
The Frank-Wolfe Algorithm
Recent Results and Applications to

High-Dimensional Similarity Learning and
Distributed Optimization

Aurélien Bellet
Télécom ParisTech

Joint work with A. Bagheri Garakani, K. Liu and F. Sha (USC), Y.
Liang (Princeton), M.-F. Balcan (CMU)



A bit about me

I PhD in Computer Science (Dec 2012)
I Université Jean Monnet, Saint-Etienne
I Advisors: Marc Sebban, Amaury Habrard

I Postdoc in 2013–2014 (18 months)
I University of Southern California, Los Angeles
I Working with Fei Sha

I Joined Télécom ParisTech in October
I Chaire “Machine Learning for Big Data”
I Working with Stéphan Clémençon



Outline of the talk

1. Introduction

2. The Frank-Wolfe algorithm

3. Leveraging Frank-Wolfe in large-scale learning
I Similarity learning in high dimensions
I Distributed sparse learning



Introduction



Introduction
Learning to combine

I Many machine learning models can be decomposed as
(convex) combinations of basic units

I Majority votes

H(x) = sign

[
n∑

i=1

wihi (x)

]
I Kernel methods

H(x) =
n∑

i=1

wik(x , xi )

I Matrix models

M =
n∑

i=1

wiu iuT
i

I . . .

I Given a dictionary, just need to learn the combining weights



Introduction
Learning to combine with parsimony

I The size of the dictionary is often very large (or infinite)

I In this case we typically favor a sparse solution
I Better generalization
I Faster prediction
I Interpretability

I Popular trick: use sparsity-inducing regularizer
I `1 norm (relaxation of `0 norm)
I Trace norm (relaxation of rank)

I But many methods (e.g., gradient descent) do not guarantee
sparsity on the optimization path

I Training time and memory issues

I Principled way to sequentially build models of increasing
complexity?



The Frank Wolfe algorithm
(a.k.a. conditional gradient)



The Frank-Wolfe algorithm
Setup and algorithm

Convex minimization over feasible domain D

min
α∈D

f (α)

I f convex and smooth (with L-Lipschitz gradient w.r.t. ‖ · ‖)
I D convex and compact

Let α(0) ∈ D
for k = 0, 1, . . . do

s(k) = arg mins∈D
〈
s,∇f (α(k))

〉
α(k+1) = (1− γ)α(k) + γs(k)

end for

Figure adapted from [Jaggi, 2013]



The Frank-Wolfe algorithm
Convergence and interesting properties

Convergence [Frank and Wolfe, 1956, Clarkson, 2010, Jaggi, 2013]

Let γ = 2/(k + 2). At any k ≥ 1, α(k) is feasible and satisfies

f (α(k))− f (α∗) ≤
2L diam‖·‖(D)2

k + 2

I Projection-free algorithm
I In contrast to projected gradient descent:

α(k+1) = PD
(
α(k) − γ∇f (α(k))

)
I Solve a linear problem at each iteration

I Solution is at a vertex of D

I If D has special structure, each iteration can be very cheap



The Frank-Wolfe algorithm
Use-case: D is a convex hull

I When D = conv(A), FW is greedy
I At each iteration, add an element a ∈ A to the current iterate

I Example 1: D is the `1-norm ball
I A = {±e i}ni=1
I Linear problem: find maximum absolute entry of gradient
I Iterates are sparse: α(0) = 0 =⇒ ‖α(k)‖0 ≤ k
I FW finds an ε-approximation with O(1/ε) nonzero entries,

which is worst-case optimal [Jaggi, 2013]

I Example 2: D is the trace-norm ball
I A = {uvT : u ∈ Rn, ‖u‖2 = 1, v ∈ Rm, ‖v‖2 = 1}
I Linear problem: find largest singular vector of gradient
I Iterates are low-rank: M(0) = 0 =⇒ rank(M(k)) ≤ k
I FW finds an ε-approximation of rank O(1/ε), which is

worst-case optimal [Jaggi, 2011]



Similarity learning
for high-dimensional sparse data

[Liu et al., 2015]



Similarity learning for high-dimensional sparse data
Metric learning – Motivation

I Distance and similarity functions are everywhere in machine
learning and data mining

I Nearest neighbors, clustering, kernel methods, ranking,
dimensionality reduction, visualization. . .

I How to define an appropriate similarity score?
I Crucial to performance of above algorithms
I Obviously, problem-dependent
I Let’s learn it from data!



Similarity learning for high-dimensional sparse data
Metric learning – Basic recipe

1. Pick a parametric form of distance or similarity function
I (Generalized) Mahalanobis distance

dM(x , x ′) =
√

(x − x ′)TM(x − x ′) with M symmetric PSD

I Bilinear similarity

SM(x , x ′) = xTMx ′ with M ∈ Rd×d

2. Collect similarity judgments on data pairs/triplets
I x i and x j are similar (or dissimilar)
I x i is more similar to x j than to xk

3. Estimate parameters such that metric best satisfies them
I Convex optimization and the like



Similarity learning for high-dimensional sparse data
Metric learning – A statistical view for the classification setting

I Training data {zi = (xi , yi )}ni=1 drawn from an unknown
distribution µ over X × Y (Y discrete label set)

I Distance functions dM : X × X → R+ indexed by M ∈ Rd×d

I Minimize the empirical risk

Rn(M) =
2

n(n − 1)

n∑
1≤i<j≤n

I [r(yi , yj)(dM(xi , xj)− 1) > 0]

where r(y , y ′) = 1 if y = y ′ and -1 otherwise

I Hope to achieve small expected risk

R(M) = E
z,z ′∼µ

[
I
[
r(y , y ′)(dM(x , x ′)− 1) > 0

]]
I Can also define the risk on triplets of observations



Similarity learning for high-dimensional sparse data
Metric learning – Illustration

Metric Learning

I Extensive survey: see [Bellet et al., 2013]



Similarity learning for high-dimensional sparse data
Setting and contributions

I Assume data points are high-dimensional (d > 104) but
D-sparse (on average) with D � d

I Bags-of-words (text, image), bioinformatics, etc

I Existing metric learning algorithms fail
I Intractable: training cost O(d2) to O(d3), memory O(d2)
I Severe overfitting

I Practitioners use dimensionality reduction (PCA, RP)
I Poor performance in presence of noisy features
I Resulting metric difficult to interpret for domain experts

I Contributions of this work
I Learn similarity in original high-dimensional space
I Time/memory costs independent of d
I Explicit control of similarity complexity



Similarity learning for high-dimensional sparse data
Basis set

I We want to learn a similarity function SM(x , x ′) = xTMx ′

I Given λ > 0, for any i , j ∈ {1, . . . , d}, i 6= j we define

P(ij)
λ =

 · · · · ·· λ · λ ·· · · · ·
· λ · λ ·· · · · ·

 N(ij)
λ =

 · · · · ·· λ · −λ ·· · · · ·
· −λ · λ ·· · · · ·


Bλ =

⋃
ij

{
P(ij)
λ ,N(ij)

λ

}
M ∈ Dλ = conv(Bλ)

I One basis involves only 2 features:

SP(ij)
λ

(x , x ′) = λ(xix
′
i + xjx

′
j + xix

′
j + xjx

′
i )

SN(ij)
λ

(x , x ′) = λ(xix
′
i + xjx

′
j − xix

′
j − xjx

′
i )



Similarity learning for high-dimensional sparse data
Problem formulation and convergence

I Optimization problem (smoothed hinge loss `)

min
M∈Rd×d

f (M) =
1

C

C∑
c=1

`
(

1− xT
c My c + xT

c Mzc

)
s.t. M ∈ Dλ

I Use a FW algorithm to solve it

Convergence

Let L = 1
C

∑C
c=1 ‖xc(y c − zc)T‖2

F . At any iteration k ≥ 1, the

iterate M(k) ∈ Dλ of the FW algorithm:

I has at most rank k + 1 with 4(k + 1) nonzero entries

I uses at most 2(k + 1) distinct features

I satisfies f (M(k))− f (M∗) ≤ 16Lλ2/(k + 2)



Similarity learning for high-dimensional sparse data
Complexity analysis

I FW can be implemented efficiently on this problem

I An optimal basis can be found in O(CD2) time and memory
even though there are O(d2) different bases

I An approximately optimal basis can be found in O(mD2) with
m� C using a Monte Carlo approximation of the gradient

I Or even O(mD) using a heuristic (good results in practice)

I Storing M(k) requires only O(k) memory

I Or even the entire sequence M(0), . . . ,M(k) at the same cost



Similarity learning for high-dimensional sparse data
Preliminary experiments

I K -NN test error on datasets with d up to 105

Datasets identity rp+oasis pca+oasis diag-`2 diag-`1 hdsl

dexter 20.1 24.0 9.3 8.4 8.4 6.5
dorothea 9.3 11.4 9.9 6.8 6.6 6.5

rcv1 2 6.9 7.0 4.5 3.5 3.7 3.4
rcv1 4 11.2 10.6 6.1 6.2 7.2 5.7

I Sparsity structure of the matrices

(a) dexter (20, 000×20, 000
matrix, 712 nonzeros)

(b) rcv1 4 (29, 992×29, 992
matrix, 5263 nonzeros)



Similarity learning for high-dimensional sparse data
Ongoing work

I Generalization bounds specific to each iterate
I Explicit trade-off: stop early vs optimization error
I Tools: U-statistics and Rademacher complexity

R(M(k)) ≤ Rn(M∗) + O

(
1

k

)
+ O

(√
log k

n

)

I If we assume the existence of a ground truth sparse metric
I Can we recover it based on similarity judgements?
I Preliminary results on synthetic data encouraging
I Theory?



Distributed and communication-efficient
sparse learning

[Bellet et al., 2015]



Distributed and communication-efficient sparse learning
Distributed setting

I General setting
I Data arbitrarily distributed across different sites (nodes)
I Examples: large-scale data, sensor networks, mobile devices
I Communication between nodes can be a serious bottleneck

I Research questions
I Theory: study tradeoff between communication complexity and

learning/optimization error
I Practice: derive scalable algorithms, with small communication

and synchronization overhead



Distributed and communication-efficient sparse learning
Problem of interest

Problem of interest

Learn sparse combinations of n distributed “atoms”:

min
α∈Rn

f (α) = g(Aα) s.t. ‖α‖1 ≤ β (A ∈ Rd×n)

I Atoms are distributed across a set of N nodes V = {vi}Ni=1

I Nodes communicate across a network (connected graph)

I Note: domain can be unit simplex ∆n instead of `1 ball

∆n = {α ∈ Rn : α ≥ 0,
∑
i

αi = 1}



Distributed and communication-efficient sparse learning
Applications

I Many applications
I LASSO with distributed features
I Kernel SVM with distributed training points
I Boosting with distributed learners
I ...

Example: Kernel SVM

I Training set {z i = (x i , yi )}ni=1

I Kernel k(x , x ′) = 〈ϕ(x), ϕ(x ′)〉
I Dual problem of L2-SVM:

min
α∈∆n

αTK̃α

I K̃ = [k̃(z i , z j)]ni ,j=1 with k̃(z i , z j) = yiyjk(x i , x j) + yiyj +
δij
C

I Atoms are ϕ̃(z i ) = [yiϕ(x i ), yi ,
1√
C
e i ]



Distributed and communication-efficient sparse learning
Distributed FW algorithm (dFW)

Gradient form

I Gradient of the objective: ∇f (α) = AT∇g(Aα)

I Each entry j ∈ [n] is given by [∇f (α)]j = aT
j ∇g(Aα)

Algorithm steps

1. Each node vi computes its local gradient [∇f (α)]j∈vi

aj ∈ Rd



Distributed and communication-efficient sparse learning
Distributed FW algorithm (dFW)

Gradient form

I Gradient of the objective: ∇f (α) = AT∇g(Aα)

I Each entry j ∈ [n] is given by [∇f (α)]j = aT
j ∇g(Aα)

Algorithm steps

2. Nodes share their local largest entry in absolute value

aj ∈ Rd



Distributed and communication-efficient sparse learning
Distributed FW algorithm (dFW)

Gradient form

I Gradient of the objective: ∇f (α) = AT∇g(Aα)

I Each entry j ∈ [n] is given by [∇f (α)]j = aT
j ∇g(Aα)

Algorithm steps

3. Node with global best shares corresponding atom aj ∈ Rd



Distributed and communication-efficient sparse learning
Distributed FW algorithm (dFW)

Gradient form

I Gradient of the objective: ∇f (α) = AT∇g(Aα)

I Each entry j ∈ [n] is given by [∇f (α)]j = aT
j ∇g(Aα)

Algorithm steps

4. All nodes perform a FW update and start over

aj ∈ Rd



Distributed and communication-efficient sparse learning
Convergence of dFW

I Let B be the cost of broadcasting a real number

Theorem (Convergence of exact dFW)

After O(1/ε) rounds and O ((Bd + NB)/ε) total communication,
each node holds an ε-approximate solution.

I Tradeoff between communication and optimization error

I No dependence on total number of combining elements



Distributed and communication-efficient sparse learning
Approximate variant

I Exact dFW is scalable but requires synchronization
I Unbalanced local computation → significant wait time

I Strategy to balance local costs:
I Node vi clusters its ni atoms into mi groups
I We use the greedy m-center algorithm [Gonzalez, 1985]
I Run dFW on resulting centers

I Use-case examples:
I Balance number of atoms across nodes
I Set mi proportional to computational power of vi



Distributed and communication-efficient sparse learning
Approximate variant – Analysis

I Define
I ropt(A,m) to be the optimal `1-radius of partitioning atoms in
A into m clusters, and ropt(m) := maxi r

opt(Ai ,mi )
I G := maxα ‖∇g(Aα)‖∞

Theorem (Convergence of approximate dFW)

After O(1/ε) iterations, the algorithm returns a solution with
optimality gap at most ε+ O(Gropt(m0)). Furthermore, if
ropt(m(k)) = O(1/Gk), then the gap is at most ε.

I Additive error depends on cluster tightness

I Can gradually add more centers to make error vanish



Distributed and communication-efficient sparse learning
Communication complexity – Lower bound

Theorem (Communication lower bound)

Under mild assumptions, the worst-case communication cost of
any deterministic algorithm is Ω(d/ε).

I Shows that dFW is worst-case optimal in ε and d

I Proof outline:

1. Identify a problem instance for which any ε-approximate
solution has O(1/ε) atoms

2. Distribute data across 2 nodes s.t. these atoms are almost
evenly split across nodes

3. Show that for any fixed dataset on one node, there are T
different instances on the other node s.t. in any 2 such
instances, the sets of selected atoms are different

4. Any node then needs O(logT ) bits to figure out the selected
atoms, and we show that logT = Ω(d/ε)



Distributed and communication-efficient sparse learning
Experiments

I Objective value achieved for given communication budget
I Comparison to baselines (not shown)
I Comparison to distributed ADMM

I Runtime of dFW in realistic distributed setting
I Exact dFW
I Benefits of approximate variant
I Asynchronous updates



Distributed and communication-efficient sparse learning
Experiments – Comparison to distributed ADMM

I ADMM [Boyd et al., 2011] is popular to tackle many
distributed optimization problems

I Like dFW, can deal with LASSO with distributed features
I Parameter vector α partitioned as α = [α1, . . . ,αN ]
I Communicates partial/global predictions: Aiαi and

∑N
i=1 Aiαi

I Experimental setup
I Synthetic data (n = 100K , d = 10K ) with varying sparsity
I Atoms distributed across 100 nodes uniformly at random



Distributed and communication-efficient sparse learning
Experiments – Comparison to distributed ADMM

I dFW advantageous for sparse data and/or solution, while
ADMM is preferable in the dense setting

I Note: no parameter to tune for dFW

LASSO results (MSE vs communication)



Distributed and communication-efficient sparse learning
Experiments – Realistic distributed environment

I Network specs
I Fully connected with N ∈ {1, 5, 10, 25, 50} nodes
I A node is a single 2.4GHz CPU core of a separate host
I Communication over 56.6-gigabit infrastructure

I The task
I SVM with Gaussian RBF kernel
I Speech data with 8.7M training examples, 41 classes
I Implementation of dFW in C++ with openMPI1

1http://www.open-mpi.org

http://www.open-mpi.org


Distributed and communication-efficient sparse learning
Experiments – Realistic distributed environment

I When distribution of atoms is roughly balanced, exact dFW
achieves near-linear speedup

I When distribution is unbalanced (e.g., 1 node has 50% of the
data), great benefits from approximate variant

0 500 1000 1500 2000
0

0.2

0.4

0.6

0.8

1
x 10

−3

Runtime (seconds)

O
b
je
c
ti
v
e

dFW, N=1
dFW, N=5
dFW, N=10
dFW, N=25
dFW, N=50

(a) Exact dFW on uniform distribution

0 500 1000 1500 2000 2500
0

0.2

0.4

0.6

0.8

1
x 10

−3

Runtime (seconds)

O
b
je
c
ti
v
e

dFW, N=10, uniform
dFW, N=10, unbalanced
Approx dFW, N=10

(b) Approximate dFW to balance costs



Distributed and communication-efficient sparse learning
Experiments – Realistic distributed environment

I Another way to reduce synchronization costs is to perform
asynchronous updates

I To simulate this, we randomly drop communication messages
with probability p

I dFW is fairly robust, even with 40% random drops

0 100 200 300 400
0

0.005

0.01

0.015

0.02

Iteration number

O
b
je
c
ti
v
e

dFW, N=10, p=0
dFW, N=10, p=0.1
dFW, N=10, p=0.2
dFW, N=10, p=0.4

dFW under communication errors and asynchrony



Summary and perspectives

I Take-home message: FW is good
I Useful to tackle large-scale problems
I Opportunities for modelisation

I Refer to papers for details, proofs and additional experiments
I Other recent work: learn multiple metrics [Shi et al., 2014],

scale up kernel methods [Lu et al., 2014], scale up ERM
[Clémençon et al., 2015]

I Future directions
I Propose and analyze an asynchronous version of dFW
I Distributed metric learning



References I

[Bellet et al., 2013] Bellet, A., Habrard, A., and Sebban, M. (2013).
A Survey on Metric Learning for Feature Vectors and Structured Data.
Technical report, arXiv:1306.6709.

[Bellet et al., 2015] Bellet, A., Liang, Y., Garakani, A. B., Balcan, M.-F., and Sha, F.
(2015).
A Distributed Frank-Wolfe Algorithm for Communication-Efficient Sparse Learning.
In SDM.

[Boyd et al., 2011] Boyd, S. P., Parikh, N., Chu, E., Peleato, B., and Eckstein, J.
(2011).
Distributed Optimization and Statistical Learning via the Alternating Direction
Method of Multipliers.
Foundations and Trends in Machine Learning, 3(1):1–122.

[Clarkson, 2010] Clarkson, K. L. (2010).
Coresets, sparse greedy approximation, and the Frank-Wolfe algorithm.
ACM Transactions on Algorithms, 6(4):1–30.

[Clémençon et al., 2015] Clémençon, S., Bellet, A., and Colin, I. (2015).
Scaling-up Empirical Risk Minimization: Optimization of Incomplete U-statistics.
Technical report, arXiv:1501.02629.



References II

[Frank and Wolfe, 1956] Frank, M. and Wolfe, P. (1956).
An algorithm for quadratic programming.
Naval Research Logistics Quarterly, 3(1-2):95–110.

[Gonzalez, 1985] Gonzalez, T. F. (1985).
Clustering to minimize the maximum intercluster distance.
Theoretical Computer Science, 38:293–306.

[Jaggi, 2011] Jaggi, M. (2011).
Sparse Convex Optimization Methods for Machine Learning.
PhD thesis, ETH Zurich.

[Jaggi, 2013] Jaggi, M. (2013).
Revisiting Frank-Wolfe: Projection-Free Sparse Convex Optimization.
In ICML.

[Liu et al., 2015] Liu, K., Bellet, A., and Sha, F. (2015).
Similarity Learning for High-Dimensional Sparse Data.
In AISTATS.

[Lu et al., 2014] Lu, Z., May, A., Liu, K., Bagheri Garakani, A., Guo, D., Bellet, A.,
Fan, L., Collins, M., Kingsbury, B., Picheny, M., and Sha, F. (2014).
How to Scale Up Kernel Methods to Be As Good As Deep Neural Nets.
Technical report, arXiv:1411.4000.



References III

[Shi et al., 2014] Shi, Y., Bellet, A., and Sha, F. (2014).
Sparse Compositional Metric Learning.
In AAAI, pages 2078–2084.


