DECENTRALIZED ESTIMATION AND OPTIMIZATION OF PAIRWISE FUNCTIONS

Aurélien Bellet (Inria MAGNET)

Joint work with I. Colin, J. Salmon and S. Clémençon (Télécom ParisTech)

Séminaire SIGMA, École Centrale de Lille, 30/01/2017

- 1. Introduction
- 2. Decentralized Estimation
- 3. Decentralized Optimization
- 4. Conclusion & Perspectives

INTRODUCTION

DECENTRALIZED DATA NETWORKS

- A set of *n* agents with local data (agent *i* holds $x_i \in \mathcal{X}$)
- A communication network (connected graph)
- · Goal: compute or optimize a global function of the data
- Some use-cases:
 - · Estimation and optimization in sensor networks, IoT
 - · Collaborative peer-to-peer machine learning (no third party)

KEY PRINCIPLE: RANDOMIZED GOSSIP ALGORITHM

- Users wake up independently and asynchronously, select a random neighbor and exchange information
 - Equivalent view: at each step, activate a random network edge
- $\cdot\,$ Simple and asynchronous \rightarrow well suited to large networks

• **Goal:** compute the network average $\frac{1}{n} \sum_{i=1}^{n} f(x_i)$ [Boyd et al., 2006]

• **Goal:** compute the network average $\frac{1}{n} \sum_{i=1}^{n} f(x_i)$ [Boyd et al., 2006]

• **Goal:** compute the network average $\frac{1}{n} \sum_{i=1}^{n} f(x_i)$ [Boyd et al., 2006]

• **Goal:** compute the network average $\frac{1}{n} \sum_{i=1}^{n} f(x_i)$ [Boyd et al., 2006]

• **Goal:** compute the network average $\frac{1}{n} \sum_{i=1}^{n} f(x_i)$ [Boyd et al., 2006]

• **Goal:** compute the network average $\frac{1}{n} \sum_{i=1}^{n} f(x_i)$ [Boyd et al., 2006]

• **Goal:** compute the network average $\frac{1}{n} \sum_{i=1}^{n} f(x_i)$ [Boyd et al., 2006]

• **Goal:** compute the network average $\frac{1}{n} \sum_{i=1}^{n} f(x_i)$ [Boyd et al., 2006]

• **Goal:** compute the network average $\frac{1}{n} \sum_{i=1}^{n} f(x_i)$ [Boyd et al., 2006]

• **Goal:** compute the network average $\frac{1}{n} \sum_{i=1}^{n} f(x_i)$ [Boyd et al., 2006]

• **Goal:** solve $\min_{\theta \in \mathbb{R}^d} \frac{1}{n} \sum_{i=1}^n f(\theta; x_i)$ with f convex [Nedic and Ozdaglar, 2009, Duchi et al., 2012, Wei and Ozdaglar, 2012]

• **Goal:** solve $\min_{\theta \in \mathbb{R}^d} \frac{1}{n} \sum_{i=1}^n f(\theta; x_i)$ with f convex [Nedic and Ozdaglar, 2009, Duchi et al., 2012, Wei and Ozdaglar, 2012]

• **Goal:** solve $\min_{\theta \in \mathbb{R}^d} \frac{1}{n} \sum_{i=1}^n f(\theta; x_i)$ with f convex [Nedic and Ozdaglar, 2009, Duchi et al., 2012, Wei and Ozdaglar, 2012]

• **Goal:** solve $\min_{\theta \in \mathbb{R}^d} \frac{1}{n} \sum_{i=1}^n f(\theta; x_i)$ with f convex [Nedic and Ozdaglar, 2009, Duchi et al., 2012, Wei and Ozdaglar, 2012]

• **Goal:** solve $\min_{\theta \in \mathbb{R}^d} \frac{1}{n} \sum_{i=1}^n f(\theta; x_i)$ with f convex [Nedic and Ozdaglar, 2009, Duchi et al., 2012, Wei and Ozdaglar, 2012]

• **Goal:** solve $\min_{\theta \in \mathbb{R}^d} \frac{1}{n} \sum_{i=1}^n f(\theta; x_i)$ with f convex [Nedic and Ozdaglar, 2009, Duchi et al., 2012, Wei and Ozdaglar, 2012]

• **Goal:** solve $\min_{\theta \in \mathbb{R}^d} \frac{1}{n} \sum_{i=1}^n f(\theta; x_i)$ with f convex [Nedic and Ozdaglar, 2009, Duchi et al., 2012, Wei and Ozdaglar, 2012]

• **Goal:** solve $\min_{\theta \in \mathbb{R}^d} \frac{1}{n} \sum_{i=1}^n f(\theta; x_i)$ with f convex [Nedic and Ozdaglar, 2009, Duchi et al., 2012, Wei and Ozdaglar, 2012]

• **Goal:** solve $\min_{\theta \in \mathbb{R}^d} \frac{1}{n} \sum_{i=1}^n f(\theta; x_i)$ with f convex [Nedic and Ozdaglar, 2009, Duchi et al., 2012, Wei and Ozdaglar, 2012]

• **Goal:** solve $\min_{\theta \in \mathbb{R}^d} \frac{1}{n} \sum_{i=1}^n f(\theta; x_i)$ with f convex [Nedic and Ozdaglar, 2009, Duchi et al., 2012, Wei and Ozdaglar, 2012]

• **Goal:** solve $\min_{\theta \in \mathbb{R}^d} \frac{1}{n} \sum_{i=1}^n f(\theta; x_i)$ with f convex [Nedic and Ozdaglar, 2009, Duchi et al., 2012, Wei and Ozdaglar, 2012]

• **Goal:** solve $\min_{\theta \in \mathbb{R}^d} \frac{1}{n} \sum_{i=1}^n f(\theta; x_i)$ with f convex [Nedic and Ozdaglar, 2009, Duchi et al., 2012, Wei and Ozdaglar, 2012]

• **Goal:** solve $\min_{\theta \in \mathbb{R}^d} \frac{1}{n} \sum_{i=1}^n f(\theta; x_i)$ with f convex [Nedic and Ozdaglar, 2009, Duchi et al., 2012, Wei and Ozdaglar, 2012]

• **Goal:** solve $\min_{\theta \in \mathbb{R}^d} \frac{1}{n} \sum_{i=1}^n f(\theta; x_i)$ with f convex [Nedic and Ozdaglar, 2009, Duchi et al., 2012, Wei and Ozdaglar, 2012]

• **Goal:** solve $\min_{\theta \in \mathbb{R}^d} \frac{1}{n} \sum_{i=1}^n f(\theta; x_i)$ with f convex [Nedic and Ozdaglar, 2009, Duchi et al., 2012, Wei and Ozdaglar, 2012]

HOW ABOUT PAIRWISE FUNCTIONS?

- These algorithms do **not** generalize to pairwise functions
- Cannot compute sample statistics of the form $\frac{1}{n^2} \sum_{i,j=1}^{n} f(x_i, x_j)$
 - Sample variance: $f(x, x') = (x x')^2/2$
 - Average distance: f(x, x') = ||x x'||
 - Other U-statistics: Kendall's τ, Wilcoxon-Mann-Whitney test...
- Machine learning: cannot solve Empirical Risk Minimization (ERM) problems of the form

$$\min_{\theta \in \mathbb{R}^d} \frac{1}{n^2} \sum_{i,j=1}^n f(\theta; x_i, x_j)$$

• Metric learning, bipartite ranking, clustering, graph inference...

EXAMPLE 1: METRIC LEARNING

- Labeled data: $(x_i, \ell_i) \in \mathcal{X} \times \{1, \dots, C\}$
- Learn distance measure adapted to the task [Bellet et al., 2015]
- Distance function $D: \mathcal{X} \times \mathcal{X} \to \mathbb{R}_+$
- Empirical risk measure associated with D:

$$\frac{1}{n^2} \sum_{i,j=1}^{n} \Phi \left((1 - D(x_i, x_j)) (2\mathbb{I}\{\ell_i = \ell_j\} - 1) \right)$$

(Φ convex surrogate of the 0-1 loss)

EXAMPLE 2: LEARNING TO RANK

- Labeled data: $(x_i, \ell_i) \in \mathcal{X} \times \{-1, 1\}$
- Learn to rank items (e.g., relevant vs irrelevant)
- + Scoring function $s:\mathcal{X}\to\mathbb{R}$
- Empirical risk measures associated with s [Zhao et al., 2011]:

$$\frac{1}{n^2}\sum_{i,j=1}^{n}\mathbb{I}\{\ell_i > \ell_j\}\Phi\left((s(x_j) - s(x_i)\right)$$

• Known as the Area Under the ROC Curve (AUC)

DECENTRALIZED ESTIMATION

- Data points $x_1, \ldots, x_n \in \mathcal{X}$
- Network represented as a connected graph G = (V, E)
 - Nodes $V = [n] = \{1, ..., n\}$
 - Node *i* holds point *x_i*
 - $(i,j) \in E$: *i* and *j* can exchange information directly
- Goal: estimate pairwise statistic

$$U(f) = \frac{1}{n^2} \sum_{i,j=1}^n f(x_i, x_j)$$

Synchronous algorithm

- Global clock ticking at the times of a rate 1 Poisson process
- Each time the clock ticks, all nodes activate

· Asynchronous algorithm

- Each node has a local clock
- Each time a node's clock ticks, it activates
- For modeling purposes: equivalent to a single Poisson clock ticking at rate *n* with random selection of node to activate

• Observe that we can write

$$U(f) = \frac{1}{n} \sum_{i=1}^{n} \overline{f_i}, \quad \text{with } \overline{f_i} = \frac{1}{n} \sum_{j=1}^{n} f(x_i, x_j)$$

- Key difference with standard averaging: each "local value" $\overline{f_i}$ depends on the entire dataset
- Our algorithms will combine two steps at each iteration:
 - Data propagation step so that each node *i* can estimate $\overline{f_i}$
 - Averaging step to ensure global convergence to U(f)

GOSTA IN A NUTSHELL

· Each node stores an auxiliary observation and an estimate

• At time t, an edge $(i, j) \in E$ is activated

15

• Need a global clock

Algorithm 1 GoSta-sync

Require: Each node k holds x_k Each node k initializes $y_k = x_k$ and $z_k = 0$ for t = 1, 2, ... do for k = 1, ..., n do Set $z_k \leftarrow \frac{t-1}{t} z_k + \frac{1}{t} f(x_k, y_k)$ end for Draw (i, j) uniformly at random from E Set $z_i, z_j \leftarrow \frac{1}{2}(z_i + z_j)$ Swap auxiliary observations: $y_i \leftrightarrow y_j$ end for

Theorem (Synchronous setting, [Colin et al., 2015])

If G = (V, E) is connected and non-bipartite, then for any t > 0:

$$\|\mathbb{E}[\mathbf{z}(t)] - U(f)\mathbf{1}_n\| \leq \frac{1}{C_G t} \left\| \bar{\mathbf{f}} - U(f)\mathbf{1}_n \right\| + \left(\frac{2}{C_G t} + e^{-C_G t}\right) \left\| \mathbf{F} - \bar{\mathbf{f}}\mathbf{1}_n^\top \right\|,$$

where $C_G = \beta_{n-1}/|E|$, β_{n-1} is the spectral gap of G, $\overline{\mathbf{f}} = (\overline{f_i})_{1 \le i \le n}$ and $\mathbf{F} \in \mathbb{R}^{n \times n}$ s.t. $\mathbf{F}_{ij} = f(x_i, x_j)$.

- · Data-dependent terms: quantify difficulty of estimation problem
 - Dispersion measure between the values to be averaged
- Network-dependent terms: quantify how well things propagate
 - \cdot Graphs with larger spectral gap \rightarrow better connectivity [Chung, 1997]

PROOF IDEA: PHANTOM NETWORKS

- Equivalent reformulation of the problem to model data propagation and estimate update/averaging **separately**
- "Phantom" networks G_1, \ldots, G_n
 - For $k, i \in [n]$, node v_i^k initially holds $H(x_k, x_i)$
 - Data propagation: for all $k \in [n]$, nodes v_i^k and v_i^k swap values
- Original network G
 - Nodes 1, ..., *n* hold estimates $z_1(t), \ldots, z_n(t)$
 - To update the estimates: each node k uses the value of node v_k^k

- We can now represent the system at time t as $S(t) = \begin{pmatrix} S_1(t) \\ S_2(t) \end{pmatrix}$
 - $S_1(t) \in \mathbb{R}^n$ correspond to estimate vector $\mathbf{z}(t) = [z_1(t), \dots, z_n(t)]$
 - $S_2(t) \in \mathbb{R}^{n^2}$ represent the data propagation in the network
- Characterize the transition matrix

$$M(t) = \begin{pmatrix} \underbrace{M_1(t)}_{\text{averaging}} & \underbrace{M_2(t)}_{\text{averaging}} & \text{estimate update} \\ 0 & \underbrace{M_3(t)}_{\text{data propagation}} \end{pmatrix} \in \mathbb{R}^{(n+n^2) \times (n+n^2)}$$

such that $\mathbb{E}[\mathbf{S}(t+1)] = M(t)\mathbb{E}[\mathbf{S}(t)]$

• Exploit spectral structure of M(t) to prove convergence of $S_1(t)$

GOSTA: ASYNCHRONOUS VERSION

- No global clock: only selected nodes are active
- Each node *i* stores an unbiased estimate *m_i* of current iteration
 - Probability $p_i = 2d_i/|E|$ that *i* awakes at a given iteration
 - When *i* awakes, it updates $m_i \leftarrow m_i + 1/p_i$

Algorithm 2 GoSta-async

Require: Each node k holds x_k and p_k Each node k initializes $y_k = x_k$, $z_k = 0$ and $m_k = 0$ for *t* = 1, 2, ... do Draw (i, j) uniformly at random from E Set $m_i \leftarrow m_i + 1/p_i$ and $m_i \leftarrow m_i + 1/p_i$ Set $z_i, z_i \leftarrow \frac{1}{2}(z_i + z_i)$ Set $z_i \leftarrow (1 - \frac{1}{p_i m_i}) z_i + \frac{1}{p_i m_i} f(x_i, y_i)$ Set $z_j \leftarrow (1 - \frac{1}{p_i m_i})z_j + \frac{1}{p_i m_i}f(x_j, y_j)$ Swap auxiliary observations: $y_i \leftrightarrow y_i$ end for

Theorem (Asynchronous setting, [Colin et al., 2015]) If G = (V, E) is connected and non-bipartite, then for any t > 1: $\|\mathbb{E}[\mathbf{z}(t)] - U(f)\mathbf{1}_n\| \le C'_G \frac{\log t}{t} \|H\|,$

for some constant $C'_G > 0$.

- Similar proof technique as in synchronous setting
- $\cdot\,$ But time dependency of transition matrix more complex

- Two estimation problems
 - Within-cluster point scatter on Wine quality dataset (n = 1,599)
 - Area Under the ROC Curve on SMVguide3 dataset (n = 1, 260)
- Three types of networks

Comparison to U2-Gossip [Pelckmans and Suykens, 2009]

- U2-Gossip: propagates two observations, no averaging
- Only synchronous, worst theoretical guarantees

Comparison to U2-Gossip [Pelckmans and Suykens, 2009]

- GoSta scales better with *n*
- · GoSta-sync and GoSta-async have similar performance

Comparison to "Master Node" baseline

- Baseline has access to master node connected to all nodes
- Our algorithm compensates well for lack of central node

DECENTRALIZED OPTIMIZATION

PROBLEM SETUP

- Data points $x_1, \ldots, x_n \in \mathcal{X}$
- Network represented as a connected graph G = (V, E)
 - Nodes $V = [n] = \{1, ..., n\}$
 - Node *i* holds point *x_i*
 - $(i,j) \in E$: *i* and *j* can exchange information directly
- Goal: solve regularized problem

$$\min_{\theta \in \mathbb{R}^d} \underbrace{\frac{1}{n^2} \sum_{i,j=1}^n f(\theta; x_i, x_j)}_{\overline{f}(\theta)} + \psi(\theta)$$

- f convex and differentiable w.r.t. θ , L_f -Lipschitz
- $\cdot \ \psi$ convex, nonnegative, possibly nonsmooth

CENTRALIZED DUAL AVERAGING

- Two variables: primal $\theta(t)$ and "dual" z(t)
- Positive, non-increasing step size sequence $(\gamma(t))_{t\geq 1}$
- Dual Averaging (DA) update rule [Nesterov, 2009]

$$\cdot z(t+1) = z(t) + g(t), \text{ with } g(t) \text{ unbiased estimate of } \nabla \overline{f}(\theta(t))$$

$$\cdot \theta(t+1) = \arg \min_{\theta \in \mathbb{R}^d} \left\{ -z^\top \theta + \frac{\|\theta\|^2}{2\gamma(t)} + t\psi(\theta) \right\}$$

$$\pi^{(2;\gamma(t))}$$

- Convergence of average iterate in $O(1/\sqrt{t})$ with $\gamma(t) \propto 1/\sqrt{t}$
- π is a scaled version of the proximal operator of ψ : can deal with popular nonsmooth regularizers such as L_1 -norm
- DA updates well suited to decentralized setting [Duchi et al., 2012]

DECENTRALIZED DUAL AVERAGING

- Let us denote $\overline{f_i}(\theta) = \frac{1}{n} \sum_{k=1}^n f(\theta; x_i, x_k)$
- $g_i(t) = \nabla f(\theta_i(t); x_i, y_i)$ is a biased estimate of $\nabla \overline{f_i}(\theta_i(t))$:

 $\mathbb{E}[g_i(t)] = \overline{f_i}(\theta_i(t)) + \epsilon_i(t)$

Algorithm 3 Gossip pairwise dual averaging (synchronous)

```
Require: Each node k holds x_k, (\gamma(t))_{t>1} > 0
   Each node k initializes y_k = x_k, z_k = \theta_k = \overline{\theta}_k = 0
   for t = 1, 2, ... do
       Draw (i, j) uniformly at random from E
       Set z_i, z_i \leftarrow \frac{1}{2}(z_i + z_i)
       Swap auxiliary observations: y_i \leftrightarrow y_i
       for k = 1, \ldots, n do
           Set z_k \leftarrow z_k + \nabla_{\theta} f(\theta_k; x_k, y_k)
           Set \theta_k \leftarrow \pi(z_k; \gamma(t))
          Set \bar{\theta}_k \leftarrow (1 - \frac{1}{t}) \bar{\theta}_k + \frac{1}{t} \theta_k
       end for
   end for
```

CONVERGENCE ANALYSIS (SYNCHRONOUS)

Theorem (Synchronous setting, [Colin et al., 2016])

Let G be connected and non-bipartite. Let $R(\theta) = \overline{f}(\theta) + \psi(\theta), \theta^* \in \arg\min_{\theta \in \Theta} R(\theta)$ and let $(\gamma(t))_{t \ge 1}$ be such that $\gamma(t) \propto 1/\sqrt{t}$. For any $i \in [n]$ and any t > 1, we have:

$$\mathbb{E}[R(\bar{\theta}_i(t)) - R(\theta^*)] \leq \frac{\|\theta^*\|^2 + 2L_f^2}{2\sqrt{t}} + \frac{6L_f^2}{(1 - \sqrt{\lambda})\sqrt{t}} + O\left(\frac{1}{t}\sum_{t'=1}^t \bar{\epsilon}(t')\right),$$

where $\lambda < 1$, $1 - \lambda = \beta_{n-1}/|E|$, β_{n-1} is the spectral gap of G and $\overline{\epsilon}(t') = \frac{1}{n} \sum_{k=1}^{n} \epsilon_k(t')$.

- · First term: data dependent (same as centralized dual averaging)
- Second term: network dependent
- Third term: bias of the gradient estimates

Algorithm 4 Gossip pairwise dual averaging (asynchronous) **Require:** Each node k holds x_k , $(\gamma(t))_{t>1} > 0$, probabilities $(p_k)_{k \in [n]}$ Each node k initializes $y_k = x_k$, $z_k = \theta_k = \overline{\theta}_k = 0$, $m_i = 0$ for t = 1, 2, ... do Draw (i, j) uniformly at random from E Swap auxiliary observations: $y_i \leftrightarrow y_i$ for $k \in \{i, j\}$ do Set $z_k \leftarrow \frac{z_i + z_j}{2}$ Set $Z_k \leftarrow \frac{1}{\rho_k} \nabla_{\theta} f(\theta_k; x_k, y_k)$ Set $m_k \leftarrow m_k + \frac{1}{n_k}$ Set $\theta_k \leftarrow \pi(z_k; \gamma(m_k))$ Set $\bar{\theta}_k \leftarrow \left(1 - \frac{1}{m_k D_k}\right) \bar{\theta}_k$ end for end for

• Slower convergence result of $O(t^{-1/3})$

• Task: AUC maximization with linear scoring function

$$R(\theta) = \frac{1}{n^2} \sum_{i,j=1}^n \mathbb{I}\{\ell_i > \ell_j\} \log \left(1 + \exp((x_j - x_i)^\top \theta)\right)$$

- UCI Breast Cancer dataset: n = 699 points in d = 11 dimensions
- Three types of networks

Synchronous vs. asynchronous

- Speed of convergence depends on network topology
- More variance in synchronous case: node k performs roughly $1/p_k$ gradient steps before swapping its auxiliary observation

Evolution of bias term

- Vanishes quickly (also depends on spectral gap)
- Negligible: 3 orders of magnitude smaller than loss function

Comparison to oracle baseline

- · Baseline has access to unbiased estimates of the gradients
- Performance is similar on reasonably-connected networks

CONCLUSION & PERSPECTIVES

Wrapping up

- Pairwise functions involved in many interesting problems
- Gossip algorithms for decentralized estimation and optimization

Looking ahead

- Personalized models [Vanhaesebrouck et al., 2017]
- Privacy, robustness to malicious users (under progress)
- Adaptive communication schemes: learn who to talk to

THANK YOU FOR YOUR ATTENTION! QUESTIONS?

[Bellet et al., 2015] Bellet, A., Habrard, A., and Sebban, M. (2015). Metric Learning. Morgan & Claypool Publishers.

[Boyd et al., 2006] Boyd, S. P., Ghosh, A., Prabhakar, B., and Shah, D. (2006). Randomized gossip algorithms.

IEEE Transactions on Information Theory, 52(6):2508–2530.

[Chung, 1997] Chung, F. R. K. (1997). Spectral Graph Theory, volume 92. American Mathematical Society.

[Colin et al., 2015] Colin, I., Bellet, A., Salmon, J., and Clémençon, S. (2015). Extending Gossip Algorithms to Distributed Estimation of U-statistics. In NIPS.

[Colin et al., 2016] Colin, I., Bellet, A., Salmon, J., and Clémençon, S. (2016). Gossip Dual Averaging for Decentralized Optimization of Pairwise Functions. In ICML.

[Duchi et al., 2012] Duchi, J. C., Agarwal, A., and Wainwright, M. J. (2012). Dual Averaging for Distributed Optimization: Convergence Analysis and Network Scaling. IEEE Transactions on Automatic Control, 57(3):592–606.

REFERENCES II

[Nedic and Ozdaglar, 2009] Nedic, A. and Ozdaglar, A. E. (2009). Distributed Subgradient Methods for Multi-Agent Optimization. IEEE Transactions on Automatic Control, 54(1):48–61.

[Nesterov, 2009] Nesterov, Y. (2009). Primal-dual subgradient methods for convex problems. 120(1):261–283.

[Pelckmans and Suykens, 2009] Pelckmans, K. and Suykens, J. (2009). Gossip algorithms for computing u-statistics.

In IFAC Workshop on Estimation and Control of Networked Systems, pages 48-53.

[Vanhaesebrouck et al., 2017] Vanhaesebrouck, P., Bellet, A., and Tommasi, M. (2017). Decentralized Collaborative Learning of Personalized Models over Networks. In AISTATS.

[Wei and Ozdaglar, 2012] Wei, E. and Ozdaglar, A. E. (2012). Distributed Alternating Direction Method of Multipliers. In CDC, pages 5445–5450.

[Zhao et al., 2011] Zhao, P., Hoi, S. C. H., Jin, R., and Yang, T. (2011). Online AUC Maximization.

In ICML, pages 233-240.