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introduction



decentralized data networks

• A set of n agents with local data (agent i holds xi ∈ X )

• A communication network (connected graph)

• Goal: compute or optimize a global function of the data
• Some use-cases:

• Estimation and optimization in sensor networks, IoT
• Collaborative peer-to-peer machine learning (no third party)
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key principle: randomized gossip algorithm

• Users wake up independently and asynchronously, select a
random neighbor and exchange information

• Equivalent view: at each step, activate a random network edge

• Simple and asynchronous→ well suited to large networks
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randomized gossip for averaging

• Goal: compute the network average 1
n
∑n

i=1 f (xi) [Boyd et al., 2006]
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• Convergence rate of O(e−CGt) with CG proportional to the
spectral gap of the network
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randomized gossip for optimization

• Goal: solve minθ∈Rd
1
n
∑n

i=1 f (θ; xi) with f convex
[Nedic and Ozdaglar, 2009, Duchi et al., 2012, Wei and Ozdaglar, 2012]
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how about pairwise functions?

• These algorithms do not generalize to pairwise functions

• Cannot compute sample statistics of the form 1
n2
∑n

i,j=1 f (xi, xj)
• Sample variance: f (x, x′) = (x − x′)2/2
• Average distance: f (x, x′) = ‖x − x′‖
• Other U-statistics: Kendall’s τ , Wilcoxon-Mann-Whitney test...

• Machine learning: cannot solve Empirical Risk Minimization
(ERM) problems of the form

min
θ∈Rd

1
n2

n∑
i,j=1

f (θ; xi, xj)

• Metric learning, bipartite ranking, clustering, graph inference...

8



example 1: metric learning

Metric Learning

• Labeled data: (xi, `i) ∈ X × {1, . . . , C}

• Learn distance measure adapted to the task [Bellet et al., 2015]

• Distance function D : X × X → R+

• Empirical risk measure associated with D:

1
n2

n∑
i,j=1

Φ
(
(1− D(xi, xj))(2I{`i = `j} − 1)

)
(Φ convex surrogate of the 0-1 loss)
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example 2: learning to rank

• Labeled data: (xi, `i) ∈ X × {−1, 1}

• Learn to rank items (e.g., relevant vs irrelevant)

• Scoring function s : X → R

• Empirical risk measures associated with s [Zhao et al., 2011]:

1
n2

n∑
i,j=1

I{`i > `j}Φ
(
(s(xj)− s(xi)

)
• Known as the Area Under the ROC Curve (AUC)
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decentralized estimation



problem setup

• Data points x1, . . . , xn ∈ X

• Network represented as a connected graph G = (V, E)
• Nodes V = [n] = {1, . . . ,n}
• Node i holds point xi
• (i, j) ∈ E: i and j can exchange information directly

• Goal: estimate pairwise statistic

U(f ) = 1
n2

n∑
i,j=1

f (xi, xj)
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synchronous vs. asynchronous

• Synchronous algorithm
• Global clock ticking at the times of a rate 1 Poisson process
• Each time the clock ticks, all nodes activate

• Asynchronous algorithm
• Each node has a local clock
• Each time a node’s clock ticks, it activates
• For modeling purposes: equivalent to a single Poisson clock
ticking at rate n with random selection of node to activate

13



main idea of the gosta algorithm

• Observe that we can write

U(f ) = 1
n

n∑
i=1

fi, with fi =
1
n

n∑
j=1

f (xi, xj)

• Key difference with standard averaging: each “local value” fi
depends on the entire dataset

• Our algorithms will combine two steps at each iteration:
• Data propagation step so that each node i can estimate fi
• Averaging step to ensure global convergence to U(f )

14



gosta in a nutshell

• Each node stores an auxiliary observation and an estimate

original observation

auxiliary observation

 estimator

• At time t, an edge (i, j) ∈ E is activated

swap auxiliary data:

update:

local memory local memory

mix estimates:

Time t:

15



gosta: synchronous version

• Need a global clock

Algorithm 1 GoSta-sync
Require: Each node k holds xk
Each node k initializes yk = xk and zk = 0
for t = 1, 2, . . . do
for k = 1, . . . ,n do
Set zk ← t−1

t zk +
1
t f (xk, yk)

end for
Draw (i, j) uniformly at random from E
Set zi, zj ← 1

2 (zi + zj)
Swap auxiliary observations: yi ↔ yj

end for

16



convergence analysis (synchronous)

Theorem (Synchronous setting, [Colin et al., 2015])

If G = (V, E) is connected and non-bipartite, then for any t > 0:

‖E[z(t)]− U(f )1n‖ ≤
1
CGt

∥∥∥f− U(f )1n∥∥∥+ ( 2
CGt

+ e−CGt
)∥∥∥F− f1>n ∥∥∥ ,

where CG = βn−1/|E|, βn−1 is the spectral gap of G, f = (fi)1≤i≤n and
F ∈ Rn×n s.t. Fij = f (xi, xj).

• Data-dependent terms: quantify difficulty of estimation problem
• Dispersion measure between the values to be averaged

• Network-dependent terms: quantify how well things propagate
• Graphs with larger spectral gap→ better connectivity [Chung, 1997]

17



proof idea: phantom networks

• Equivalent reformulation of the problem to model data
propagation and estimate update/averaging separately

• “Phantom” networks G1, . . . ,Gn
• For k, i ∈ [n], node vki initially holds H(xk, xi)
• Data propagation: for all k ∈ [n], nodes vki and vkj swap values

• Original network G
• Nodes 1, . . . ,n hold estimates z1(t), . . . , zn(t)
• To update the estimates: each node k uses the value of node vkk 18



proof idea: phantom networks

• We can now represent the system at time t as S(t) =
(
S1(t)
S2(t)

)
• S1(t) ∈ Rn correspond to estimate vector z(t) = [z1(t), . . . , zn(t)]
• S2(t) ∈ Rn2 represent the data propagation in the network

• Characterize the transition matrix

M(t) =


M1(t)︸ ︷︷ ︸
averaging

M2(t)︸ ︷︷ ︸
estimate update

0 M3(t)︸ ︷︷ ︸
data propagation

 ∈ R(n+n2)×(n+n2)

such that E[S(t + 1)] = M(t)E[S(t)]

• Exploit spectral structure of M(t) to prove convergence of S1(t)

19



gosta: asynchronous version

• No global clock: only selected nodes are active
• Each node i stores an unbiased estimate mi of current iteration

• Probability pi = 2di/|E| that i awakes at a given iteration
• When i awakes, it updates mi ← mi + 1/pi

Algorithm 2 GoSta-async
Require: Each node k holds xk and pk
Each node k initializes yk = xk, zk = 0 and mk = 0
for t = 1, 2, . . . do
Draw (i, j) uniformly at random from E
Set mi ← mi + 1/pi and mj ← mj + 1/pj
Set zi, zj ← 1

2 (zi + zj)
Set zi ← (1− 1

pimi
)zi + 1

pimi
f (xi, yi)

Set zj ← (1− 1
pjmj

)zj + 1
pjmj

f (xj, yj)
Swap auxiliary observations: yi ↔ yj

end for
20



convergence analysis (asynchronous)

Theorem (Asynchronous setting, [Colin et al., 2015])

If G = (V, E) is connected and non-bipartite, then for any t > 1:

‖E[z(t)]− U(f )1n‖ ≤ C′G
log t
t
‖H‖,

for some constant C′G > 0.

• Similar proof technique as in synchronous setting

• But time dependency of transition matrix more complex

21



numerical simulations

• Two estimation problems
• Within-cluster point scatter on Wine quality dataset (n = 1, 599)
• Area Under the ROC Curve on SMVguide3 dataset (n = 1, 260)

• Three types of networks

Complete2D-grid Watts-Strogatz

22



numerical simulations

Comparison to U2-Gossip [Pelckmans and Suykens, 2009]

• U2-Gossip: propagates two observations, no averaging

• Only synchronous, worst theoretical guarantees

23



numerical simulations

Comparison to U2-Gossip [Pelckmans and Suykens, 2009]

• GoSta scales better with n

• GoSta-sync and GoSta-async have similar performance

24



numerical simulations

Comparison to “Master Node” baseline

• Baseline has access to master node connected to all nodes

• Our algorithm compensates well for lack of central node

25



decentralized optimization



problem setup

• Data points x1, . . . , xn ∈ X

• Network represented as a connected graph G = (V, E)
• Nodes V = [n] = {1, . . . ,n}
• Node i holds point xi
• (i, j) ∈ E: i and j can exchange information directly

• Goal: solve regularized problem

min
θ∈Rd

1
n2

n∑
i,j=1

f (θ; xi, xj)︸ ︷︷ ︸
f (θ)

+ψ(θ)

• f convex and differentiable w.r.t. θ, Lf -Lipschitz
• ψ convex, nonnegative, possibly nonsmooth
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centralized dual averaging

• Two variables: primal θ(t) and “dual” z(t)

• Positive, non-increasing step size sequence (γ(t))t≥1

• Dual Averaging (DA) update rule [Nesterov, 2009]
• z(t + 1) = z(t) + g(t), with g(t) unbiased estimate of ∇f (θ(t))

• θ(t + 1) = argminθ∈Rd

{
−z>θ + ‖θ‖

2

2γ(t) + tψ(θ)
}

︸ ︷︷ ︸
π(z;γ(t))

• Convergence of average iterate in O(1/
√
t) with γ(t) ∝ 1/

√
t

• π is a scaled version of the proximal operator of ψ: can deal
with popular nonsmooth regularizers such as L1-norm

• DA updates well suited to decentralized setting [Duchi et al., 2012]

28



decentralized dual averaging

Swap auxiliary data:

Time t:

local memory local memory

Average dual variables:

Update dual variables:

Update iterates:

• Let us denote fi(θ) = 1
n
∑n

k=1 f (θ; xi, xk)

• gi(t) = ∇f (θi(t); xi, yi) is a biased estimate of ∇fi(θi(t)):

E[gi(t)] = fi(θi(t)) + εi(t)

29



synchronous algorithm

Algorithm 3 Gossip pairwise dual averaging (synchronous)
Require: Each node k holds xk, (γ(t))t≥1 > 0
Each node k initializes yk = xk, zk = θk = θ̄k = 0
for t = 1, 2, . . . do
Draw (i, j) uniformly at random from E
Set zi, zj ← 1

2 (zi + zj)
Swap auxiliary observations: yi ↔ yj
for k = 1, . . . ,n do
Set zk ← zk +∇θf (θk; xk, yk)
Set θk ← π(zk; γ(t))
Set θ̄k ←

(
1− 1

t
)
θ̄k +

1
t θk

end for
end for

30



convergence analysis (synchronous)

Theorem (Synchronous setting, [Colin et al., 2016])

Let G be connected and non-bipartite. Let R(θ) = f (θ) + ψ(θ), θ∗ ∈
argminθ∈Θ R(θ) and let (γ(t))t≥1 be such that γ(t) ∝ 1/

√
t. For any

i ∈ [n] and any t > 1, we have:

E[R(θ̄i(t))− R(θ∗)] ≤
‖θ∗‖2 + 2L2f

2
√
t

+
6L2f(

1−
√
λ
)√
t
+ O

(
1
t

t∑
t′=1

ε̄(t′)
)
,

where λ < 1, 1 − λ = βn−1/|E|, βn−1 is the spectral gap of G and
ε̄(t′) = 1

n
∑n

k=1 εk(t′).

• First term: data dependent (same as centralized dual averaging)

• Second term: network dependent

• Third term: bias of the gradient estimates
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asynchronous algorithm

Algorithm 4 Gossip pairwise dual averaging (asynchronous)
Require: Each node k holds xk, (γ(t))t≥1 > 0, probabilities (pk)k∈[n]

Each node k initializes yk = xk, zk = θk = θ̄k = 0, mi = 0
for t = 1, 2, . . . do
Draw (i, j) uniformly at random from E
Swap auxiliary observations: yi ↔ yj
for k ∈ {i, j} do
Set zk ←

zi+zj
2

Set zk ← 1
pk∇θf (θk; xk, yk)

Set mk ← mk +
1
pk

Set θk ← π(zk; γ(mk))

Set θ̄k ←
(
1− 1

mkpk

)
θ̄k

end for
end for

• Slower convergence result of O(t−1/3)
32



numerical simulations

• Task: AUC maximization with linear scoring function

R(θ) = 1
n2

n∑
i,j=1

I{`i > `j} log
(
1+ exp((xj − xi)>θ)

)
• UCI Breast Cancer dataset: n = 699 points in d = 11 dimensions

• Three types of networks

Cycle
(worst case)

Watts-Strogatz Complete
(best case)
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numerical simulations

Synchronous vs. asynchronous

• Speed of convergence depends on network topology

• More variance in synchronous case: node k performs roughly
1/pk gradient steps before swapping its auxiliary observation
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numerical simulations

Evolution of bias term

• Vanishes quickly (also depends on spectral gap)

• Negligible: 3 orders of magnitude smaller than loss function

0 1e4 2e4 3e4 4e4 5e4
Number of iterations

-1e-3

0

1e-3

2e-3

3e-3

4e-3

5e-3

B
ia

s 
te

rm
Asynchronous

Complete
Watts
Cycle

35



numerical simulations

Comparison to oracle baseline

• Baseline has access to unbiased estimates of the gradients

• Performance is similar on reasonably-connected networks
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conclusion & perspectives

Wrapping up

• Pairwise functions involved in many interesting problems

• Gossip algorithms for decentralized estimation and optimization

Looking ahead

• Personalized models [Vanhaesebrouck et al., 2017]

• Privacy, robustness to malicious users (under progress)

• Adaptive communication schemes: learn who to talk to
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Thank you for your attention!
Questions?
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