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I Joined Télécom ParisTech in October
I Chaire “Machine Learning for Big Data”
I Working with Stéphan Clémençon
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Introduction



Introduction
Learning to combine

I Many machine learning models can be decomposed as
(convex) combinations of basic units

I Majority votes

H(x) = sign

[
n∑

i=1

wihi (x)

]
I Kernel methods

H(x) =
n∑

i=1

wik(x , xi )

I Matrix models

M =
n∑

i=1

wiu iuT
i

I . . .

I Given a dictionary, just need to learn the combining weights



Introduction
Learning to combine with parsimony

I The size of the dictionary is often very large (or infinite)

I In this case we typically favor a sparse solution
I Better generalization
I Faster prediction
I Interpretability

I Popular trick: use sparsity-inducing regularizer
I `1 norm (relaxation of `0 norm)
I Trace norm (relaxation of rank)

I But many methods (e.g., gradient descent) do not guarantee
sparsity on the optimization path

I Training time and memory issues

I Principled way to sequentially build models of increasing
complexity?



The Frank Wolfe algorithm
(a.k.a. conditional gradient)



The Frank-Wolfe algorithm
Setup and algorithm

Convex minimization over feasible domain D

min
α∈D

f (α)

I f convex and smooth (with L-Lipschitz gradient w.r.t. ‖ · ‖)
I D convex and compact

Let α(0) ∈ D
for k = 0, 1, . . . do

s(k) = arg mins∈D
〈
s,∇f (α(k))

〉
α(k+1) = (1− γ)α(k) + γs(k)

end for

Figure adapted from [Jaggi, 2013]



The Frank-Wolfe algorithm
Convergence and interesting properties

Convergence [Frank and Wolfe, 1956, Clarkson, 2010, Jaggi, 2013]

Let γ = 2/(k + 2). At any k ≥ 1, α(k) is feasible and satisfies

f (α(k))− f (α∗) ≤
2L diam‖·‖(D)2

k + 2

I Projection-free algorithm
I In contrast to projected gradient descent:

α(k+1) = PD
(
α(k) − γ∇f (α(k))

)
I Solve a linear problem at each iteration

I Solution is at a vertex of D

I If D has special structure, each iteration can be very cheap



The Frank-Wolfe algorithm
Use-case: D is a convex hull

I When D = conv(A), FW is greedy
I At each iteration, add an element a ∈ A to the current iterate

I Example 1: D is the `1-norm ball
I A = {±e i}ni=1
I Linear problem: find maximum absolute entry of gradient
I Iterates are sparse: α(0) = 0 =⇒ ‖α(k)‖0 ≤ k
I FW finds an ε-approximation with O(1/ε) nonzero entries,

which is worst-case optimal [Jaggi, 2013]

I Example 2: D is the trace-norm ball
I A = {uvT : u ∈ Rn, ‖u‖2 = 1, v ∈ Rm, ‖v‖2 = 1}
I Linear problem: find largest singular vector of gradient
I Iterates are low-rank: M(0) = 0 =⇒ rank(M(k)) ≤ k
I FW finds an ε-approximation of rank O(1/ε), which is

worst-case optimal [Jaggi, 2011]



Similarity learning
for high-dimensional sparse data

[Liu et al., 2015]



Similarity learning for high-dimensional sparse data
Metric learning – Motivation

I Distance and similarity functions are everywhere in machine
learning and data mining

I Nearest neighbors, clustering, kernel methods, ranking,
dimensionality reduction, visualization. . .

I How to define an appropriate similarity score?
I Crucial to performance of above algorithms
I Obviously, problem-dependent
I Let’s learn it from data!



Similarity learning for high-dimensional sparse data
Metric learning – Basic recipe

1. Pick a parametric form of distance or similarity function
I (Generalized) Mahalanobis distance

dM(x , x ′) =
√

(x − x ′)TM(x − x ′) with M symmetric PSD

I Bilinear similarity

SM(x , x ′) = xTMx ′ with M ∈ Rd×d

2. Collect similarity judgments on data pairs/triplets
I x i and x j are similar (or dissimilar)
I x i is more similar to x j than to xk

3. Estimate parameters such that metric best satisfies them
I Convex optimization and the like



Similarity learning for high-dimensional sparse data
Metric learning – A statistical view for the classification setting

I Training data {zi = (xi , yi )}ni=1 drawn from an unknown
distribution µ over X × Y (Y discrete label set)

I Distance functions dM : X × X → R+ indexed by M ∈ Rd×d

I Minimize the empirical risk

Rn(M) =
2

n(n − 1)

n∑
1≤i<j≤n

I [r(yi , yj)(dM(xi , xj)− 1) > 0]

where r(y , y ′) = 1 if y = y ′ and -1 otherwise

I Hope to achieve small expected risk

R(M) = E
z,z ′∼µ

[
I
[
r(y , y ′)(dM(x , x ′)− 1) > 0

]]
I Can also define the risk on triplets of observations



Similarity learning for high-dimensional sparse data
Metric learning – Illustration

Metric Learning

I Extensive survey: see [Bellet et al., 2013]



Similarity learning for high-dimensional sparse data
Setting and contributions

I Assume data points are high-dimensional (d > 104) but
D-sparse (on average) with D � d

I Bags-of-words (text, image), bioinformatics, etc

I Existing metric learning algorithms fail
I Intractable: training cost O(d2) to O(d3), memory O(d2)
I Severe overfitting

I Practitioners use dimensionality reduction (PCA, RP)
I Poor performance in presence of noisy features
I Resulting metric difficult to interpret for domain experts

I Contributions of this work
I Learn similarity in original high-dimensional space
I Time/memory costs independent of d
I Explicit control of similarity complexity



Similarity learning for high-dimensional sparse data
Basis set

I We want to learn a similarity function SM(x , x ′) = xTMx ′

I Given λ > 0, for any i , j ∈ {1, . . . , d}, i 6= j we define

P(ij)
λ =

 · · · · ·· λ · λ ·· · · · ·
· λ · λ ·· · · · ·

 N(ij)
λ =

 · · · · ·· λ · −λ ·· · · · ·
· −λ · λ ·· · · · ·


Bλ =

⋃
ij

{
P(ij)
λ ,N(ij)

λ

}
M ∈ Dλ = conv(Bλ)

I One basis involves only 2 features:

SP(ij)
λ

(x , x ′) = λ(xix
′
i + xjx

′
j + xix

′
j + xjx

′
i )

SN(ij)
λ

(x , x ′) = λ(xix
′
i + xjx

′
j − xix

′
j − xjx

′
i )



Similarity learning for high-dimensional sparse data
Problem formulation and convergence

I Optimization problem (smoothed hinge loss `)

min
M∈Rd×d

f (M) =
1

C

C∑
c=1

`
(

1− xT
c My c + xT

c Mzc

)
s.t. M ∈ Dλ

I Use a FW algorithm to solve it

Convergence

Let L = 1
C

∑C
c=1 ‖xc(y c − zc)T‖2

F . At any iteration k ≥ 1, the

iterate M(k) ∈ Dλ of the FW algorithm:

I has at most rank k + 1 with 4(k + 1) nonzero entries

I uses at most 2(k + 1) distinct features

I satisfies f (M(k))− f (M∗) ≤ 16Lλ2/(k + 2)



Similarity learning for high-dimensional sparse data
Complexity analysis

I FW can be implemented efficiently on this problem

I An optimal basis can be found in O(CD2) time and memory
even though there are O(d2) different bases

I An approximately optimal basis can be found in O(mD2) with
m� C using a Monte Carlo approximation of the gradient

I Or even O(mD) using a heuristic (good results in practice)

I Storing M(k) requires only O(k) memory

I Or even the entire sequence M(0), . . . ,M(k) at the same cost



Similarity learning for high-dimensional sparse data
Preliminary experiments

I K -NN test error on datasets with d up to 105

Datasets identity rp+oasis pca+oasis diag-`2 diag-`1 hdsl

dexter 20.1 24.0 9.3 8.4 8.4 6.5
dorothea 9.3 11.4 9.9 6.8 6.6 6.5

rcv1 2 6.9 7.0 4.5 3.5 3.7 3.4
rcv1 4 11.2 10.6 6.1 6.2 7.2 5.7

I Sparsity structure of the matrices

(a) dexter (20, 000×20, 000
matrix, 712 nonzeros)

(b) rcv1 4 (29, 992×29, 992
matrix, 5263 nonzeros)



Similarity learning for high-dimensional sparse data
Ongoing work

I Generalization bounds specific to each iterate
I Explicit trade-off: stop early vs optimization error
I Tools: U-statistics and Rademacher complexity

R(M(k)) ≤ Rn(M∗) + O

(
1

k

)
+ O

(√
log k

n

)

I If we assume the existence of a ground truth sparse metric
I Can we recover it based on similarity judgements?
I Preliminary results on synthetic data encouraging
I Theory?



Distributed and communication-efficient
sparse learning

[Bellet et al., 2015]



Distributed and communication-efficient sparse learning
Distributed setting

I General setting
I Data arbitrarily distributed across different sites (nodes)
I Examples: large-scale data, sensor networks, mobile devices
I Communication between nodes can be a serious bottleneck

I Research questions
I Theory: study tradeoff between communication complexity and

learning/optimization error
I Practice: derive scalable algorithms, with small communication

and synchronization overhead



Distributed and communication-efficient sparse learning
Problem of interest

Problem of interest

Learn sparse combinations of n distributed “atoms”:

min
α∈Rn

f (α) = g(Aα) s.t. ‖α‖1 ≤ β (A ∈ Rd×n)

I Atoms are distributed across a set of N nodes V = {vi}Ni=1

I Nodes communicate across a network (connected graph)

I Note: domain can be unit simplex ∆n instead of `1 ball

∆n = {α ∈ Rn : α ≥ 0,
∑
i

αi = 1}



Distributed and communication-efficient sparse learning
Applications

I Many applications
I LASSO with distributed features
I Kernel SVM with distributed training points
I Boosting with distributed learners
I ...

Example: Kernel SVM

I Training set {z i = (x i , yi )}ni=1

I Kernel k(x , x ′) = 〈ϕ(x), ϕ(x ′)〉
I Dual problem of L2-SVM:

min
α∈∆n

αTK̃α

I K̃ = [k̃(z i , z j)]ni ,j=1 with k̃(z i , z j) = yiyjk(x i , x j) + yiyj +
δij
C

I Atoms are ϕ̃(z i ) = [yiϕ(x i ), yi ,
1√
C
e i ]



Distributed and communication-efficient sparse learning
Distributed FW algorithm (dFW)

Gradient form

I Gradient of the objective: ∇f (α) = AT∇g(Aα)

I Each entry j ∈ [n] is given by [∇f (α)]j = aT
j ∇g(Aα)

Algorithm steps

1. Each node vi computes its local gradient [∇f (α)]j∈vi

aj ∈ Rd



Distributed and communication-efficient sparse learning
Distributed FW algorithm (dFW)

Gradient form

I Gradient of the objective: ∇f (α) = AT∇g(Aα)

I Each entry j ∈ [n] is given by [∇f (α)]j = aT
j ∇g(Aα)

Algorithm steps

2. Nodes share their local largest entry in absolute value

aj ∈ Rd



Distributed and communication-efficient sparse learning
Distributed FW algorithm (dFW)

Gradient form

I Gradient of the objective: ∇f (α) = AT∇g(Aα)

I Each entry j ∈ [n] is given by [∇f (α)]j = aT
j ∇g(Aα)

Algorithm steps

3. Node with global best shares corresponding atom aj ∈ Rd



Distributed and communication-efficient sparse learning
Distributed FW algorithm (dFW)

Gradient form

I Gradient of the objective: ∇f (α) = AT∇g(Aα)

I Each entry j ∈ [n] is given by [∇f (α)]j = aT
j ∇g(Aα)

Algorithm steps

4. All nodes perform a FW update and start over

aj ∈ Rd



Distributed and communication-efficient sparse learning
Convergence of dFW

I Let B be the cost of broadcasting a real number

Theorem (Convergence of exact dFW)

After O(1/ε) rounds and O ((Bd + NB)/ε) total communication,
each node holds an ε-approximate solution.

I Tradeoff between communication and optimization error

I No dependence on total number of combining elements



Distributed and communication-efficient sparse learning
Approximate variant

I Exact dFW is scalable but requires synchronization
I Unbalanced local computation → significant wait time

I Strategy to balance local costs:
I Node vi clusters its ni atoms into mi groups
I We use the greedy m-center algorithm [Gonzalez, 1985]
I Run dFW on resulting centers

I Use-case examples:
I Balance number of atoms across nodes
I Set mi proportional to computational power of vi



Distributed and communication-efficient sparse learning
Approximate variant – Analysis

I Define
I ropt(A,m) to be the optimal `1-radius of partitioning atoms in
A into m clusters, and ropt(m) := maxi r

opt(Ai ,mi )
I G := maxα ‖∇g(Aα)‖∞

Theorem (Convergence of approximate dFW)

After O(1/ε) iterations, the algorithm returns a solution with
optimality gap at most ε+ O(Gropt(m0)). Furthermore, if
ropt(m(k)) = O(1/Gk), then the gap is at most ε.

I Additive error depends on cluster tightness

I Can gradually add more centers to make error vanish



Distributed and communication-efficient sparse learning
Communication complexity – Lower bound

Theorem (Communication lower bound)

Under mild assumptions, the worst-case communication cost of
any deterministic algorithm is Ω(d/ε).

I Shows that dFW is worst-case optimal in ε and d

I Proof outline:

1. Identify a problem instance for which any ε-approximate
solution has O(1/ε) atoms

2. Distribute data across 2 nodes s.t. these atoms are almost
evenly split across nodes

3. Show that for any fixed dataset on one node, there are T
different instances on the other node s.t. in any 2 such
instances, the sets of selected atoms are different

4. Any node then needs O(logT ) bits to figure out the selected
atoms, and we show that logT = Ω(d/ε)



Distributed and communication-efficient sparse learning
Experiments

I Objective value achieved for given communication budget
I Comparison to baselines (not shown)
I Comparison to distributed ADMM

I Runtime of dFW in realistic distributed setting
I Exact dFW
I Benefits of approximate variant
I Asynchronous updates



Distributed and communication-efficient sparse learning
Experiments – Comparison to distributed ADMM

I ADMM [Boyd et al., 2011] is popular to tackle many
distributed optimization problems

I Like dFW, can deal with LASSO with distributed features
I Parameter vector α partitioned as α = [α1, . . . ,αN ]
I Communicates partial/global predictions: Aiαi and

∑N
i=1 Aiαi

I Experimental setup
I Synthetic data (n = 100K , d = 10K ) with varying sparsity
I Atoms distributed across 100 nodes uniformly at random



Distributed and communication-efficient sparse learning
Experiments – Comparison to distributed ADMM

I dFW advantageous for sparse data and/or solution, while
ADMM is preferable in the dense setting

I Note: no parameter to tune for dFW

LASSO results (MSE vs communication)



Distributed and communication-efficient sparse learning
Experiments – Realistic distributed environment

I Network specs
I Fully connected with N ∈ {1, 5, 10, 25, 50} nodes
I A node is a single 2.4GHz CPU core of a separate host
I Communication over 56.6-gigabit infrastructure

I The task
I SVM with Gaussian RBF kernel
I Speech data with 8.7M training examples, 41 classes
I Implementation of dFW in C++ with openMPI1

1http://www.open-mpi.org

http://www.open-mpi.org


Distributed and communication-efficient sparse learning
Experiments – Realistic distributed environment

I When distribution of atoms is roughly balanced, exact dFW
achieves near-linear speedup

I When distribution is unbalanced (e.g., 1 node has 50% of the
data), great benefits from approximate variant
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Distributed and communication-efficient sparse learning
Experiments – Realistic distributed environment

I Another way to reduce synchronization costs is to perform
asynchronous updates

I To simulate this, we randomly drop communication messages
with probability p

I dFW is fairly robust, even with 40% random drops
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Summary and perspectives

I Take-home message: FW is good
I Useful to tackle large-scale problems
I Opportunities for modelisation

I Refer to papers for details, proofs and additional experiments
I Other recent work: learn multiple metrics [Shi et al., 2014],

scale up kernel methods [Lu et al., 2014], scale up ERM
[Clémençon et al., 2015]

I Future directions
I Propose and analyze an asynchronous version of dFW
I Distributed metric learning
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