(z) AT T T I W Local metric learning

» Fix a dictionary of bases {b;}X ; and assume a decomposition

M = Zlel W,'b,'br,-T with w; > 0
» Learn K parameters instead of d? — use sparsity for selection

» Convenient to learn multiple metrics:

» Multi-task setting: learn a metric per task with group sparsity
to share information
» Instance-specific metrics: learn a transformation x — w(x)

» Efficient stochastic optimization algorithms and generalization
bounds based on algorithmic robustness

Interlude: the Frank Wolfe algorithm
(a.k.a. conditional gradient)

The Frank-Wolfe algorithm

Setup and algorithm

Convex minimization over feasible domain D

mp)
» f convex and smooth (with L-Lipschitz gradient w.r.t. || - ||)

» D convex and compact

Let al® € D

for k=0,1,... do
st = argmingep (s, VF(alb))
ol — (1 - 7)alk) 1 45

end for

Figure adapted from [Jaggi, 2013]

The Frank-Wolfe algorithm

Convergence and interesting properties

Convergence [Frank and Wolfe, 1956, Clarkson, 2010, Jaggi, 2013]

At any k > 1, ak) is feasible and satisfies

2L diam.(D)?
)Y _ Fla*) < R
(o) ~ fa") < — 11
» Projection-free algorithm

> Solve a linear problem at each iteration
» Solution is at a vertex of D

» If D has special structure, each iteration can be very cheap

The Frank-Wolfe algorithm

Use-case: D is a convex hull

» When D = conv(A), FW is greedy

» At each iteration, add an element a € A to the current iterate

» Example 1: D is the £1-norm ball
> A={tei}l,
» Linear problem: find maximum absolute entry of gradient
> Iterates are sparse: a(® =0 = |a¥||y < k
» FW finds an e-approximation with O(1/€) nonzero entries,
which is worst-case optimal [Jaggi, 2013]

» Example 2: D is the trace-norm ball

» A={uvt :u e R |jul =1,v eR™, |v]r =1}
Linear problem: find largest singular vector of gradient
Iterates are low-rank: M©® =0 = rank(M¥) < k
FW finds an e-approximation of rank O(1/¢), which is
worst-case optimal [Jaggi, 2011]

vV VvYyy

Similarity learning
for sparse high-dimensional data

Similarity learning for sparse high-dimensional data

Motivation

» Assume data points are high-dimensional (d > 10*) but
D-sparse (on average) with D < d

» Bags-of-words (text, image), bioinformatics, etc

» Existing metric learning algorithms fail
» Intractable: training cost O(d?) to O(d®), memory O(d?)
» Severe overfitting

» Practitioners use dimensionality reduction (PCA, RP)

» Poor performance in presence of noisy features
» Resulting metric difficult to interpret for domain experts

» Contributions of this work
> Learn similarity in original high-dimensional space
» Time/memory costs independent of d
» Explicit control of similarity complexity

Similarity learning for sparse high-dimensional data

Basis set

» We want to learn a similarity function Spp(x, x’) = xTMx’

» Given A >0, forany i,j € {1,...,d}, i # j we define

) Ao) A -
Pg\’l): Ng\’l)_ - .o
A A A

5 - U (P N0}

i
Me D, = COHV(B)\)

» One basis involves only 2 features:
/ / / / /
Sng)(x, x") = A(xix; + XX + Xix; + XjX;)

Xjx})

/ / / /
SN():‘j) (x,x") = A(xix; + XjXj — XiXj —

Similarity learning for sparse high-dimensional data

Problem formulation and convergence
» Optimization problem

T

. _ 1 t
min f(M) = T;€(<A ,M)) st. MeD,

where A" = x!(x5 — x4)T and £ is the smoothed hinge loss

> Use a FW algorithm to solve it

Convergence
Let L=+ ZtT:l |A*||%. At any iteration k > 1, the iterate
VIQNS D), of the FW algorithm:
> has at most rank k + 1 with 4(k + 1) nonzero entries
> uses at most 2(k + 1) distinct features
» satisfies (M) — F(M*) < 16L)X2/(k + 2)

Similarity learning for sparse high-dimensional data

Complexity analysis

» FW can be implemented efficiently on this problem

» An optimal basis can be found in O(TD?) time and memory
even though there are O(d?) different bases

» An approximately optimal basis can be found in O(mD?) with
m < T using a Monte Carlo approximation of the gradient

» Or even O(mD) using a heuristic (good results in practice)

» Storing M¥) requires only O(k) memory

» Or even the entire sequence M(O)7 ceey M) 3t the same cost

Similarity learning for sparse high-dimensional data

Preliminary experiments

» K-NN test error on datasets with d up to 10°
[Datasets [[IDENTITY [RP+OASIS | PCA+OASIS | DIAG-f, | DIAG-f; | HDSL |

dexter 20.1 24.0 9.3 8.4 8.4 6.5
dorothea 9.3 11.4 9.9 6.8 6.6 6.5
rcvl 2 6.9 7.0 4.5 3.5 3.7 3.4
rcvl 4 11.2 10.6 6.1 6.2 7.2 5.7

» Sparsity structure of the matrices

(a) dexter (20,000 x 20, 000 (b) revl_4 (29,992x%29,992
matrix, 712 nonzeros) matrix, 5263 nonzeros)

Similarity learning for sparse high-dimensional data
Ongoing work

» Generalization bounds specific to each iterate
» Show trade-off between hypothesis complexity (optimization
error) and overfitting
» Validate early stopping strategy

» If we assume the existence of a ground truth sparse metric
» Can we recover it based on similarity judgements?
» Preliminary results on synthetic data encouraging
» Theory?

Distributed and communication-efficient
sparse learning

Distributed and communication-efficient sparse learning
Distributed setting

» General setting

» Data arbitrarily distributed across different sites (nodes)
» Examples: large-scale data, sensor networks, mobile devices
» Communication between nodes can be a serious bottleneck

» Research questions
» Theory: study tradeoff between communication complexity and
learning/optimization error

» Practice: derive scalable algorithms, with small communication
and synchronization overhead

Distributed and communication-efficient sparse learning

Problem of interest

Problem of interest
Learn sparse combinations of n distributed “atoms”:

min f(a)=g(Aa) st. |a|1 <3 (A € RI*m)

acR”

» Atoms are distributed across a set of N nodes V = {v;} ¥,
» Nodes communicate across a network (connected graph)

» Note: domain can be unit simplex A, instead of ¢; ball

Ap={a€R":a>0,> a;=1}

Distributed and communication-efficient sparse learning
Applications

» Many applications

LASSO with distributed features

Kernel SVM with distributed training points
Boosting with distributed learners

v

v VvYyy

Example: Kernel SVM

» Training set {z; = (x;,yi)}7_;
Kernel k(x, x") = (¢(x), ¢(x'))
Dual problem of L2-SVM:

v

v

min o Ka
aEA,

& = n c = 5,"
K = [k(z, zf)]iJ:1 with k(z;, zj) = yiyik(xi, x;) + yiy; + &

Atoms are B(z;) = [yip(xi), yis %ei]

v

v

Distributed and communication-efficient sparse learning
Distributed FW algorithm (dFW)

Recall our problem

min f(@)=g(Aa) st fali<f (AR
acR"

Algorithm steps

1. Each node computes its local gradient a; € R

R
<
[3S]
<
W
EAES N

Distributed and communication-efficient sparse learning
Distributed FW algorithm (dFW)

Recall our problem

min f(a) =g(Aa) st. [a|1 <3 (A € RY*M)
a€eRn

Algorithm steps

2. Each node broadcast its largest absolute value a; € R¢

Distributed and communication-efficient sparse learning
Distributed FW algorithm (dFW)

Recall our problem

miﬂg fla) =g(Aa) st. |lafj1 <8 (A € RY*M)
aceR”

Algorithm steps

3. Node with global best broadcasts corresponding atom a; € RY

Distributed and communication-efficient sparse learning
Distributed FW algorithm (dFW)

Recall our problem

min (o) =g(Aa) st fali<f (AR
acR"?

Algorithm steps
4. All nodes perform a FW update and start over a; € R

Distributed and communication-efficient sparse learning
Convergence of dFW

> Let B be the cost of broadcasting a real number

Theorem (Convergence of exact dFW)

After O(1/¢€) rounds and O ((Bd + NB)/¢) total communication,
each node holds an e-approximate solution.

» Tradeoff between communication and optimization error

» No dependence on total number of combining elements

Distributed and communication-efficient sparse learning

Approximate variant

» Exact dFW is scalable but requires synchronization
» Unbalanced local computation — significant wait time

» Strategy to balance local costs:
» Node v; clusters its n; atoms into m; groups
» We use the greedy m-center algorithm [Gonzalez, 1985]
» Run dFW on resulting centers

> Use-case examples:
» Balance number of atoms across nodes
» Set m; proportional to computational power of v;

greedy L1
clustering on v,

———

Vq V, V3V, Vs Vg V1 Vo V3V, Vs Vg

w30 rroH
nw3o~o H

Distributed and communication-efficient sparse learning

Approximate variant — Analysis

» Define
> roPt(A, m) to be the optimal ¢;-radius of partitioning atoms in
A into m clusters, and r°P*(m) := max; r°P*(A;, m;)
» G :=maxq || VEg(Aa)| s

Theorem (Convergence of approximate dFW)

After O(1/€) iterations, the algorithm returns a solution with
optimality gap at most € + O(GroPt*(mP)). Furthermore, if
roPt(m(kK)) = O(1/Gk), then the gap is at most e.

» Additive error depends on cluster tightness

» Can gradually add more centers to make error vanish

Distributed and communication-efficient sparse learning

Communication complexity — Dependence on network topology

Vy v, v,
/ \ ya \
V3 2 v, V3 Vv, — vV,
/NN \ / \ /
v, Vy Vs Vg Vy
Star graph Rooted tree General connected

graph

» Star graph and rooted tree: O(Nd/e) communication (use
network structure to reduce cost)

» General connected graph: O(M(N + d)/e), where M is the
number of edges (use a message-passing strategy)

Distributed and communication-efficient sparse learning

Communication complexity — Lower bound

Theorem (Communication lower bound)

Under mild assumptions, the worst-case communication cost of
any deterministic algorithm is Q(d/e).

» Shows that dFW is worst-case optimal in € and d

» Proof outline:

1. Identify a problem instance for which any e-approximate
solution has O(1/¢) atoms

2. Distribute data across 2 nodes s.t. these atoms are almost
evenly split across nodes

3. Show that for any fixed dataset on one node, there are T
different instances on the other node s.t. in any 2 such
instances, the sets of selected atoms are different

4. Any node then needs O(log T) bits to figure out the selected
atoms, and we show that log T = Q(d/€)

Distributed and communication-efficient sparse learning

Experiments

» Objective value achieved for given communication budget

» Comparison to baselines (not shown)
» Comparison to distributed ADMM

> Runtime of dFW in realistic distributed setting

» Exact dFW
» Benefits of approximate variant
» Asynchronous updates

Distributed and communication-efficient sparse learning
Experiments — Comparison to distributed ADMM

» ADMM [Boyd et al., 2011] is popular to tackle many
distributed optimization problems

» Like dFW, can deal with LASSO with distributed features
» Parameter vector « partitioned as & = [y, . . ., ap]
» Communicates partial/global predictions: A;a; and vazl A o;

» Experimental setup
» Synthetic data (n = 100K, d = 10K) with varying sparsity
» Atoms distributed across 100 nodes uniformly at random

Distributed and communication-efficient sparse learning
Experiments — Comparison to distributed ADMM

» dFW advantageous for sparse data and/or solution, while
ADMM is preferable in the dense setting

» Note: no parameter to tune for dFW

Sq = 0.001 Sq = 0.01 Sq = 0.1
54 0.1; e mey pig s sl —— dFW
++++ ADMM (p=0.1,0=1)
g 1
I
<
w
—
<
o
I
<
® S SUma—emTrTTY
1 2 3 4 5 6 7 8 09 1 2 3 4 5 86 05 1 15 2 25 3 35 4 45 5
x10° x10° x10'
—
O 00T o 1 i
I
< oo
w
1 2 3 4 5 6

x10

LASSO results (MSE vs communication)

Distributed and communication-efficient sparse learning

Experiments — Realistic distributed environment

» Network specs
» Fully connected with N € {1,5,10,25,50} nodes

» A node is a single 2.4GHz CPU core of a separate host
» Communication over 56.6-gigabit infrastructure

» The task
» SVM with Gaussian RBF kernel
» Speech data with 8.7M training examples, 41 classes

» Implementation of dFW in C++ with openMPI!

"http://www.open-mpi.org

http://www.open-mpi.org

Distributed and communication-efficient sparse learning
Experiments — Realistic distributed environment
» When distribution of atoms is roughly balanced, exact dFW
achieves near-linear speedup

» When distribution is unbalanced (e.g., 1 node has 50% of the
data), great benefits from approximate variant

1X 10° 1x10 .
—dFW, N=1 —dFW, N=10, uniform
—dFW, N=5 —dFW, N=10, unbalanced
0.8 —dFW, N=10J] 0.8 —— Approx dFW, N=10
—dFW, N=25
Los —OFW, NS0 6
= k=
3 3
So4 So4
0.2 0.2
% 500 1000 1500 2000 % 500 1@00 1500 2000 2500
Runtime (seconds) Runtime (seconds)

(a) Exact dFW on uniform distribution ~ (b) Approximate dFW to balance costs

Distributed and communication-efficient sparse learning
Experiments — Realistic distributed environment
» Another way to reduce synchronization costs is to perform

asynchronous updates

» To simulate this, we randomly drop communication messages
with probability p

» dFW is fairly robust, even with 40% random drops

0.02

—dFW, N=10, p=0

—dFW, N=10, p=0.1
—dFW, N=10, p=0.2
—dFW, N=10, p=0.4

0.015

0.01

Objective

0.005

0

0 100 300 400

200
Iteration humber
dFW under communication errors and asynchrony

Summary and perspectives

» Take-home messages

» Metric learning is an important topic
» Frank-Wolfe can be useful to tackle large-scale problems

> Refer to papers for details, proofs and additional experiments

» Future directions

» Propose and analyze an asynchronous version of dFW
» Distributed metric learning

References |

[Balcan and Blum, 2006] Balcan, M.-F. and Blum, A. (2006).
On a Theory of Learning with Similarity Functions.
In ICML, pages 73-80.

[Balcan et al., 2008] Balcan, M.-F., Blum, A., and Srebro, N. (2008).
Improved Guarantees for Learning via Similarity Functions.
In COLT, pages 287-298.

[Boyd et al., 2011] Boyd, S. P., Parikh, N., Chu, E., Peleato, B., and Eckstein, J.
(2011).
Distributed Optimization and Statistical Learning via the Alternating Direction
Method of Multipliers.
Foundations and Trends in Machine Learning, 3(1):1-122.

[Clarkson, 2010] Clarkson, K. L. (2010).
Coresets, sparse greedy approximation, and the Frank-Wolfe algorithm.
ACM Transactions on Algorithms, 6(4):1-30.

[Frank and Wolfe, 1956] Frank, M. and Wolfe, P. (1956).
An algorithm for quadratic programming.
Naval Research Logistics Quarterly, 3(1-2):95-110.

[Gonzalez, 1985] Gonzalez, T. F. (1985).
Clustering to minimize the maximum intercluster distance.
Theoretical Computer Science, 38:293-306.

References |l

[Jaggi, 2011] Jaggi, M. (2011).
Sparse Convex Optimization Methods for Machine Learning.
PhD thesis, ETH Zurich.

[Jaggi, 2013] Jaggi, M. (2013).
Revisiting Frank-Wolfe: Projection-Free Sparse Convex Optimization.
In ICML.

