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broad context



learning from personal data

We love taking 
photos with our 
phone. Can you 

tag them 
automatically?

• Other examples of applications
• Recommend content based on user activity logs
• Predict health risks based on medical history
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currently dominant approach

Model
Machine Learning

Data Mining, Statistics

Predictions

• Centralized data can be processed efficiently in a data center

•

•

•
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currently dominant approach

Model
Machine Learning

Data Mining, Statistics

Predictions

• Lack of user control over its personal data
• What is collected? Who can access it? How is it used and what for?

• Vulnerability to attacks / subpoenas
• Yahoo data breach (500M users), Twitter / Wikileaks court orders

• Costly infrastructure for service provider
5



alternative : decentralized architecture

• Personal data stays on user’s device→ better control

• Peer-to-peer communications without a central server→
harder to collect data systematically (no single point of entry)
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alternative : decentralized architecture

Some scientific challenges

1. How to efficiently learn in a decentralized way under these
communication constraints?

2. How to prevent malicious users from inferring sensitive data or
manipulating the outcome to their advantage?
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key principle: gossip algorithm
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• Users wake up independently and asynchronously, select a
random neighbor and exchange information

• Equivalent view: at each step, activate a random network edge

• Simple and asynchronous→ well suited to large networks
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existing work: consensus learning

• Gossip algorithms to optimize a loss function over the union of
personal datasets [Nedic and Ozdaglar, 2009, Duchi et al., 2012,
Wei and Ozdaglar, 2012, Colin et al., 2016]
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• General idea: at each step
1. perform a local model update based on personal data
2. average with neighbor
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this work: personalized learning

• Gossip algorithms to learn a personalized model for each user
according to its own learning objective

Model

Model

Model

Model

Model

Model
Model

Model

Model

• General idea: trade-off between model accuracy on local data
and smoothness with respect to similar users
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problem setting

• A set V = JnK = {1, . . . ,n} of n learning agents

• A convex loss function ` : Rp ×X × Y

• Agent i has dataset Si = {(xji, y
j
i)}

mi
j=1 of size mi ≥ 0 drawn i.i.d.

from its own distribution µi over X × Y

• Goal of agent i: learn a model θi ∈ Rp with small expected loss

E
(xi,yi)∼µi

`(θi; xi, yi)

• In isolation, agent i can learn a “solitary” model

θsoli ∈ argmin
θ∈Rp

Li(θ) =
mi∑
j=1

`(θ; xji, y
j
i)

• How to improve upon θsoli with the help of other users?
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problem setting

• Network: weighted connected graph G = (V, E)

• E ⊆ V × V set of undirected edges

• Weight matrix W ∈ Rn×n: symmetric, nonnegative, with Wij = 0 if
(i, j) /∈ E or i = j

• Simplifying assumption: network weights are given and
represent the underlying similarity between agents

• Ex: movie recommendation task where the network is set up when
users go to the same movie

• In a more general setup one would need to
• estimate weights based on auxiliary observation or local data
• construct a k-NN overlay on top of the physical communication
network [Jelasity et al., 2009]

12



problem setting

S1

θ1

S2
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θ3
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3
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θ9

S9
S7

2

2

S6

1

S5

1

S4

2

• Agents have only a local view of the network

• They only know their neighborhood Ni = {j 6= i : Wij > 0} and
the associated weights
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model propagation



model propagation: problem formulation

Main idea: smooth the solitary models over the network

• ci ∈ (0, 1]: confidence in initial model θsoli
• Proportional to the number of training points mi

• Find new set of models Θ ∈ Rn×p by solving

min
Θ∈Rn×p

QMP(Θ) =
1
2

( n∑
i<j

Wij‖θi − θj‖
2 + µ

n∑
i=1

Diici‖θi − θsoli ‖
2
)

• Trade-off between smoothing models within neighborhoods and
not diverging too much from confident models

• Term Dii =
∑

jWij is just for normalization

• Strict generalization of Label Propagation (LP) [Zhou et al., 2004]
• Constant ci’s→ recover LP
• Variable ci’s→ cannot be expressed as LP
• Our gossip algorithm will readily apply to LP!
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synchronous decentralized algorithm

• Cannot use closed-form solution (requires global knowledge)

• The following iteration converges to the same quantity

Θ(t + 1) = (αI+ ᾱC)−1
(
αPΘ(t) + ᾱCΘsol

)
• P = D−1W (stochastic similarity matrix)
• α ∈ (0, 1) such that µ = (1− α)/α, ᾱ = 1− α

• Decomposes into

θi(t + 1) = 1
α+ ᾱci

(
α
∑
j∈Ni

Wij

Dii
θj(t) + ᾱciθsoli

)
• This is a decentralized but synchronous process

• Assumes availability of global clock
• Synchronization incurs delays (must wait for everyone to finish)
• All neighbors must be contacted at each step

16



asynchronous gossip algorithm

• Each agent has a local Poisson clock and wakes up when it ticks
→ equivalent to activating a random node at each step t

• Idea of our algorithm: each agent i maintains a (possibly
outdated) knowledge Θ̃i(t) ∈ Rn×p of its neighbors’ models

• Θ̃i
i(t) ∈ Rp: agent i’s model at time t

• for j 6= i, Θ̃j
i(t) ∈ Rp: agent i’s last knowledge of the model of j

• For j /∈ Ni ∪ {i} and any t > 0, we maintain Θ̃j
i(t) = 0

17



asynchronous gossip algorithm

• At step t, some agent i wakes up and two actions are performed
1. Communication step: agent i selects a random neighbor j ∈ Ni w.p.

πji and both agents update their knowledge of each other:

Θ̃j
i(t + 1) = Θ̃j

j(t) and Θ̃i
j(t + 1) = Θ̃i

i(t),

2. Update step: agents i and j update their own models based on
current knowledge. For l ∈ {i, j}:

Θ̃l
l(t + 1) = (α+ ᾱcl)−1

(
α
∑
k∈Nl

Wlk

Dll
Θ̃k
l (t + 1) + ᾱclθsoll

)
.

• All other variables in the network remain unchanged

• For any i ∈ JnK, πi ∈ [0, 1]n must satisfy
∑n

j=1 π
j
i = 1 and πji > 0 if

and only if j ∈ Ni

18



convergence result

Theorem ([Vanhaesebrouck et al., 2016])

Let Θ̃(0) ∈ Rn2×p be some initial value and (Θ̃(t))t∈N be the se-
quence generated by our algorithm. LetΘ? = argminΘ∈Rn×p QMP(Θ)

be the optimal solution to model propagation. For any i ∈ JnK,

lim
t→∞

E
[
Θ̃j
i(t)

]
= Θ?

j for j ∈ Ni ∪ {i}.

Sketch of proof

• Rewrite algorithm as a random iterative process over Θ̃ ∈ Rn2×p:

Θ̃(t + 1) = A(t)Θ̃(t) + b(t)

• Show that spectral radius of E[A(t)] is smaller than 1

• Exhibit convergence to desired quantity
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collaborative learning: problem formulation

• Model propagation is very simple but forgets data

• Alternative: learn / propagate models simultaneously by solving

min
Θ∈Rn×p

QCL(Θ) =
n∑
i<j

Wij‖θi − θj‖
2 + µ

n∑
i=1

DiiLi(θi)

• Trade-off between smoothing models within neighborhoods and
good accuracy on local datasets

• Note: confidence is built in second term

• More flexibility in settings where different parameter values may
lead to similar predictions
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reformulation as partial consensus problem

• We will rely on ADMM [Boyd et al., 2011, Wei and Ozdaglar, 2012],
which is popular for solving decentralized consensus problems

min
θ∈Rp

n∑
i=1

Li(θ)

• Main idea: reformulate our problem as a partial consensus and
decouple the objectives

• Let Θi be the set of |Ni|+ 1 variables θj ∈ Rp for j ∈ Ni ∪ {i}, denote θj
by Θj

i and define

Qi
CL(Θi) =

1
2
∑
j∈Ni

Wij‖Θi
i −Θj

i‖
2
+ µDiiLi(Θ

i
i),

• We can rewrite our problem as minΘ∈Rn×p
∑n

i=1Q
i
CL(Θi)
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reformulation as partial consensus problem

• Decoupling: introduce a local copy Θ̃i ∈ R(|Ni|+1)×p of the
decision variables Θi for each agent i

• Partial consensus: impose equality constraints on the variables
Θ̃i
i = Θ̃i

j for all i ∈ JnK, j ∈ Ni

• two neighboring agents agree on each other’s personalized model

• Further introduce 4 secondary variables Ziei, Z
i
ej, Z

j
ei and Z

j
ej for

each edge e = (i, j)
• can be viewed as estimates of the models Θ̃i and Θ̃j known by
each end of e

• will allow efficient decomposition of ADMM updates

23



reformulation as partial consensus problem

• Final reformulation: denoting Θ̃ = [Θ̃>
1 , . . . , Θ̃

>
n ]

> ∈ R(2|E|+n)×p

and Z ∈ R4|E|×p

min
Θ̃∈R(2|E|+n)×p

Z∈CE

n∑
i=1

Qi
CL(Θ̃i)

s.t. ∀e = (i, j) ∈ E,
{
Ziei = Θ̃i

i, Z
j
ei = Θ̃j

i

Zjej = Θ̃j
j, Z

i
ej = Θ̃i

j,

where CE = {Z ∈ R4|E|×p | Ziei = Ziej, Z
j
ej = Zjei for all e = (i, j) ∈ E}

• Constraints involving Θ̃ can be written DΘ̃ + HZ = 0 where
• H = −I of dimension 4|E| × 4|E| is diagonal invertible
• D ∈ R4|E|×(2|E|+n) contains exactly one entry of 1 in each row

• Assumptions of [Wei and Ozdaglar, 2013] satisfied
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asynchronous gossip algorithm

• The augmented Lagrangian of the problem is

Lρ(Θ̃, Z,Λ) =
n∑
i=1

Liρ(Θ̃i, Zi,Λi),

where ρ > 0 is a penalty parameter, Z ∈ CE and

Liρ(Θ̃i, Zi,Λi) = Qi
CL(Θ̃i) +

∑
j:e=(i,j)∈E

[
Λiei(Θ̃

i
i − Ziei)

+ Λjei(Θ̃
j
i − Zjei) +

ρ

2

(
‖Θ̃i

i − Ziei‖
2
+ ‖Θ̃j

i − Zjei‖
2) ]

.

• ADMM iteratively minimize the augmented Lagrangian by
alternating
1. minimization w.r.t. primal variable Θ̃

2. minimization w.r.t. secondary variable Z
3. update of the dual variable Λ
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asynchronous gossip algorithm

• Assume that agent i wakes up at step t and selects j ∈ Ni.
Denoting e = (i, j)
1. Agent i updates its primal variables:

Θ̃i(t + 1) = argmin
Θ∈R(|Ni|+1)×p Liρ(Θ, Zi(t),Λi(t)),

and sends Θ̃i
i(t + 1), Θ̃j

i(t + 1),Λiei(t),Λ
j
ei(t) to agent j. Agent j

executes the same steps w.r.t. i.
2. Using Θ̃j

j(t + 1), Θ̃i
j(t + 1),Λjej(t),Λ

i
ej(t) received from j, agent i

updates its secondary variables Ziei(t + 1) and Zjei(t + 1) (closed
form). Agent j updates its secondary variables symmetrically

3. Agent i updates its dual variables Λiei(t + 1) and Λjei(t + 1)
(closed-form). Agent j updates its dual variables symmetrically.

• Convergence in O(1/t) [Wei and Ozdaglar, 2013]
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collaborative mean estimation

• We consider n = 300 agents and a 1D mean estimation task
(loss f (θ; xi) = ‖θ − xi‖

2)
• Network topology derived from the two moons dataset
• Each agent i has a true 1D Gaussian distribution µi centered at -1
or +1 depending on the moon it belongs to

• Each agent i receives a random number mi of samples from µi
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collaborative mean estimation

• Confidence values help a lot for imbalanced datasets

• Our MP algorithm has fast convergence without synchronization
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collaborative linear classification

• We consider a set of n = 100 agents and a linear classification
task in Rp (with hinge loss)

• Target models lie in a 2D subspace, network weights based on the
angle between true models

• Each agent i receives a random number mi of samples with label
given by the prediction of target model (plus noise)
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collaborative linear classification

• Both CL and MP provide great improvements over local models

• CL consistently outperforms MP by significant margin

• Effectively compensating for training size imbalance
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collaborative linear classification

• CL algorithm converges as fast as a synchronous approach

• MP much faster to converge and can be used as warm-start to
speed up CL

• Number of iterations to converge to near-optimal accuracy
scales linearly with network size
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future work (and ads)

• Study link between similarity graph and generalization
performance

• Generic methods to estimate/learn graph weights

• Decentralized discovery of similar peers

• Privacy-preserving mechanisms

Quick ads

• Make sure you attend the NIPS 2016 workshop on Private
Multi-Party Machine Learning!

• We have many open positions in our Inria team (tenured,
postdocs, PhDs, Master internships) with exciting projects!
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Thank you for your attention!
Questions?
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