
Metric Learning
(and incidentally some distributed optimization)

Aurélien Bellet

Joint work with A. Habrard and M. Sebban (LaHC St-Etienne), A.
Bagheri Garakani, K. Liu, F. Sha and Y. Shi (USC), Y. Liang

(Princeton), M.-F. Balcan (CMU)

November 12, 2014



A bit about me

I PhD in Computer Science (Dec 2012)
I Université Jean Monnet, Saint-Etienne
I Advisors: Marc Sebban, Amaury Habrard

I Postdoc in 2013–2014 (18 months)
I University of Southern California, Los Angeles
I Working with Fei Sha

I Joined Télécom ParisTech on October 15
I Chaire “Machine Learning for Big Data”
I Working with Stéphan



Outline of the talk

1. Metric learning
I Problem statement
I Some contributions

2. Interlude: the Frank-Wolfe algorithm

3. Leveraging Frank-Wolfe in large-scale learning
I Similarity learning for sparse high-dimensional data
I Distributed and communication-efficient sparse learning



Metric learning
Motivation

I Distance and similarity functions are everywhere in machine
learning and data mining

I Nearest neighbors, clustering, kernel methods, ranking,
dimensionality reduction, visualization. . .

I How to define an appropriate similarity score?
I Crucial to performance of above algorithms
I Obviously, problem-dependent
I Let’s learn it from data!



Metric learning
Basic recipe

1. Pick a parametric form of distance or similarity function
I (Generalized) Mahalanobis distance

dM(x , x ′) =
√

(x − x ′)TM(x − x ′) with M symmetric PSD

I Bilinear similarity

SM(x , x ′) = xTMx ′ with M ∈ Rd×d

2. Collect similarity judgements on data pairs/triplets
I x i and x j are similar (or dissimilar)
I x i is more similar to x j than to xk

3. Estimate parameters such that metric best satisfies them
I Convex optimization and the like



Metric learning
Illustration

Metric Learning



Metric learning
A statistical view (pairwise case)

I Training data {zi = (xi , yi )}ni=1 drawn from an unknown
distribution µ over X × Y (Y is the label set)

I Minimize the empirical risk

R̂(M) =
2

n(n − 1)

n∑
1≤i<j≤n

I [r(yi , yj)(dM(xi , xj)− 1) > 0]

where r(y , y ′) = 1 if y = y ′ and -1 otherwise

I Hope to achieve small expected risk

R(M) = E
z,z ′∼µ

[
I
[
r(y , y ′)(dM(x , x ′)− 1) > 0

]]
I (In practice: convex loss function and regularization on M)



Metric learning
Some contributions – Similarity learning for linear classification

Underlying

distribution

Metric learning

algorithm

Metric-based

algorithm

Data

sample

Learned

metric

Learned

predictor
Prediction

Consistency guarantees for the learned metric

Generalization guarantees for the predictor that uses the metric

I Learn a similarity function S for a linear classifier h

h(x) = sign

[
E

z ′∼µ
y ′w(x ′)S(x , x ′)

]
I Build upon theory of learning with good similarity functions

[Balcan and Blum, 2006, Balcan et al., 2008]

I Bounds on the expected risk of both the metric and the
classifier (using algorithmic stability)

I Efficient algorithms for data represented as numerical vectors
but also structured objects (strings, trees)



Metric learning
Some contributions – Learning multiple metrics

I Fix a dictionary of bases {bi}Ki=1 and assume a decomposition

M =
∑K

i=1 wibibT
i with wi ≥ 0

I Learn K parameters instead of d2 – use sparsity for selection

I Convenient to learn multiple metrics:
I Multi-task setting: learn a metric per task with group sparsity

to share information
I Instance-specific metrics: learn a transformation x 7→ w(x)

I Efficient stochastic optimization algorithms and generalization
bounds based on algorithmic robustness



Interlude: the Frank Wolfe algorithm
(a.k.a. conditional gradient)



The Frank-Wolfe algorithm
Setup and algorithm

Convex minimization over feasible domain D

min
α∈D

f (α)

I f convex and smooth (with L-Lipschitz gradient w.r.t. ‖ · ‖)
I D convex and compact

Let α(0) ∈ D
for k = 0, 1, . . . do

s(k) = arg mins∈D
〈
s,∇f (α(k))

〉
α(k+1) = (1− γ)α(k) + γs(k)

end for

Figure adapted from [Jaggi, 2013]



The Frank-Wolfe algorithm
Convergence and interesting properties

Convergence [Frank and Wolfe, 1956, Clarkson, 2010, Jaggi, 2013]

At any k ≥ 1, α(k) is feasible and satisfies

f (α(k))− f (α∗) ≤
2L diam‖·‖(D)2

k + 2

I Projection-free algorithm

I Solve a linear problem at each iteration
I Solution is at a vertex of D

I If D has special structure, each iteration can be very cheap



The Frank-Wolfe algorithm
Use-case: D is a convex hull

I When D = conv(A), FW is greedy
I At each iteration, add an element a ∈ A to the current iterate

I Example 1: D is the `1-norm ball
I A = {±e i}ni=1
I Linear problem: find maximum absolute entry of gradient
I Iterates are sparse: α(0) = 0 =⇒ ‖α(k)‖0 ≤ k
I FW finds an ε-approximation with O(1/ε) nonzero entries,

which is worst-case optimal [Jaggi, 2013]

I Example 2: D is the trace-norm ball
I A = {uvT : u ∈ Rn, ‖u‖2 = 1, v ∈ Rm, ‖v‖2 = 1}
I Linear problem: find largest singular vector of gradient
I Iterates are low-rank: M(0) = 0 =⇒ rank(M(k)) ≤ k
I FW finds an ε-approximation of rank O(1/ε), which is

worst-case optimal [Jaggi, 2011]



Similarity learning
for sparse high-dimensional data



Similarity learning for sparse high-dimensional data
Motivation

I Assume data points are high-dimensional (d > 104) but
D-sparse (on average) with D � d

I Bags-of-words (text, image), bioinformatics, etc

I Existing metric learning algorithms fail
I Intractable: training cost O(d2) to O(d3), memory O(d2)
I Severe overfitting

I Practitioners use dimensionality reduction (PCA, RP)
I Poor performance in presence of noisy features
I Resulting metric difficult to interpret for domain experts

I Contributions of this work
I Learn similarity in original high-dimensional space
I Time/memory costs independent of d
I Explicit control of similarity complexity



Similarity learning for sparse high-dimensional data
Basis set

I We want to learn a similarity function SM(x , x ′) = xTMx ′

I Given λ > 0, for any i , j ∈ {1, . . . , d}, i 6= j we define

P(ij)
λ =

 · · · · ·· λ · λ ·· · · · ·
· λ · λ ·· · · · ·

 N(ij)
λ =

 · · · · ·· λ · −λ ·· · · · ·
· −λ · λ ·· · · · ·


Bλ =

⋃
ij

{
P(ij)
λ ,N(ij)

λ

}
M ∈ Dλ = conv(Bλ)

I One basis involves only 2 features:

SP(ij)
λ

(x , x ′) = λ(xix
′
i + xjx

′
j + xix

′
j + xjx

′
i )

SN(ij)
λ

(x , x ′) = λ(xix
′
i + xjx

′
j − xix

′
j − xjx

′
i )



Similarity learning for sparse high-dimensional data
Problem formulation and convergence

I Optimization problem

min
M∈Rd×d

f (M) =
1

T

T∑
t=1

`
(〈

At ,M
〉)

s.t. M ∈ Dλ

where At = x t
1(x t

2 − x t
3)T and ` is the smoothed hinge loss

I Use a FW algorithm to solve it

Convergence

Let L = 1
T

∑T
t=1 ‖A

t‖2
F . At any iteration k ≥ 1, the iterate

M(k) ∈ Dλ of the FW algorithm:

I has at most rank k + 1 with 4(k + 1) nonzero entries

I uses at most 2(k + 1) distinct features

I satisfies f (M(k))− f (M∗) ≤ 16Lλ2/(k + 2)



Similarity learning for sparse high-dimensional data
Complexity analysis

I FW can be implemented efficiently on this problem

I An optimal basis can be found in O(TD2) time and memory
even though there are O(d2) different bases

I An approximately optimal basis can be found in O(mD2) with
m� T using a Monte Carlo approximation of the gradient

I Or even O(mD) using a heuristic (good results in practice)

I Storing M(k) requires only O(k) memory

I Or even the entire sequence M(0), . . . ,M(k) at the same cost



Similarity learning for sparse high-dimensional data
Preliminary experiments

I K -NN test error on datasets with d up to 105

Datasets identity rp+oasis pca+oasis diag-`2 diag-`1 hdsl

dexter 20.1 24.0 9.3 8.4 8.4 6.5
dorothea 9.3 11.4 9.9 6.8 6.6 6.5

rcv1 2 6.9 7.0 4.5 3.5 3.7 3.4
rcv1 4 11.2 10.6 6.1 6.2 7.2 5.7

I Sparsity structure of the matrices

(a) dexter (20, 000×20, 000
matrix, 712 nonzeros)

(b) rcv1 4 (29, 992×29, 992
matrix, 5263 nonzeros)



Similarity learning for sparse high-dimensional data
Ongoing work

I Generalization bounds specific to each iterate
I Show trade-off between hypothesis complexity (optimization

error) and overfitting
I Validate early stopping strategy

I If we assume the existence of a ground truth sparse metric
I Can we recover it based on similarity judgements?
I Preliminary results on synthetic data encouraging
I Theory?



Distributed and communication-efficient
sparse learning



Distributed and communication-efficient sparse learning
Distributed setting

I General setting
I Data arbitrarily distributed across different sites (nodes)
I Examples: large-scale data, sensor networks, mobile devices
I Communication between nodes can be a serious bottleneck

I Research questions
I Theory: study tradeoff between communication complexity and

learning/optimization error
I Practice: derive scalable algorithms, with small communication

and synchronization overhead



Distributed and communication-efficient sparse learning
Problem of interest

Problem of interest

Learn sparse combinations of n distributed “atoms”:

min
α∈Rn

f (α) = g(Aα) s.t. ‖α‖1 ≤ β (A ∈ Rd×n)

I Atoms are distributed across a set of N nodes V = {vi}Ni=1

I Nodes communicate across a network (connected graph)

I Note: domain can be unit simplex ∆n instead of `1 ball

∆n = {α ∈ Rn : α ≥ 0,
∑
i

αi = 1}



Distributed and communication-efficient sparse learning
Applications

I Many applications
I LASSO with distributed features
I Kernel SVM with distributed training points
I Boosting with distributed learners
I ...

Example: Kernel SVM

I Training set {z i = (x i , yi )}ni=1

I Kernel k(x , x ′) = 〈ϕ(x), ϕ(x ′)〉
I Dual problem of L2-SVM:

min
α∈∆n

αTK̃α

I K̃ = [k̃(z i , z j)]ni ,j=1 with k̃(z i , z j) = yiyjk(x i , x j) + yiyj +
δij
C

I Atoms are ϕ̃(z i ) = [yiϕ(x i ), yi ,
1√
C
e i ]



Distributed and communication-efficient sparse learning
Distributed FW algorithm (dFW)

Recall our problem

min
α∈Rn

f (α) = g(Aα) s.t. ‖α‖1 ≤ β (A ∈ Rd×n)

Algorithm steps

1. Each node computes its local gradient aj ∈ Rd



Distributed and communication-efficient sparse learning
Distributed FW algorithm (dFW)

Recall our problem

min
α∈Rn

f (α) = g(Aα) s.t. ‖α‖1 ≤ β (A ∈ Rd×n)

Algorithm steps

2. Each node broadcast its largest absolute value aj ∈ Rd



Distributed and communication-efficient sparse learning
Distributed FW algorithm (dFW)

Recall our problem

min
α∈Rn

f (α) = g(Aα) s.t. ‖α‖1 ≤ β (A ∈ Rd×n)

Algorithm steps

3. Node with global best broadcasts corresponding atom aj ∈ Rd



Distributed and communication-efficient sparse learning
Distributed FW algorithm (dFW)

Recall our problem

min
α∈Rn

f (α) = g(Aα) s.t. ‖α‖1 ≤ β (A ∈ Rd×n)

Algorithm steps

4. All nodes perform a FW update and start over aj ∈ Rd



Distributed and communication-efficient sparse learning
Convergence of dFW

I Let B be the cost of broadcasting a real number

Theorem (Convergence of exact dFW)

After O(1/ε) rounds and O ((Bd + NB)/ε) total communication,
each node holds an ε-approximate solution.

I Tradeoff between communication and optimization error

I No dependence on total number of combining elements



Distributed and communication-efficient sparse learning
Approximate variant

I Exact dFW is scalable but requires synchronization
I Unbalanced local computation → significant wait time

I Strategy to balance local costs:
I Node vi clusters its ni atoms into mi groups
I We use the greedy m-center algorithm [Gonzalez, 1985]
I Run dFW on resulting centers

I Use-case examples:
I Balance number of atoms across nodes
I Set mi proportional to computational power of vi



Distributed and communication-efficient sparse learning
Approximate variant – Analysis

I Define
I ropt(A,m) to be the optimal `1-radius of partitioning atoms in
A into m clusters, and ropt(m) := maxi r

opt(Ai ,mi )
I G := maxα ‖∇g(Aα)‖∞

Theorem (Convergence of approximate dFW)

After O(1/ε) iterations, the algorithm returns a solution with
optimality gap at most ε+ O(Gropt(m0)). Furthermore, if
ropt(m(k)) = O(1/Gk), then the gap is at most ε.

I Additive error depends on cluster tightness

I Can gradually add more centers to make error vanish



Distributed and communication-efficient sparse learning
Communication complexity – Dependence on network topology

v0 v1

v2

v4

v3

Star graph

v3

v4

v1

v2

v5 v6 v7

Rooted tree

v1

v2 v3 v4

v6v5

General connected
graph

I Star graph and rooted tree: O(Nd/ε) communication (use
network structure to reduce cost)

I General connected graph: O(M(N + d)/ε), where M is the
number of edges (use a message-passing strategy)



Distributed and communication-efficient sparse learning
Communication complexity – Lower bound

Theorem (Communication lower bound)

Under mild assumptions, the worst-case communication cost of
any deterministic algorithm is Ω(d/ε).

I Shows that dFW is worst-case optimal in ε and d

I Proof outline:

1. Identify a problem instance for which any ε-approximate
solution has O(1/ε) atoms

2. Distribute data across 2 nodes s.t. these atoms are almost
evenly split across nodes

3. Show that for any fixed dataset on one node, there are T
different instances on the other node s.t. in any 2 such
instances, the sets of selected atoms are different

4. Any node then needs O(logT ) bits to figure out the selected
atoms, and we show that logT = Ω(d/ε)



Distributed and communication-efficient sparse learning
Experiments

I Objective value achieved for given communication budget
I Comparison to baselines (not shown)
I Comparison to distributed ADMM

I Runtime of dFW in realistic distributed setting
I Exact dFW
I Benefits of approximate variant
I Asynchronous updates



Distributed and communication-efficient sparse learning
Experiments – Comparison to distributed ADMM

I ADMM [Boyd et al., 2011] is popular to tackle many
distributed optimization problems

I Like dFW, can deal with LASSO with distributed features
I Parameter vector α partitioned as α = [α1, . . . ,αN ]
I Communicates partial/global predictions: Aiαi and

∑N
i=1 Aiαi

I Experimental setup
I Synthetic data (n = 100K , d = 10K ) with varying sparsity
I Atoms distributed across 100 nodes uniformly at random



Distributed and communication-efficient sparse learning
Experiments – Comparison to distributed ADMM

I dFW advantageous for sparse data and/or solution, while
ADMM is preferable in the dense setting

I Note: no parameter to tune for dFW

LASSO results (MSE vs communication)



Distributed and communication-efficient sparse learning
Experiments – Realistic distributed environment

I Network specs
I Fully connected with N ∈ {1, 5, 10, 25, 50} nodes
I A node is a single 2.4GHz CPU core of a separate host
I Communication over 56.6-gigabit infrastructure

I The task
I SVM with Gaussian RBF kernel
I Speech data with 8.7M training examples, 41 classes
I Implementation of dFW in C++ with openMPI1

1http://www.open-mpi.org

http://www.open-mpi.org


Distributed and communication-efficient sparse learning
Experiments – Realistic distributed environment

I When distribution of atoms is roughly balanced, exact dFW
achieves near-linear speedup

I When distribution is unbalanced (e.g., 1 node has 50% of the
data), great benefits from approximate variant

0 500 1000 1500 2000
0

0.2

0.4

0.6

0.8

1
x 10

−3

Runtime (seconds)

O
b
je
c
ti
v
e

dFW, N=1
dFW, N=5
dFW, N=10
dFW, N=25
dFW, N=50

(a) Exact dFW on uniform distribution

0 500 1000 1500 2000 2500
0

0.2

0.4

0.6

0.8

1
x 10

−3

Runtime (seconds)

O
b
je
c
ti
v
e

dFW, N=10, uniform
dFW, N=10, unbalanced
Approx dFW, N=10

(b) Approximate dFW to balance costs



Distributed and communication-efficient sparse learning
Experiments – Realistic distributed environment

I Another way to reduce synchronization costs is to perform
asynchronous updates

I To simulate this, we randomly drop communication messages
with probability p

I dFW is fairly robust, even with 40% random drops

0 100 200 300 400
0

0.005

0.01

0.015

0.02

Iteration number

O
b
je
c
ti
v
e

dFW, N=10, p=0
dFW, N=10, p=0.1
dFW, N=10, p=0.2
dFW, N=10, p=0.4

dFW under communication errors and asynchrony



Summary and perspectives

I Take-home messages
I Metric learning is an important topic
I Frank-Wolfe can be useful to tackle large-scale problems

I Refer to papers for details, proofs and additional experiments

I Future directions
I Propose and analyze an asynchronous version of dFW
I Distributed metric learning



References I

[Balcan and Blum, 2006] Balcan, M.-F. and Blum, A. (2006).
On a Theory of Learning with Similarity Functions.
In ICML, pages 73–80.

[Balcan et al., 2008] Balcan, M.-F., Blum, A., and Srebro, N. (2008).
Improved Guarantees for Learning via Similarity Functions.
In COLT, pages 287–298.

[Boyd et al., 2011] Boyd, S. P., Parikh, N., Chu, E., Peleato, B., and Eckstein, J.
(2011).
Distributed Optimization and Statistical Learning via the Alternating Direction
Method of Multipliers.
Foundations and Trends in Machine Learning, 3(1):1–122.

[Clarkson, 2010] Clarkson, K. L. (2010).
Coresets, sparse greedy approximation, and the Frank-Wolfe algorithm.
ACM Transactions on Algorithms, 6(4):1–30.

[Frank and Wolfe, 1956] Frank, M. and Wolfe, P. (1956).
An algorithm for quadratic programming.
Naval Research Logistics Quarterly, 3(1-2):95–110.

[Gonzalez, 1985] Gonzalez, T. F. (1985).
Clustering to minimize the maximum intercluster distance.
Theoretical Computer Science, 38:293–306.



References II

[Jaggi, 2011] Jaggi, M. (2011).
Sparse Convex Optimization Methods for Machine Learning.
PhD thesis, ETH Zurich.

[Jaggi, 2013] Jaggi, M. (2013).
Revisiting Frank-Wolfe: Projection-Free Sparse Convex Optimization.
In ICML.


