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Recommender systems are proving to be an invaluable tool for extracting user-relevant content helping users in their daily
activities (e.g., finding relevant places to visit, content to consume, items to purchase). However, to be effective, these systems
need to collect and analyze large volumes of personal data (e.g., location check-ins, movie ratings, click rates .. etc.), which
exposes users to numerous privacy threats. In this context, recommender systems based on Federated Learning (FL) appear to
be a promising solution for enforcing privacy as they compute accurate recommendations while keeping personal data on
the users’ devices. However, FL, and therefore FL-based recommender systems, rely on a central server that can experience
scalability issues besides being vulnerable to attacks. To remedy this, we propose PEPPER, a decentralized recommender
system based on gossip learning principles. In PEPPER, users gossip model updates and aggregate them asynchronously. At
the heart of PEPPER reside two key components: a personalized peer-sampling protocol that keeps in the neighborhood
of each node, a proportion of nodes that have similar interests to the former and a simple yet effective model aggregation
function that builds a model that is better suited to each user. Through experiments on three real datasets implementing two
use cases: a location check-in recommendation and a movie recommendation, we demonstrate that our solution converges up
to 42% faster than with other decentralized solutions providing up to 9% improvement on average performance metric such as
hit ratio and up to 21% improvement on long tail performance compared to decentralized competitors.
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1 INTRODUCTION

Recommender systems are at the heart of many popular online services used by billions of users on a daily
basis to get insights on what could be a good restaurant to eat in, a nice museum to visit or the next TV series
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to watch. For instance, around 53 million US users perform smartphone searches on a daily basis about local
businesses/services in their immediate surroundings and visit these places [8]. To be effective, recommender
systems generally require the collection of large corpuses of personal data (e.g., check-ins, clicks, ratings) and
substantial computing power in order to be trained. Therefore, they are traditionally centralized and often hosted
in the data center of the service provider. However, this approach poses serious privacy concerns due to the
never-ending list of attacks and privacy scandals [9, 57, 65], which continue to unfold. These scandals generally
harm the image of the service provider and cause strong reactions in the public opinion. Furthermore, surveyed
users generally consider that (centralized) recommender systems violate their privacy [44] and would prefer not
to be profiled [2].

In the past decade, there have been various solutions investigating privacy-preserving recommender systems [4,
17, 21, 42, 56, 63]. Among these solutions, Federated Recommender Systems, i.e., recommender systems leveraging
the Federated Learning principles (FL), are considered promising solutions [22, 45, 54, 64] as they provide privacy-
by-design guarantees. Indeed, instead of centralizing users’ personal data and training recommendation models
on remote cloud infrastructures, FL proposes to train the models right where the data is generated, i.e., on the edge
/ mobile devices. However, this solution has its own drawbacks due to the inherent limitations of FL, one such
limitation being its centralized master-slave architecture. Even if FL allows users to keep their data local, they still
sendMLmodel updates to a (logically) central server, which drives themodel convergence process. This centralized
server poses not only fault tolerance but also scalability problems since it restricts Federated Recommender
Systems only to those companies which are able to scale the centralized server up to the necessary number of
clients [39]. To address this issue, we investigate in this paper decentralized recommender systems over Gossip
Learning [28, 30]. In Gossip Learning, nodes exchange model updates with their neighbors and asynchronously
aggregate the received models using a model aggregation function (e.g., federated averaging [41]). There exist
preliminary solutions for decentralized recommender systems over Gossip Learning [28]. However, these solutions
suffer from poor average, and even worse tail performance compared to their centralized counterpart. Said
differently, existing solutions tend to improve the average user satisfaction at the cost of having extremely
unsatisfied users at the long and short tail.

To address this issue, we present PEPPER, a novel solution that aims at maximizing average user performance
without penalizing users at the tail. PEPPER is composed of a performance-based model aggregation function
and a personalized peer-sampling protocol. While the former compares the received models with respect to their
performance on a local test set and gives more weight to those models that perform better from the point of view
of each user, the latter keeps a proportion of seemingly similar neighbors in the view of each user, i.e., neighbors
that previously sent models, which performed well for this user. We evaluate PEPPER with extensive simulations
involving up to one thousand nodes and by relying on two different machine learning models trained on three real
world datasets: Foursquare-NYC, Gowalla-NYC [37] and MovieLens ML-100k [25] and compare its performance
against six state-of-the-art federated and decentralized solutions. Our results show that PEPPER systematically
improves the average performance of decentralized recommender systems (up to 9%, 6% and 13% improvement on
performance metrics such as Hit Ratio, NDCG, F1 score, respectively) and in some cases outperforms the average
performance of its centralized counterparts. In addition to improving average performance, PEPPER substantially
improves long tail performance compared to both federated and decentralized competitors. Finally, thanks to its
personalized peer-sampling protocol, PEPPER converges up to 42% faster than other decentralized competitors.

The rest of the paper is organised as follows. In Section 2, we present a background on Federated Learning, Gossip
Learning and the recommendation models we rely on in this work. In Sections 3 and 4, we present an overview
of PEPPER and its detailed description. We then present the performance evaluation of PEPPER in Section 5 and
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Fig. 1. Federated Learning vs Gossip Learning Architectures

discuss its limitations and possible mitigations in Section 6. Finally, we present the related research works in
Section 7 and conclude the paper in Section 8.

2 BACKGROUND

We present in this section preliminary background on key concepts related to PEPPER, namely Federated Learning
(Section 2.1), Gossip Learning (Section 2.2) and the used recommendation models (Section 2.3).

2.1 Federated Learning

Federated Learning (FL), depicted in Figure 1a, is a computing paradigm that instantiates the "bring code close to
the data" principle in the context of Machine Learning. It was first proposed by Google [41] to allow hundreds of
millions of mobile devices (clients) to collaboratively train and build a global model while preserving the privacy
of their data. To this end, FL assumes the presence of a coordinator (i.e, a logically centralized server) and 𝑁 clients
𝐶𝑖 , where 𝑖 ∈ [1, 𝑁 ]. Each client 𝐶𝑖 creates and stores data locally, say 𝐷𝑖 . Given a learning task, let us denote
by𝑀𝑔𝑙𝑜𝑏𝑎𝑙 the global model held by the coordinator and by𝑀𝑖 the model held by each client 𝐶𝑖 . Following an
initialization phase where the coordinator communicates the model architecture and the optimization algorithm to
clients, the former continuously initiates training rounds until the convergence of the global model is considered
as satisfactory. Each round is conducted as follows: (i) the coordinator randomly selects a fraction 𝑝 of clients
of the original client set and sends them the current state of the global model𝑀𝑔𝑙𝑜𝑏𝑎𝑙 (see step 1 in Figure 1a);
(ii) each client 𝐶𝑖 initializes its model𝑀𝑖 with the model parameters received from the coordinator.𝑀𝑖 is then
trained on the local dataset 𝐷𝑖 before being sent back to the coordinator (see steps 2 and 3 in Figure 1a); (iii)
the coordinator aggregates the different models’ parameters received and updates the global model (see step 4

in Figure 1a). A classical way of aggregating models in FL is by using the FedAvg [41] algorithm, which relies on
Formula 1. FedAvg computes a weighted average of the received models, parameter wise. Specifically, each model
is weighted by the number of samples it was trained on, that is, the dataset size of the owner of the model (cf.,
equation (1)).

𝑀𝑔𝑙𝑜𝑏𝑎𝑙 =
1∑𝑝

𝑖=1 |𝐷𝑖 |

𝑝∑︁
𝑖=1
|𝐷𝑖 |𝑀𝑖 (1)
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While it enhances data privacy, FL is known to have convergence properties that slightly deviate from classical
centralized ML [66]. Additionally, the FL architecture heavily relies on the presence of a central server, which
plays a key role in the orchestration of the learning process, both at the start of each round and during the
aggregation phase. The necessity of this server has been often criticized as it makes FL vulnerable to failures,
scalability issues [33] and attacks [58, 62]. This has quite naturally created within research works a tendency
towards approaches that relax the single server assumption. In the next section, we present a gossip-based
approach that we adopted in this work.

2.2 Gossip Learning

Gossip Learning is an asynchronous learning protocol that was first proposed by Ormándi et al. [48] to solve
the problem of learning over fully distributed data using a peer-to-peer communication protocol called gossip.
Its flexibility, privacy-preserving nature and scalability properties give it the potential to be a first-class citizen
in the field of distributed machine learning. Gossip Learning relies on a key protocol called peer-sampling

that provides every node with a set of peers, called a view, to gossip with. The view of each node is periodically
shuffled so that nodes have the opportunity to interact with new nodes in the system. This protocol plays a crucial
role in the dissemination speed of messages. In gossip learning, it can even impact the performance of the learned
models as further illustrated in Section 5. Indeed, the peer-sampling protocol enables each node to periodically
change partially or totally its view. This change can be done randomly, creating an unstructured network. It can
also follow a well defined logic that can speed-up the convergence time, reduce the communication overhead or
improve the performance of the overall system [3].

In a classical Gossip Learning algorithm, a node periodically sends its local model to its view 𝑃 . Then, upon the
reception of a model𝑚 from one of its neighbors, it aggregates this model according to a predefined model

aggregation function. Later on, the obtained model is updated by performing a local training using a local
dataset 𝐷 . The resulting model is thereafter considered as the new current model. In the above algorithm, the
model aggregation function is a key component that makes it possible for nodes to learn from others nodes’ data
without having to actually train on it. This makes it one of the most crucial components in Gossip Learning.
Model aggregation functions generally perform a weighted averaging of the models’ parameters or a subset
of these parameters. Algorithm 1 illustrates two common examples of model aggregation functions, namely
Decentralized FedAvg [38] and Model-Aged-Based [30]. While the former applies the FedAvg algorithm defined
in FL to pairs of models, the latter is more advanced as it is based on a notion of model age, which reflects how
much a model has circulated in the network. The intuition behind it is to give more weight to older models as
they are likely to hold more knowledge.

Algorithm 1: Aggregation Function : Implementations
Data: train data sizes 𝐷1, 𝐷2; models to be aggregated :𝑚1,𝑚2; models’ number of updated times : 𝑎𝑔𝑒1,

𝑎𝑔𝑒2;
1 Procedure Decentralized FedAvg(𝑚1,𝑚2):
2 return

1
|𝐷1 |+ |𝐷2 | ( |𝐷1 | ×𝑚1) + (|𝐷2 | ×𝑚2)

3

4 ProcedureModelAgeBased(𝑚1,𝑚2):
5 return

1
|𝑎𝑔𝑒1 |+ |𝑎𝑔𝑒2 | ( |𝑎𝑔𝑒1 | ×𝑚1) + (|𝑎𝑔𝑒2 | ×𝑚2)

6
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2.3 The Recommendation Models

While PEPPER is agnostic to the underlying machine learning model, we use two models in our experiments:
the Generalized Matrix Factorization (GMF) model proposed by He et al. [27] and the Personalized Ranking
Metric Embedding Method (PRME-G) proposed by Feng et al. [15]. This choice is motivated by two criteria: (i)
the effectiveness of these models, which have a sufficiently accurate performance to allow us to quantify the
contribution of our system and compare it with different competitors and (ii) their lightness. Indeed, compared
to other benchmark recommendation models, GMF and PRME-G are light enough to be considered in a Gossip
Learning context where nodes can have constrained resources. Concretely, GMF [27] is a neural network inspired
by matrix factorisation (MF). As input, this model takes both user and item identifiers. It is followed by an
embedding layer that projects them into a latent vector space. These vectors are equivalent to the latent feature
vectors of MF. A multiplication layer does a point-wise product on these two vectors, to combine the features
describing the item and those describing the user. The product is then fed to at least one fully connected layer
before passing through a sigmoid activation function that outputs the degree of relevance of the item to the user.
By comparing this output with the actual relevance of the item, GMF computes an error function (i.e., binary cross
entropy) and optimizes the embedding features, until it finds features that best describe the user’s preferences
and the item’s characteristics.

As opposed to GMF, PRME-G [15] is specific to the point-of-interest recommendation task. By using the metric
embedding method, it puts locations in a latent space and minimizes the Euclidean distance between each pair
of locations (𝑥,𝑦) the more likely is 𝑦 to be visited after 𝑥 . Similarly, it minimizes in another latent space the
distance between users and locations, based on their preferences. Finally, it incorporates spatial influence by
giving more weight to closer POIs. These three pieces of information are combined into a three dimensional
matrix 𝐷 where each cell (𝑢, 𝑙𝑠 , 𝑙𝑖 ) is the likelihood of user 𝑢 visiting location 𝑙𝑖 starting from location 𝑙𝑠 . To
optimize this matrix, for each training observation (𝑢, 𝑙𝑠 , 𝑙𝑖 ) a random POI 𝑙 𝑗 that is not observed for (𝑢, 𝑙𝑠 ) is
generated and the following update rule is executed:

Θ← Θ + 𝛾 𝜕

𝜕Θ
(log(𝜎 (𝑧))) − _∥Θ∥2) (2)

where 𝑧 = 𝐷 (𝑢, 𝑙
𝑠 , 𝑙 𝑗 ) - 𝐷 (𝑢, 𝑙𝑠 , 𝑙𝑖 ) and 𝛾 , 𝜎 and Θ are respectively the learning rate, the sigmoid function, and the

matrices representing locations’ and/or users’ latent representations.

3 PEPPER IN A NUTSHELL

In this section, we start by defining the objectives of PEPPER (Section 3.1) and our assumptions (Section 3.2)
before presenting an overview of our system (Section 3.3).

3.1 PEPPER Objectives

Existing decentralized solutions have a centralized perspective of the learning process. Indeed, they aim at
building 𝑁 models that best approximate the global data distribution, that is, 𝑁 models converging to a similar
minimum as a global FL model. They do so by aggregating models generically and evaluating them on global
metrics, which quantify the ability of models to perform well for any given user. While building such models
seems to be the natural way to go for decentralizing FL, it may lead to poor performance because of the following
reasons: (i) users can have different distributions which can lead to a phenomenon called client drift [33] that can
hurt convergence and (ii) targeting the same minima in a decentralized system is costly and requires aggregating
a large number of models, hence, a lot of communication messages. In this work, we argue that these limitations
can be circumvented in use cases where approximating a global distribution is not necessary to achieve user
satisfaction. For instance, in a recommendation system, users are mainly interested in having a model that
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recommends items which are highly relevant to them and may not care much about the model’s ability to
recommend items for other users. This can be achieved by approximating a local yet more relevant distribution
for each model. In this context, the main objective of PEPPER is to train 𝑁 decentralized recommendation models
that are each tailored to their respective user. More specifically, we target a better average personalized-data
performance, which is described in [55] as the ability of a model to derive the same decisions as specified by the
individual, even if these decisions do not hold with respect to the performance metrics evaluated on a global
dataset. As a positive side effect, this can also improve the performance of tail users, that are often neglected in a
global metric optimization approach.

3.2 PEPPER Assumptions

In PEPPER, we make several assumptions, some of them being common in decentralized ML systems. First, we
are only concerned with the performance aspects of gossip-based recommender systems. Therefore, we do not
quantify its robustness to attacks nor do we consider the presence of any malicious or curious users. All users are
assumed to be honest clients aiming to train a model that has the best possible local performance. We assume that
nodes have heterogeneous bandwidth connectivity and may experience networking delays. However, we assume
reliable communication links (i.e., if a message is lost it is retransmitted sufficiently enough to be received) and
a stable participation of nodes in the system (i.e., no churn). Then, as commonly considered in decentralized
ML systems, we also assume the presence of a central bootstrap service in charge of broadcasting to all nodes
the optimization algorithm, the model architecture and the hyper-parameters. However, this only occurs at the
beginning of the learning process.

3.3 PEPPER Overview

Local training Recommendation

d

Personalized Peer-
Sampling

Performance-
based Aggregation 

Function
0.5 0.3 0.8 0.1

Outputs the relevance of 
each venue to this user
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Fig. 2. PEPPER System Main Components.

Figure 2 presents an overview of PEPPER, which operates in two main phases: a training phase and a recommen-
dation phase. The training phase makes use of two main components depicted in the left part of the figure: a
performance-based model aggregation function and a personalized peer-sampling protocol. Upon receiving a
model, say 𝑀𝑖 from one of its neighbors, say 𝑈𝑖 (step 1 ), the performance-based model aggregation function
assesses the local performance of𝑀𝑖 and aggregates the latter with its latest version of the local model𝑀𝑙𝑜𝑐𝑎𝑙
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(step 2 ). Periodically, this model is further trained with new local data (e.g., new ratings) as depicted in step 3 of
the figure. The information about the performance of𝑀𝑖 is not only used to adjust the way the latter is aggregated
with𝑀𝑙𝑜𝑐𝑎𝑙 , it is also sent to the personalized peer-sampling protocol (step 4 ). The objective of this protocol is
to periodically update nodes’ views (step 5 ). At the very beginning, view updates are performed randomly to
leverage previous theoretical and empirical works [7, 32] on how to ensure a logarithmic time dissemination of
models. Later, when the received models start to exhibit good local performance, the personalized peer-sampling
service remembers good neighbors and uses this information to improve the quality of the view. In PEPPER,
both the performance-based model aggregation function and the personalized peer sampling protocol are totally
decentralized protocols that do not rely on any central entity in the system.

4 PEPPER DETAILED DESCRIPTION

In this section, we present the two key components of PEPPER, i.e., the personalized peer-sampling protocol and
the performance-based model aggregation function.

4.1 Performance-based Aggregation Function

As opposed to existing model aggregation functions, which aim at optimizing global performance, we propose a
method that aims at maximizing the local performance of nodes. By doing so, nodes are more likely to obtain
satisfactory recommendations, which can improve both average and tail performance. To reach this objective, a
node needs to (i) assess the quality of a model received from one of its neighbors and (ii) use this information
during the model aggregation phase.

Let us consider the gossip learning setup described in section 2, where each node 𝐶𝑖 has its own local data 𝐷𝑖

and maintains a local model, say𝑀𝑖 . In order to assess the quality of received models, 𝐶𝑖 uses a random subset
𝐷

𝑤𝑒𝑖𝑔ℎ𝑡𝑖𝑛𝑔

𝑖
taken from its local data set 𝐷𝑖 , which we refer to as the weighting set of 𝐶𝑖 (Algorithm 2, line 2).

𝐷
𝑤𝑒𝑖𝑔ℎ𝑡𝑖𝑛𝑔

𝑖
can be seen as a validation set so it cannot be used for model training. However, in scenarios where

the data points are produced in a continuous stream, 𝐷𝑤𝑒𝑖𝑔ℎ𝑡𝑖𝑛𝑔

𝑖
can be refreshed with new data points while

some older points from 𝐷
𝑤𝑒𝑖𝑔ℎ𝑡𝑖𝑛𝑔

𝑖
can be appended to the training set. Upon reception of a model𝑀𝑥 from one

of its neighbors 𝐶𝑥 , 𝐶𝑖 evaluates it on 𝐷
𝑤𝑒𝑖𝑔ℎ𝑡𝑖𝑛𝑔

𝑖
. More specifically, 𝑀𝑥 is required to provide 𝐶𝑖 with a top-K

recommendation list for each item ∈ 𝐷𝑤𝑒𝑖𝑔ℎ𝑡𝑖𝑛𝑔

𝑖
among 100 random items (see Section 5.3). By quantifying how

high items of 𝐷𝑤𝑒𝑖𝑔ℎ𝑡𝑖𝑛𝑔

𝑖
are ranked, a measure of performance of 𝑀𝑥 , say 𝑃𝑥 is obtained (Algorithm 2, line 7).

Intuitively, this measure quantifies how similar the data distribution𝑀𝑥 was trained on, is to the distribution of
𝐷𝑖 . In the context of recommender systems, a node’s best-received models are more likely to come from nodes
who have similar tastes. Then, in order to use this information during the model aggregation phase, the node
proceeds by computing the performance of its local model 𝑀𝑖 on 𝐷

𝑤𝑒𝑖𝑔ℎ𝑡𝑖𝑛𝑔

𝑖
, say 𝑃𝑖 (Algorithm 2, line 8). This

will allow 𝐶𝑖 to compare the two models and assess the potential contribution of each. As illustrated in line 9 of
Algorithm 2, 𝑃𝑖 and 𝑃𝑥 are used as weights by the model aggregation function. By doing so, nodes give more
substance to the models that perform better on their data. This pairwise aggregation principle is classical in
gossip learning works [28, 30] where nodes can have substantially different model pushing periods, that is, a node
rarely receives multiple models at the same time. Therefore, creating synchronicity in the network by waiting
for a set of models can hinder convergence. Hence, by following the pairwise principle, PEPPER reduces the
synchronicity, enabling models to be aggregated as soon as they are received.

Following this, a traditional model update is done on the train data, that is, 𝐷𝑡𝑟𝑎𝑖𝑛
𝑖 (Algorithm 2, line 10). At last,

𝐶𝑖 stores 𝑃𝑥 as the last model performance received from 𝐶𝑥 . This information will be used by the personalized
peer-sampling protocol as further discussed in the following section.
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Algorithm 2: Performance-based Aggregation Function
Data: Local Dataset 𝐷𝑖 , currentModel𝑀𝑖 ,𝑊𝑒𝑖𝑔ℎ𝑡𝑖𝑛𝑔𝑆𝑖𝑧𝑒 , 𝑇𝑒𝑠𝑡𝑆𝑖𝑧𝑒

1 Procedure Init:
2 𝐷

𝑊𝑒𝑖𝑔ℎ𝑡𝑖𝑛𝑔

𝑖
= 𝑅𝑎𝑛𝑑𝑜𝑚𝑙𝑦𝑆𝑎𝑚𝑝𝑙𝑒𝑠𝑆𝑒𝑡 (𝐷𝑖 ,𝑊 𝑒𝑖𝑔ℎ𝑡𝑖𝑛𝑔𝑆𝑖𝑧𝑒) ▷ Randomly samples the weighting set

3 𝐷𝑡𝑒𝑠𝑡
𝑖 = 𝑅𝑎𝑛𝑑𝑜𝑚𝑙𝑦𝑆𝑎𝑚𝑝𝑙𝑒𝑠𝑆𝑒𝑡 (𝐷𝑖 \ 𝐷𝑊𝑒𝑖𝑔ℎ𝑡𝑖𝑛𝑔

𝑖
,𝑇𝑒𝑠𝑡𝑆𝑖𝑧𝑒) ▷ Randomly samples the test set

4 𝐷𝑡𝑟𝑎𝑖𝑛
𝑖 = 𝐷𝑖 \ (𝐷𝑊𝑒𝑖𝑔ℎ𝑡𝑖𝑛𝑔

𝑖

⋃
𝐷𝑡𝑒𝑠𝑡
𝑖 )

5

6 Procedure PerformanceBasedAggregationFunction(𝑀𝑥 ):
7 𝑃𝑥 = 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝐴𝑛𝑑𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒 (𝑀𝑥 , 𝐷

𝑤𝑒𝑖𝑔ℎ𝑡𝑖𝑛𝑔

𝑖
) ▷Make prediction with𝑀𝑥 and evaluate its performance

8 𝑃𝑖 = 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝐴𝑛𝑑𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒 (𝑀𝑖 , 𝐷
𝑤𝑒𝑖𝑔ℎ𝑡𝑖𝑛𝑔

𝑖
) ▷Make prediction with𝑀𝑖 and evaluate its performance

9 𝑀𝑖 =
1

𝑃𝑖+𝑃𝑥 (𝑃𝑖 ×𝑀𝑖 + 𝑃𝑥 ×𝑀𝑥 ) ▷ Aggregate𝑀𝑖 and𝑀𝑥 w.r.t their performance
10 𝑈𝑝𝑑𝑎𝑡𝑒 (𝑀𝑖 , 𝐷

𝑡𝑟𝑎𝑖𝑛
𝑖 ) ▷ Train the new𝑀𝑖 on local data

11

4.2 Personalized Peer-Sampling Algorithm

P2

P1 Px

P3

Personalized

Peer-Sampling

P2

P1 Px

P3

Models sent by Px and P1 are the 

best models received by P3.  

The personalized peer-sampling 

service considers the best models’ 

list (𝑳𝑵) of each node when sampling 

in order to maximize the chance of 

improving the views. Px and P1 are likely to be added to the 

view of P3.  

𝑳𝑵
Px

P1

..

1

2

3

𝑳𝑵
Px

P1

..

Fig. 3. Personalized Peer-Sampling Execution Scenario.

As discussed in Section 2, peer-sampling can have a significant impact on the convergence speed of Gossip
Learning algorithms. This protocol is even more important in use cases where a node might be more interested
in models coming from similar nodes in terms of data distribution. To take this into account, we extend the
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random peer-sampling protocol by considering the quality of the current nodes in the view, that is, their ability
of sending quality models, as illustrated in Figure 3. To this end, the personalized peer-sampling service collects
the recommendation performance of the received models and the identity of their respective nodes (steps 1

and 2 in the figure). These performances come from the evaluation step of the performance-based aggregation
function. As a result, nodes that sent quality models to a given node are likely to join his view in later rounds
(step 3 in the figure).

More formally, let us consider a node 𝐶𝑖 during a peer-sampling phase. To update its view 𝑉𝐶𝑖
, 𝐶𝑖 performs two

main steps, as illustrated in Algorithm 3. First, it relies on past information collected from the performance-based
model aggregation function regarding the performance of models received from other nodes in the system.
Specifically, 𝐶𝑖 maintain a list 𝐿𝑁 of nodes from which it received models in the past, sorted by the performances
of these models (lines 2-3). To update its view, 𝐶𝑖 considers the top 𝑇 elements of 𝐿𝑁 (lines 6-7). In addition to
this first step, 𝐶𝑖 randomly collects 𝑅 nodes from its peers’ views to form the new view (lines 8 -10). 𝑇 and 𝑅

depend on an exploration/exploitation ratio 𝛼 . Values of 𝛼 close to zero translate to an exploitation-dominant
approach that maximizes the performance of the view at the expense of discovering the network (i.e., 𝑃 ′ ≈ 𝑇 )
whereas on the contrary 𝛼 = 1 is an exploration-dominant approach and is equivalent to the traditional random
peer-sampling (i.e., 𝑃 ′ = 𝑅). The optimal value of 𝛼 cannot really be determined as it is highly dependent on the
underlying data. However, we observed empirically that an 𝛼 = 0.4, equivalent to 40% of nodes coming from 𝐿𝑁
and 60% of random nodes, gives the best results in our experiments.

Algorithm 3: Personalized Peer-Sampling Algorithm
Data: Nodes set 𝑁 , currentModel𝑀𝑖 , exploitation/exploration ratio 𝛼 , list of received models and their

best performance 𝐿𝑁 , 𝑉𝐶𝑖

1 Procedure OnModelReceived(𝑀𝑥 ):
2 𝑃𝑥 = PerformanceBasedAggregationFunction (𝑀𝑥 )
3 𝐿𝑁 .AddSorted(𝐶𝑥 , 𝑃𝑥 ) ▷ Add received model’s performance and its owner to the sorted list

4

5 Procedure UpdateView():
6 𝑇 = (1 − 𝛼) × |𝑉𝐶𝑖

|
7 𝐸𝑥𝑝𝑙𝑜𝑖𝑡𝑎𝑡𝑖𝑜𝑛𝑃𝑒𝑒𝑟𝑠 = 𝐿𝑁 .Get(𝑇 ) ▷ Get the top T elements of 𝐿𝑁 performance wise
8 𝑅 = |𝑉𝐶𝑖

| −𝑇
9 𝐸𝑥𝑝𝑙𝑜𝑟𝑎𝑡𝑖𝑜𝑛𝑃𝑒𝑒𝑟𝑠 = 𝑅𝑎𝑛𝑑𝑜𝑚𝑃𝑒𝑒𝑟𝑠 (𝑁, 𝑅) ▷ Get R random peers from N

10 𝑉𝐶𝑖
= 𝐶𝑜𝑛𝑐𝑎𝑡 (𝐸𝑥𝑝𝑙𝑜𝑟𝑎𝑡𝑖𝑜𝑛𝑃𝑒𝑒𝑟𝑠, 𝐸𝑥𝑝𝑙𝑜𝑖𝑡𝑎𝑡𝑖𝑜𝑛𝑃𝑒𝑒𝑟𝑠) ▷ Update view with exploitation and exploration peers

11

5 PERFORMANCE EVALUATION

In this section, we evaluate PEPPER on three real world datasets and compare its performance against centralized
and decentralized solutions. More specifically, we aim at answering the following research questions:

• RQ1: PEPPER aggregates models based on their local performance. How efficient is PEPPER compared to
decentralized solutions (that aggregate models to target average performance) and can it be competitive with
federated baselines?

• RQ2: Does considering the local performance of models make them more tailored to their users and how
does that affect tail performance?
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• RQ3: What role does the amount of sparsity play in the context of an increased personalization?

• RQ4: PEPPER extends the random-peer-sampling protocol by considering the local model performance. How
does this affect the learning process?

• RQ5: How sensitive is PEPPER to the peer set size parameter?

• RQ6: What level of overhead does PEPPER incur on the recommendation pipeline?

The rest of this section is structured as follows. We first introduce the experimental environment we used to
evaluate PEPPER (Section 5.1) before describing the used datasets (Section 5.2). Further, we explain our evaluation
methodology and the employed evaluation metrics (Section 5.3). Finally, we present our competitors (Section 5.4)
and analyze our experimental results answering the six questions introduced above (Section 5.5).

5.1 Experimental Environment

PEPPER is built on top of a decentralized network of nodes that is simulated using OMNetPy [43], a python
interface for OMNet++ [61], a popular simulation platform for communication networks. Associated with the well
known TensorFlow/Keras [1], it allows training models at the level of each node and exchanging these models over
a decentralized network. It is worth noting that since OMNet++ is an event-based simulator and our experiments
are based on round-based behaviors, we use timed events to simulate these actions. Note that in our simulations
initial nodes’ neighbors were generated randomly. Nevertheless, to ensure reliability and put all decentralized
competitors in the same setup, experiments were repeated several times using the same seed when generating
the initial setup.

5.2 Datasets

Dataset Type Users Locations/Movies Records Sparsity %
Foursquare-NYC Points of interest 1083 38333 227,428 0.997
Gowalla-NYC Points of interest 718 32924 185,932 0.986

MovieLens-100k Movies Recommendation 943 1682 100,000 0.936
Table 1. Statistics of Datasets.

As presented in Table 1, for our experiments we chose three different datasets that are commonly used to evaluate
recommendation systems. MovieLens-100K [25] is a dataset containing 100k movie ratings from 943 users on 1682
movies. Similarly to previous works [45, 64, 64] we adapted this dataset to the Generalized Matrix Factorization
(GMF) as follows: (i) all user ratings are converted to positive ratings (i.e., 1) and (ii) items not rated by a user
are labeled with zero. This pre-processing is closely related to the fact that the GMF model is a classifier whose
output is subject to a probabilistic activation function (i.e., the sigmoid function) representing the probability of
relevance of an item to a user [27]. Furthermore, the work of Koren [36] details how incorporating such binary
data, which normalizes the interpretation of ratings by users, can improve prediction accuracy. Finally, we note
that our competitors [45, 64] adopted the same approach.

The two other datasets are Foursquare-NYC and Gowalla-NYC Check-ins. The former consists of 227,428 check-ins
collected by 1083 users from 38333 venues and the latter is composed of 82197 check-ins and 718 users, both in
New York city. Each check-in is associated with its time stamp, its GPS coordinates and the venue category. In
the pre-processing phase, we removed locations with less than 10 visitors, and users with less than 10 check-ins,
as it is common for Point-of-Interest recommender systems [11, 22]. In addition, similarly to MovieLens, when
evaluating GMF, we transform the check-ins to binary ratings in order to build a top-K ranking recommender
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system. This step is not necessary for evaluating the PRME-G model that is specifically designed for sequential
check-in data. We have also computed the sparsity of each dataset as in Equation (3). It can be observed that
MovieLens has significantly less sparsity than the other two datasets.

𝑠𝑝𝑎𝑟𝑠𝑖𝑡𝑦 = 1 − 𝑎𝑣𝑔. 𝑟𝑎𝑡𝑒𝑑 𝑖𝑡𝑒𝑚𝑠

𝑎𝑙𝑙 𝑖𝑡𝑒𝑚𝑠
(3)

5.3 Evaluation Methodology

To evaluate PEPPER, we split the local datasets of each user using the 85-15 rule: 85% of the data is used to train
the model, which will be evaluated on the remaining 15%. Specifically, for each client 𝐶𝑖 , we split its data into a
training set 𝐷𝑡𝑟𝑎𝑖𝑛

𝑖 and a test set 𝐷𝑡𝑒𝑠𝑡
𝑖 . As explained in Section 4.1, for PEPPER, a weighting set 𝐷𝑤𝑒𝑖𝑔ℎ𝑡𝑖𝑛𝑔

𝑖
with

the same size as the test set is furthermore extracted from 𝐷𝑡𝑟𝑎𝑖𝑛
𝑖 . The model𝑀𝑖 is trained on 𝐷𝑡𝑟𝑎𝑖𝑛

𝑖 and locally
evaluated on 𝐷𝑡𝑒𝑠𝑡

𝑖 as opposed to other works which evaluate models on the union of test sets (i.e., a global test
set). By doing so, we measure the local performance of each model and quantify the user’s satisfaction. More
specifically, for a given user, we require each algorithm to provide the top-K recommendation list for each test
item among 100 randomly sampled and unvisited/unrated items. This is a common strategy to avoid ranking test
items among all unseen items [27, 53], which can be considerably time-consuming. The value of K is set to 5, 10
and 20 respectively.

For the GMF model, we use two classic metrics to evaluate the ranked lists, namely the hit ratio at rank r (i.e.,
HR@r), which is the performance metric we use to weight models in our aggregation function, and the normalized
discounted cumulative gain at rank r (i.e., NDCG@r). Intuitively, HR@r of the item 𝑡 takes the value 1 if the latter
is present in the top r elements of the ranked list and 0 otherwise. NDCG@r measures how good is the position
of 𝑡 in the list, assigning higher scores to hits at the top of the ranked list. More specifically, HR@r of a client 𝐶𝑖

will be computed as in Equation (4), while its NDCG@r will be the average of NDCGs@r of each of its items,
computed each as in Equation (5).

𝐻𝑅@𝑟 =

∑𝐼
𝑗=0𝐻𝑅@𝑟 𝑗

|𝐷𝑡𝑒𝑠𝑡
𝑖
| (4)

where 𝐻𝑅@𝑟 𝑗 is the hit ratio for item j and 𝐼 the set of items of the user 𝐶𝑖 .

𝑁𝐷𝐶𝐺@𝑟𝑖 =
log(2)

log(𝑝 + 2) (5)

with 𝑖 being the corresponding item and 𝑝 its position in the ranked list.

For the PRME-G model, we resort to the widely known metrics used in the original paper of Feng et al. [15],
namely Precision@r and Recall@r, which we use to compute the F1-Score at rank r. These metrics are well suited
for a next POI recommendation use case, where the ability of a model to find the known relevant POIs for a user
(i.e., recall) and its capacity to distinguish between relevant and non-relevant locations (i.e., precision) is very
important. More precisely, Precision@r is the proportion of recommended items in the top-r set that are relevant.
Hence, it is computed by taking the ratio of relevant items found in the top-r divided by r (see Equation (6)).
Similarly, Recall@r is the proportion of relevant items found in the top-r recommendations. It is computed by
taking the ratio of relevant items found in the top r divided by the total number of relevant items for a particular
user (see Equation (7)). To combine these two metrics, we compute the F1-Score@r and use it both for evaluation
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and aggregation purposes. F1-Score@r metric takes into account both Precision@r and Recall@r, as showed in
Equation (8).

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛@𝑟𝑢 =
|Relevant items for user u@r|

𝑟
(6)

𝑅𝑒𝑐𝑎𝑙𝑙@𝑟𝑢 =
|Relevant items for user u@r|
All relevant items for user u

(7)

𝐹1-𝑆𝑐𝑜𝑟𝑒@𝑟𝑢 = 2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛@𝑟𝑢 × 𝑅𝑒𝑐𝑎𝑙𝑙@𝑟𝑢

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛@𝑟𝑢 + 𝑅𝑒𝑐𝑎𝑙𝑙@𝑟𝑢
(8)

5.4 Baselines

We compare our aggregation techniques against six baselines. These baselines are of two kinds: federated baselines,
i.e., baselines that follow the classical FL architecture and decentralized baselines, i.e., baselines that rely on
Gossip Learning.

Federated Baselines.

• FedAvg [41] is one of the most popular FL protocols, based on the traditional master-slave FL architecture.
Instead of centralizing the raw data as in Centralized GMF, FedAvg centralizes model updates from the FL
users and aggregates them based on the number of samples they were trained on.

• FedFast [45] is the closest work to ours, albeit being centralized. FedFast is an extension over the FedAvg
algorithm that clusters users at each round using a k-means algorithm. Subsequently, it performs cross-cluster
aggregation for the user embeddings of the GMF model while aggregating the item embeddings and other
model parameters in the same manner as FedAvg. At the beginning of each FL round, it samples users equally
from each cluster. We adapt this technique for the PRME-G model in order to compare it with PEPPER.

• Reptile [64] is a meta-learning approach, which uses the weights learned by the FedAvg algorithm to initialize
a local meta-model to each user. Afterwards, this meta-model is fine-tuned on local data by updating the
initial parameters towards the final parameters learned locally. This approach has been shown to improve
personalization.

Decentralized Baselines.

• Model-Age-Based is a decentralized gossip-based approach introduced in [28, 30]. Models received by a user
are weighted proportionally to the number of times they have been updated (i.e., the model’s age). The
rationale behind this aggregation algorithm is that a model which was updated by a larger number of nodes
has more information so it should weight more in the aggregation function.

• Decentralized FedAvg [38] is a decentralized version of FedAvg. Models circulate freely through the network
and nodes weight them in the aggregation function depending on the number of samples they were trained
on.

• Decentralized Reptile is a decentralized version of Reptile [64] that we implemented in which each node
fine-tunes its local model based on the parameters learned in a decentralized collaborative way.

Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, Vol. 6, No. 3, Article 101. Publication date:
September 2022.



PEPPER: Empowering User-Centric Recommender Systems over Gossip Learning • 101:13

5.5 Experimental Results and Discussions

Based on the evaluation setup described above, we conduct experiments to evaluate the performance of PEPPER
against the state-of-the-art solutions introduced in the previous section. Our evaluation aims at answering the
questions introduced at the beginning of Section 5.

5.5.1 PEPPER Average Performance Comparison. In this experiment, we compare the performance of all
models on PEPPER and the aforementioned baselines. Firstly, we evaluate the average top-K recommendation
quality where K is 5, 10 and 20. Table 2 and Table 4 show the average top-20 recommendation hit ratio comparison
on Foursquare and MovieLens, while Table 3 and Table 5 show the average NDCG. In Tables 6 and 7 we report
the F1 score of PRME-G on the Foursquare and Gowalla datasets. From these results, we can observe that PEPPER
outperforms its decentralized competitors on all datasets. Compared to Decentralized FedAvg, PEPPER has a
better HR@20 and NDCG@20 by a margin of 8.93% and 4.35%, respectively. The results for different values of K
and two different metrics confirm that PEPPER does not privilege recall to the ranking quality of tested items,
even though HR is used during the aggregation. This is essential to show that our system is not only optimizing
a specific metric (i.e., Goodhart’s law [40]) but using it to optimize the true quality of the model.

Algorithm Average Hit Ratio %
K = 20 K = 10 K = 5

FedAvg 32.42 24.0 18.30
Reptile 31.59 23.25 18.10
FedFast 37.12 26.27 18.94

Decentralized FedAvg 37.00 28.10 20.44
Model-Age-Based 38.54 26.87 20.16

Decentralized Reptile 38.58 28.99 22.70
PEPPER 45.93 32.59 25.90

Table 2. Average Hit Ratio % on Foursquare-NYC

(GMF).

Algorithm Average NDCG %
K = 20 K = 10 K = 5

FedAvg 16.61 14.37 12.66
Reptile 17.12 14.36 13.38
FedFast 18.41 15.69 13.30

Model-Age-Based 19.07 16.81 14.92
Decentralized FedAvg 18.75 17.39 15.37
Decentralized Reptile 22.04 19.61 17.63

PEPPER 23.10 20.44 19.24

Table 3. Average NDCG % on Foursquare-NYC

(GMF).

Algorithm Average Hit Ratio %
K = 20 K = 10 K = 5

FedAvg 79.69 64.4 47.59
Reptile 79.49 62.6 44.1
FedFast 82.79 67.80 50.00

Decentralized FedAvg 74.9 55.0 40.7
Model-Age-Based 73.69 55.5 42.4

Decentralized Reptile 70.19 51.60 36.29
PEPPER 79.29 61.20 47.59

Table 4. Average Hit Ratio % on MovieLens-100k

(GMF).

Algorithm Average NDCG %
K = 20 K = 10 K = 5

FedAvg 41.03 37.35 32.07
Reptile 40.07 35.80 29.83
FedFast 44.14 40.34 34.50

Decentralized FedAvg 36.17 31.79 27.56
Model-Age-Based 37.47 33.06 29.81

Decentralized Reptile 34.0 29.05 24.14
PEPPER 40.09 35.60 32.53

Table 5. Average NDCG % on MovieLens-100k

(GMF).

Foursquare is the most sparse dataset out of the three (see Table 1) and therefore has more heterogeneous user
profiles so one global model may not be able to fit all user preferences (see §5.5.3). Therefore, our solution which
builds personalized models outperforms centralized solutions in most cases except for the F1@20 on Foursquare
(see Table 6). The sparsity observation is further supported by the results obtained on Gowalla (see Table 7),
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Algorithm Average F1-Score %
K = 20 K = 10 K = 5

FedAvg 32.87 28.62 21.50
Reptile 35.00 31.53 23.86
FedFast 33.35 30.56 23.18

Decentralized FedAvg 21.82 18.70 16.03
Model-Age-Based 20.48 18.60 17.19

Decentralized Reptile 27.28 25.46 21.19
PEPPER 34.05 32.44 26.38

Table 6. Average F1-Score % on Foursquare-NYC

(PRME-G).

Algorithm Average F1-Score %
K = 20 K = 10 K = 5

FedAvg 21.35 18.53 15.37
Reptile 20.90 17.07 13.46
FedFast 21.80 18.28 15.09

Decentralized FedAvg 11.30 10.18 9.13
Model-Age-Based 9.92 8.59 7.64

Decentralized Reptile 9.10 7.66 6.05
PEPPER 23.63 20.66 17.15

Table 7. Average F1-Score % on Gowalla-NYC

(PRME-G).

which is similar in sparsity to Foursquare and where PEPPER outperforms all the other solutions, for all values of
K. The Reptile algorithm has a fairly high performance with the PRME-G model and is the best algorithm for
K=20 on Foursquare. However, since it is outperformed by PEPPER for other values of K, we can conclude that
it finds many of the relevant items but does not rank them as accurately as PEPPER. On MovieLens, which is
less sparse (see Tables 4 and 5), PEPPER is usually overpassed by centralized solutions (i.e., FedFast, FedAvg and
Reptile). Among the latter three, FedFast performs the best since it personalizes based on a view over all users
so it reaches a better personalization-generalization tradeoff compared to PEPPER. Nevertheless, PEPPER still
substantially overpasses all the decentralised algorithms.

Based on these results, we can observe that PEPPER always outperforms its decentralized competitors

on average performance and can even be competitive with centralized solutions, especially in the case

of sparse recommendation matrices (RQ1).

5.5.2 PEPPER Tail Performance Comparison. In this experiment, we are interested in evaluating the
individual satisfaction of each user. Figures 4a and 5a illustrate the cumulative distribution functions of the HR in
two datasets: Foursquare-NYC and MovieLens.

Similarly, Figures 4b and 5b illustrate that for NDCG. In these figures a point (𝑥 = 𝐻𝑅,𝑦 = 𝐶𝐷𝐹 (𝑥)), respectively
(𝑥 = 𝑁𝐷𝐶𝐺,𝑦 = 𝐶𝐷𝐹 (𝑥)), represents the proportion of users𝑦 having a hit ratio at most equal to HR, respectively
an NDCG value at most equal to NDCG. Hence for a fixed value of HR or NDCG, the best curve is the one furthest
to the right. Centralized and generically aggregated models are often optimized with respect to a global objective
and are, thus, less tailored to each individual user. Therefore, there is often a large gap between the tail and the
average performance of these solutions. PEPPER aims to reduce this gap. For example, the 99.9th percentile in
PEPPER achieves about three times the performance of its best competitor (i.e., centralized FedAvg) on Foursquare
(see Figure 4a). We mention that the 99th percentile represents the values corresponding to a CDF of 0.1 on
Figures 4, 5, and 6. Concerning MovieLens, PEPPER is generally overpassed by centralized solutions on both short
and long tail performance. However, it always achieves better tail performance than its decentralized competitors
(see Figure 5). The aforementioned experiments are performed with a Generalized Matrix Factorization (GMF)
model. Figures 6a and 6b illustrate the percentiles’ F1 score results for the PRME-G model. Similarly to the
previous use case, The FedFast protocol and Reptile have the best short tail score. Nevertheless, we can observe
that PEPPER has a performance close to the best performing solution and even outperforms them on the long tail
(i.e., 60th to 85th percentile). For the short tail, around 2.5% of nodes don’t seem to have enough datapoints to
converge PRME-G in a decentralized learning setup so the 99.9th percentile F1 score of all decentralized solutions
tends towards zero. In summary, the evaluation results show that PEPPER outperforms state-of-the-art
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Fig. 4. Top-K recommendation quality distribution comparison on Foursquare-NYC (GMF, K = 20).
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Fig. 5. Top-K recommendation quality distribution comparison on MovieLens-100K (GMF, K = 20).

decentralized solutions on long and short tail performance. Moreover, PEPPER slightly improves

the short tail (i.e., 99.9th percentile) on MovieLens over centralized competitors, while significantly

improving the long tail on the other datasets (RQ2).

5.5.3 Effects of Sparsity. Sparsity is a very important aspect that often negatively impacts the performance
of recommendation systems. Therefore, to evaluate its impact on PEPPER, we have generated two additional
datasets (Dense ML-100k and Sparse ML-100k) by clustering the users of the original MovieLens-100k using
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Fig. 6. Top-K F1-Score cumulative distribution function (PRME-G, K = 20).

k-means. Dense ML-100k is composed of the users which come from the most dense cluster while Sparse ML-100k
is composed of all of the outliers.

Higher sparsity levels can often lead to users having less overlap in terms of preferences (i.e., rated movies,
visited locations), which makes it challenging for global models, and especially those based on learning the
user-item relationships, to fit all users’ preferences. Therefore, the centralized solutions (e.g., FedAvg), which train
a unique model will experience more difficulties to provide satisfactory results for all users. However, as shown
in Figure 7, the personalized models built by PEPPER, through their ability to capture the preferences

of each user, seem to be more robust to high degrees of sparsity. This result further corroborates the

Section 5.5.1 results, where PEPPER was more competitive with the centralized approaches on sparsest

datasets (RQ3).

5.5.4 Sensitivity of PEPPER to the exploitation-exploration ratio alpha. Peer-sampling is a key compo-
nent of the system as the search for similar neighbors helps model personalization and hence improves the local
performance. In this context, the alpha parameter in PEPPER, which fixes the exploration versus the exploitation
ratio, plays a crucial role. We have evaluated the impact of this parameter on the performance of PEPPER in an
equal number of training rounds by measuring the CDF of the local hit ratio with various values of alpha, as
well as computing the average hit ratio. Results depicted in Figure 8a show that a value of alpha = 0.4 yields the
best average hit ratio. By looking closer at Figure 8b, we observe that for a value of alpha = 0 where nodes never
change their neighbors, there are two consequences: i) the rate of model dissemination is reduced and ii) the
initial placement of nodes becomes very significant, as a node without similar first or second degree neighbors
will not be able to personalize its model and will have to settle for the models it receives, finding itself forced
to build a more global model. On the other hand, for an alpha = 1, where at each peer-sampling period, nodes
completely change their view, which does not give them the time to make the most of similar nodes’ model,
it seems that personalization is significantly diminished but not completely annihilated. This leads to better
models than the first case. Inevitably, the average performance suffers in both of these extreme cases (70.49% in
the former and 75.49% in the latter). This also shows, as expected, that an aggregation maximizing local
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Fig. 7. The robustness of PEPPER to sparsity in comparison with Federated Averaging, on three different sparsity levels:

Dense ML-100k (sparsity = 0.64, users = 579), Original ML-100k (sparsity = 0.93, users = 943) and Sparse ML-100k (sparsity =

0.99, users = 201).

performance cannot have a significant impact if the model evaluation step is not exploited to identify

similar nodes and take advantage of their models. Simultaneously, PEPPER cannot entirely rely on a

personalized peer-sampling as randomization is important to disseminate models and to find better

neighbours (RQ4).

(a) Cumulative Distribution Function comparison be-

tween different alpha values on MovieLens-100k (GMF).

(b) Average performance w.r.t different values of Alpha

on MovieLens-100k (GMF).

Fig. 8. Sensitivity of PEPPER to the exploitation-exploration ratio alpha.

5.5.5 Sensitivity of PEPPER to the peer set size. In order to assess the impact of the peer set size on the
performance of PEPPER, we performed an experiment where we doubled the peer set size used in the other
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experiments of this paper (i.e., peer set size = 6 instead of peer set size = 3). We performed this experiment on the
MovieLens-100k dataset using the GMF model. Results are depicted in Table 8. From these results, we observe
that increasing the peer set size positively impacts convergence as the models need less rounds to converge.
Moreover, performance is faintly improved. However, this comes at the price of an increased computational
overhead as nodes receive more models, hence, computing more SGD and aggregation steps. To choose our

peer set size, we complied to the theoretical bounds proved by previous works on gossip [7]. The latter

state that a logarithmic peer set size in the total number of nodes provides the best tradeoff between

all of these metrics under the condition that each new node 𝑣 is connected to another one𝑤 with a

probability proportional to the number of neighbours of𝑤 (RQ5).

Average Performance (HR %) Average Communication Rounds Average Overhead (seconds)
Peer Set Size = 3 0.79 283 53.4
Peer Set Size = 6 0.80 136 119.8

Table 8. Impact of the Peer Set Size on PEPPER.

5.5.6 Overhead evaluation. We also evaluated the overhead of PEPPER compared with its decentralized
competitors. In Figure 9a we represented the CDF of the total computation time for each individual node. On
each node, we sum up the time spent to compute the SGD algorithm on local data and the aggregation time over
all of the learning process and then, we represent these values as a CDF. In this latter, we did not consider the
Decentralized FedAvg algorithm due to it having the same cost as Model-age-based. We can observe that 90% of
the nodes in both Decentralized Reptile and Model-age-based have fairly homogeneous execution times, with
90% of them having around 25 seconds. Concerning PEPPER, 21% of the nodes have a total execution

time inferior to the other decentralized solutions and 69% of the nodes have a longer execution time

of 54 seconds (RQ6). These two clusters of users are formed because of the following phenomenon. The
nodes with less data will usually send less-accurate models to their neighbours so, because of our Personalized
Peer-sampling, they will be chosen with less probability by the other nodes. Therefore, they will receive less
models to be evaluated by PEPPER and therefore their execution time will be shorter.

Even if the execution time is higher on some nodes, PEPPER personalizes the models to the preferences of each
user so it needs less communication rounds to converge (see Figure 9b). On average, the nodes of PEPPER

reach the model convergence after 283 communication rounds comparing with 410 for Model-age-

based and 490 for Decentralized Reptile. When analysing the high percentiles, we can observe that the

gap increases even more. For example, the 99th percentile of PEPPER is characterized by 799 and 1247

fewer rounds than Model-age-based and Decentralized Reptile, respectively (RQ6’).

6 DISCUSSION

In this section we discuss the limitations of PEPPER and their possible mitigations.

On the use of simulations to evaluate PEPPER: Decentralized systems imply the existence of a large
number of nodes interconnected in a peer-to-peer network. However, few organizations have access to such a
system in the physical world. Therefore, many research works rely on simulators to evaluate their decentralized
algorithms [28, 30]. In PEPPER, we rely on Omnet++ [61], a popular network simulator allowing to evaluate
settings involving up to 1000 nodes. Practical studies have further assessed the accuracy of using this simulator
compared to real testbeds [10].

On the privacy of PEPPER: We assume in this paper that participants are trusted. However, despite the fact
that nodes keep their data in their premises, there exist attacks that have been devised in the context of Federated
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Fig. 9. Computation vs Communication costs.

Learning and that can leak private information from the exchanged model updates [20, 47]. These attacks could
very well take place in a fully decentralized setting as in PEPPER, but considering such attacks is out of the
scope of this paper. Nevertheless, there exist research works focusing on this issue (e.g., solutions relying on
differential privacy [46]). Specifically, Hegedűs and Jelasity [29] have investigated the use of differential privacy
in the context of Gossip Learning [29]. In the more generic context of Federated Learning other solutions to
protect users against inference attacks are heavily investigated by the research community as surveyed in [13]. A
combination of existing solutions with PEPPER shall be investigated in future work.

On the resilience of PEPPER to poisoning attacks: Similarly to inference attacks, there exist poisoning
attacks that have been proposed in the context of Federated Learning and that could easily be launched by
PEPPER participants (e.g., [31, 60, 67]). For instance, malicious participants could send poisonous model updates
to their neighbors. While we considered this issue as being out of the scope of this paper, the fact that nodes in
PEPPER locally assess the relevance of received models before aggregating them could naturally protect them
against such attacks. We plan to assess in our future work the resilience of PEPPER to poisoning attacks. In case
these attacks are still possible, there exist model aggregation functions that have been devised in the context of
FL in order to identify and exclude poisonous gradients and that could be integrated in PEPPER (e.g., [5, 59, 67]).

On the impact of churn, network dynamics and node heterogeneity: Churn and more generally network
dynamics and node heterogeneity (e.g., in terms of computing and networking capabilities) have an impact on
the performance of gossip protocols and thus on the applications running on top of them such as PEPPER. While
studying the impact of churn, network dynamics and node heterogeneity is important, we considered it out of
the scope of this paper. In practice, we expect churn, network dynamics and node heterogeneity to have a similar
impact on PEPPER and on its decentralized competitors, who did not either look at these issues yet. Nevertheless,
the distributed systems community has investigated many gossiping flavors that increase the robustness of gossip
to the above issues. For instance, Frey et al. [16] showed that while the gossip protocol is by design robust to
churn in a uniform and highly capable distribution, it can be adapted to heterogeneous setups by adjusting
the view size of each node proportionally to its upload capability. Combining this approach with theoretical
results, which show that an average logarithmic view size preserves the dissemination of a gossip protocol, [16]
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enhances considerably the robustness of gossip protocols to churn in heterogeneous contexts. More recently,
preliminary solutions have been considered for gossip learning (e.g., [19, 24]). For instance, in [19], a simple yet
effective mechanism that skips the aggregation and update phases when the view size of the sending node is
small, ensures that models coming from low-degree nodes propagate faster. As opposed to this approach, Han
et al. [24] proposed a data-driven one where the ratio and the nature of training data taken in consideration by a
node is adjusted accordingly to its computing and networking abilities. A combination of such solutions with
PEPPER shall be investigated in future work.

7 RELATED WORK

In the past several solutions have been proposed to build distributed recommender systems. The first ones
focused mainly on memory-based methods of recommendations, which usually use similarity metrics to build
communities of users and/or items. In addition to being highly time consuming [6], these methods require sharing
recommendation information (e.g., ratings, user-items interactions, etc.) between users which was done either
through distributed hash tables [23, 34] or directly via gossip protocols [49, 50]. This information sharing is
sometimes transgressing user privacy so it motivated more careful designs such as [12, 26], which imply a notion
of trust between subsets of users. However, these setups were neither practical nor generalizable so various
privacy-preserving recommender systems started to emerge.

The privacy-preserving recommender systems fall into three categories. First, there are homomorphic-encryption-
based solutions [21, 35, 63], where user profiles, ratings, and any sensitive information is encrypted before being
processed. This approach is computationally expensive and introduces a significant overhead. A state-of-the-art
implementation of fully homomorphic encryption [52] requires 28 hours to make a recommendation onMovieLens
[25]. The second category is composed of solutions based on differential privacy (DP) [4, 17, 18, 42] where user
profiles are obfuscated with noise. However, due to noise interference, DP often introduces a compromise between
the privacy and the accuracy of recommendations. The third category of privacy-preserving recommender systems
is represented by the Federated Learning-based solutions. Depending on the presence of parameter servers or not,
Federated Recommender Systems can be divided in two categories:

Centralized FL recommender systems. These systems are characterized by the presence of a centralized server which
coordinates the learning process. In the works of Qin and Liu [51] this entity allows the users to collaboratively
train a recommender model based on sensitive information such as location and age which are kept private on
client devices. In addition, user-items interactions are considered to be publicly available so they are centralized
and leveraged to train another model on the server-side. However, it can be argued that such interactions are
also private by nature. Therefore, other works [45, 54, 64] are more strict in this regard as they do not assume
any publicly available data. For personalization and user satisfaction purposes, two distinct approaches can be
identified : Meta-Learning-based solutions and similarity-based ones. The former [14, 54, 64] are based on the
idea of training a global model following a traditional method (e.g., Federated Averaging) then fine-tuning it
on local data by making meta-steps, which turn the global model into a more personalized one. While such
techniques have been found to be effective in many use cases, they incur a risk of overfitting due to the purely
local personalization. In contrast, in PEPPER, a model is personalized by taking advantage of similar models,
which reduces the risk of overfitting. On the other hand, these Meta-Learning techniques depend considerably on
having a good global model as a starting point. For that reason, they have not, to the best of our knowledge, been
considered in decentralized contexts, where obtaining such a global model is often fairly difficult. In the similarity-
based class of solutions, FedFast [45] can be considered as one of the most influential works. It incorporates a
similarity-based client sampling technique employed to cluster users so that an active aggregation function can
be applied within these clusters, which improves the performance and convergence speed. However, the client
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sampling technique is based on a per-round clustering, which, as stated by the authors, is quite costly (e.g., a
time complexity O(𝑛81) per round on MovieLens-100k). In contrast, PEPPER emulates a cheaper and gradual
clustering along the learning process, by keeping similar nodes close to each other. Another difference is that
PEPPER considers all models and only ponders their magnitude with respect to their similarity, while in contrast,
FedFast completely excludes parts of the models that are outside of the cluster of a user. Finally, FedFast also
inherits the main drawback of centralized FL solutions which is the presence of a central server that can face
different kinds of challenges (See Section 2.1).

Decentralized FL recommender systems. In decentralized FL recommender systems, there is no central server
and clients instead exchange models with each other. To the best of our knowledge, the work of Hegedűs et al.
[28] is the only decentralized Federated Learning recommender system solution in the literature. In this work,
the authors show that decentralization’s impact on performance can be mitigated. For that purpose, different
model compression methods as well as algorithmic enhancements in the form of flow control mechanisms were
presented. While they do not specifically target aggregation functions, they still implement an aggregation
function that takes into consideration the age of models, which allows models that have seen more data to have a
larger weight. We consider this work as a baseline in our current evaluation settings to quantify the added value
of our performance-based aggregation function.

8 CONCLUSION

In this work, we presented PEPPER, a decentralized and privacy-preserving recommender system. PEPPER relies
on Gossip Learning principles for enabling nodes to asynchronously train a model that better responds to their
needs. At the heart of PEPPER resides two key components: i) a personalized peer-sampling protocol, which
allows each node to keep in his neighborhood a proportion of similar nodes (taste wise), leading to a gradual
clustering of users and ii) a simple yet effective model aggregation function that builds a model that is better suited
to each user. We implemented PEPPER on a networking simulator and evaluated its performance using three real
datasets involving up to 1000 nodes and implementing two use cases: a location check-in recommendation and
a movie recommendation. Our results show that, on average, nodes in PEPPER converge with up to 42% less
communications rounds than with other decentralized approaches while providing up to 8% improvement on
average performance and up to 30% improvement on tail performance compared to decentralized competitors. As
part of our future work we plan to investigate the impact of fully decentralizing recommender systems as in
PEPPER on their resilience to adversaries.
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[19] Lodovico Giaretta and Šarūnas Girdzijauskas. 2019. Gossip learning: Off the beaten path. In 2019 IEEE International Conference on Big
Data (Big Data). IEEE, 1117–1124.

[20] Neil Zhenqiang Gong and Bin Liu. 2016. You are who you know and how you behave: Attribute inference attacks via users’ social
friends and behaviors. In 25th USENIX Security Symposium (USENIX Security 16). 979–995.

[21] Rachid Guerraoui, Anne-Marie Kermarrec, Rhicheek Patra, Mahammad Valiyev, and Jingjing Wang. 2017. I Know Nothing about You
But Here is What You Might Like. In 2017 47th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN).
439–450. https://doi.org/10.1109/DSN.2017.22

[22] Yeting Guo, Fang Liu, Zhiping Cai, Hui Zeng, Li Chen, Tongqing Zhou, and Nong Xiao. 2021. PREFER: Point-of-Interest REcommendation
with Efficiency and Privacy-Preservation via Federated Edge LeaRning. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 5, 1,
Article 13 (mar 2021), 25 pages. https://doi.org/10.1145/3448099

[23] Peng Han, Bo Xie, Fan Yang, and Ruimin Shen. 2004. A scalable P2P recommender system based on distributed collaborative filtering.
Expert Syst. Appl. 27 (2004), 203–210.

[24] Rui Han, Shilin Li, Xiangwei Wang, Chi Harold Liu, Gaofeng Xin, and Lydia Y Chen. 2020. Accelerating gossip-based deep learning in
heterogeneous edge computing platforms. IEEE Transactions on Parallel and Distributed Systems 32, 7 (2020), 1591–1602.

[25] F. Maxwell Harper and Joseph A. Konstan. 2015. The MovieLens Datasets: History and Context. ACM Trans. Interact. Intell. Syst. 5, 4,
Article 19 (dec 2015), 19 pages. https://doi.org/10.1145/2827872

[26] Tanzima Hashem, Rubaba Hasan, Flora Salim, and Mehnaz Tabassum Mahin. 2018. Crowd-enabled processing of trustworthy, privacy-
enhanced and personalised location based services with quality guarantee. Proceedings of the ACM on Interactive, Mobile, Wearable and
Ubiquitous Technologies 2, 4 (2018), 1–25.

[27] Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng Chua. 2017. Neural Collaborative Filtering. CoRR
abs/1708.05031 (2017). arXiv:1708.05031 http://arxiv.org/abs/1708.05031

[28] István Hegedűs, Gábor Danner, and Márk Jelasity. 2020. Decentralized Recommendation Based on Matrix Factorization: A Comparison
of Gossip and Federated Learning. In Machine Learning and Knowledge Discovery in Databases, Peggy Cellier and Kurt Driessens (Eds.).
Springer International Publishing, Cham, 317–332.

[29] István Hegedűs and Márk Jelasity. 2017. Differentially private linear models for gossip learning through data perturbation. OPEN
JOURNAL OF INTERNET OF THINGS 3, 1 (2017), 62–74.

[30] István Hegedűs, Gábor Danner, and Márk Jelasity. 2021. Decentralized learning works: An empirical comparison of gossip learning and
federated learning. J. Parallel and Distrib. Comput. 148 (02 2021), 109–124. https://doi.org/10.1016/j.jpdc.2020.10.006

Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, Vol. 6, No. 3, Article 101. Publication date:
September 2022.

https://www.statista.com/chart/3713/smartphone-use-of-location-based-services/
https://www.statista.com/chart/3713/smartphone-use-of-location-based-services/
https://www.forbes.com/sites/daveywinder/2020/08/19/massive-data-leak235-million-instagram-tiktok-and-youtube-user-profiles-exposed/
https://www.forbes.com/sites/daveywinder/2020/08/19/massive-data-leak235-million-instagram-tiktok-and-youtube-user-profiles-exposed/
http://arxiv.org/abs/1908.05544
http://arxiv.org/abs/1908.05544
https://doi.org/10.1145/3397271.3401053
https://doi.org/10.1109/DSN.2017.22
https://doi.org/10.1145/3448099
https://doi.org/10.1145/2827872
http://arxiv.org/abs/1708.05031
http://arxiv.org/abs/1708.05031
https://doi.org/10.1016/j.jpdc.2020.10.006


PEPPER: Empowering User-Centric Recommender Systems over Gossip Learning • 101:23

[31] Hai Huang, Jiaming Mu, Neil Zhenqiang Gong, Qi Li, Bin Liu, and Mingwei Xu. 2021. Data poisoning attacks to deep learning based
recommender systems. arXiv preprint arXiv:2101.02644 (2021).

[32] Márk Jelasity, Rachid Guerraoui, Anne-Marie Kermarrec, and Maarten van Steen. 2004. The Peer Sampling Service: Experimental
Evaluation of Unstructured Gossip-Based Implementations. In Middleware 2004, Hans-Arno Jacobsen (Ed.). Springer Berlin Heidelberg,
Berlin, Heidelberg, 79–98.

[33] Peter Kairouz, H. Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis, Arjun Nitin Bhagoji, Keith Bonawitz, Zachary
Charles, Graham Cormode, Rachel Cummings, Rafael G. L. D’Oliveira, Salim El Rouayheb, David Evans, Josh Gardner, Zachary Garrett,
Adrià Gascón, Badih Ghazi, Phillip B. Gibbons, Marco Gruteser, Zaïd Harchaoui, Chaoyang He, Lie He, Zhouyuan Huo, Ben Hutchinson,
Justin Hsu, Martin Jaggi, Tara Javidi, Gauri Joshi, Mikhail Khodak, Jakub Konečný, Aleksandra Korolova, Farinaz Koushanfar, Sanmi
Koyejo, Tancrède Lepoint, Yang Liu, Prateek Mittal, Mehryar Mohri, Richard Nock, Ayfer Özgür, Rasmus Pagh, Mariana Raykova, Hang
Qi, Daniel Ramage, Ramesh Raskar, Dawn Song, Weikang Song, Sebastian U. Stich, Ziteng Sun, Ananda Theertha Suresh, Florian Tramèr,
Praneeth Vepakomma, Jianyu Wang, Li Xiong, Zheng Xu, Qiang Yang, Felix X. Yu, Han Yu, and Sen Zhao. 2019. Advances and Open
Problems in Federated Learning. CoRR abs/1912.04977 (2019). arXiv:1912.04977 http://arxiv.org/abs/1912.04977

[34] Jae Kyeong Kim, Hyea Kim, and Yoon Cho. 2004. A user-oriented contents recommendation system in peer-to-peer architecture. Expert
Systems with Applications 34 (01 2004), 300–312. https://doi.org/10.1016/j.eswa.2006.09.034

[35] Sungwook Kim, Jinsu Kim, Dongyoung Koo, Yuna Kim, Hyunsoo Yoon, and Junbum Shin. 2016. Efficient privacy-preserving matrix
factorization via fully homomorphic encryption. In Proceedings of the 11th ACM on Asia Conference on Computer and Communications
Security. 617–628.

[36] Yehuda Koren. 2008. Factorization meets the neighborhood: a multifaceted collaborative filtering model. In Proceedings of the 14th ACM
SIGKDD international conference on Knowledge discovery and data mining. 426–434.

[37] Jure Leskovec and Andrej Krevl. 2014. SNAP Datasets: Stanford Large Network Dataset Collection. http://snap.stanford.edu/data.
[38] Chengxi Li, Gang Li, and Pramod K. Varshney. 2020. Decentralized Federated Learning via Mutual Knowledge Transfer. CoRR

abs/2012.13063 (2020). arXiv:2012.13063 https://arxiv.org/abs/2012.13063
[39] Xiangru Lian, Ce Zhang, Huan Zhang, Cho-Jui Hsieh, Wei Zhang, and Ji Liu. 2017. Can Decentralized Algorithms Outperform Centralized

Algorithms? A Case Study for Decentralized Parallel Stochastic Gradient Descent. arXiv e-prints, Article arXiv:1705.09056 (May 2017),
arXiv:1705.09056 pages. arXiv:1705.09056 [math.OC]

[40] David Manheim and Scott Garrabrant. 2018. Categorizing variants of Goodhart’s Law. arXiv preprint arXiv:1803.04585 (2018).
[41] H. Brendan McMahan, Eider Moore, Daniel Ramage, and Blaise Agüera y Arcas. 2016. Federated Learning of Deep Networks using

Model Averaging. CoRR abs/1602.05629 (2016). arXiv:1602.05629 http://arxiv.org/abs/1602.05629
[42] Frank McSherry and Ilya Mironov. 2009. Differentially Private Recommender Systems: Building Privacy into the Netflix Prize Contenders.

In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (Paris, France) (KDD ’09).
Association for Computing Machinery, New York, NY, USA, 627–636. https://doi.org/10.1145/1557019.1557090

[43] Marcos Modenesi. 2020. OMNetPy: OMNeT++ meets python. https://github.com/mmodenesi/omnetpy
[44] Itishree Mohallick, Katrien DeMoor, ÖzlemÖzgöbek, and Jon Atle Gulla. 2018. Towards new privacy regulations in europe: Users’ privacy

perception in recommender systems. In International Conference on Security, Privacy and Anonymity in Computation, Communication
and Storage. Springer, 319–330.

[45] Khalil Muhammad, Qinqin Wang, Diarmuid O’Reilly-Morgan, Elias Tragos, Barry Smyth, Neil Hurley, James Geraci, and Aonghus
Lawlor. 2020. Fedfast: Going beyond average for faster training of federated recommender systems. In Proceedings of the 26th ACM
SIGKDD International Conference on Knowledge Discovery & Data Mining. 1234–1242.

[46] Mohammad Naseri, Jamie Hayes, and Emiliano De Cristofaro. 2022. Local and central differential privacy for robustness and privacy in
federated learning. Proceedings of the 29th Network and Distributed System Security Symposium (NDSS 2022) (2022).

[47] Milad Nasr, Reza Shokri, and Amir Houmansadr. 2019. Comprehensive privacy analysis of deep learning: Passive and active white-box
inference attacks against centralized and federated learning. In 2019 IEEE symposium on security and privacy (SP). IEEE, 739–753.

[48] Róbert Ormándi, István Hegedüs, and Márk Jelasity. 2011. Efficient P2P Ensemble Learning with Linear Models on Fully Distributed
Data. CoRR abs/1109.1396 (2011). arXiv:1109.1396 http://arxiv.org/abs/1109.1396

[49] J. A. Pouwelse, P. Garbacki, J. Wang, A. Bakker, J. Yang, A. Iosup, D. H. J. Epema, M. Reinders, M. R. van Steen, and H. J. Sips. 2008.
TRIBLER: A Social-Based Peer-to-Peer System: Research Articles. Concurr. Comput.: Pract. Exper. 20, 2 (feb 2008), 127–138.

[50] Konstantin Pussep, Sebastian Kaune, Jonas Flick, and Ralf Steinmetz. 2009. A Peer-to-Peer Recommender Systemwith Privacy Constraints.
In 2009 International Conference on Complex, Intelligent and Software Intensive Systems. 409–414. https://doi.org/10.1109/CISIS.2009.32

[51] Jiangcheng Qin and Baisong Liu. 2020. A Novel Privacy-Preserved Recommender System Framework based on Federated Learning.
CoRR abs/2011.05614 (2020). arXiv:2011.05614 https://arxiv.org/abs/2011.05614

[52] Kurt Rohloff and David Cousins. 2014. A Scalable Implementation of Fully Homomorphic Encryption Built on NTRU. In Financial
Cryptography Workshops.

[53] Jeff Sandvig, Bamshad Mobasher, and Robin Burke. 2008. A Survey of Collaborative Recommendation and the Robustness of Model-Based
Algorithms. IEEE Data Eng. Bull. 31 (01 2008), 3–13.

Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, Vol. 6, No. 3, Article 101. Publication date:
September 2022.

http://arxiv.org/abs/1912.04977
http://arxiv.org/abs/1912.04977
https://doi.org/10.1016/j.eswa.2006.09.034
http://snap.stanford.edu/data
https://arxiv.org/abs/2012.13063
http://arxiv.org/abs/1705.09056
http://arxiv.org/abs/1602.05629
http://arxiv.org/abs/1602.05629
https://doi.org/10.1145/1557019.1557090
https://github.com/mmodenesi/omnetpy
http://arxiv.org/abs/1109.1396
https://doi.org/10.1109/CISIS.2009.32
https://arxiv.org/abs/2011.05614


101:24 • Yacine Belal, Aurélien Bellet, Sonia Ben Mokhtar, and Vlad Nitu

[54] Marco Scavuzzo, Amir Jalalirad, Michael Sprague, and Catalin Capota. 2019. A Simple and Efficient Federated Recommender System.
https://doi.org/10.1145/3365109.3368788

[55] Johannes Schneider and Michail Vlachos. 2019. Mass Personalization of Deep Learning. CoRR abs/1909.02803 (2019). arXiv:1909.02803
http://arxiv.org/abs/1909.02803

[56] Hyejin Shin, Sungwook Kim, Junbum Shin, and Xiaokui Xiao. 2018. Privacy Enhanced Matrix Factorization for Recommendation with
Local Differential Privacy. IEEE Transactions on Knowledge and Data Engineering 30, 9 (2018), 1770–1782. https://doi.org/10.1109/TKDE.
2018.2805356

[57] Jason Silverstein. [n.d.]. Hundreds of millions of Facebook user records were exposed on Amazon cloud server. https://www.forbes.com/
sites/daveywinder/2020/08/19/massive-data-leak235-million-instagram-tiktok-and-youtube-user-profiles-exposed/

[58] Ziteng Sun, Peter Kairouz, Ananda Theertha Suresh, and H. Brendan McMahan. 2019. Can You Really Backdoor Federated Learning?
CoRR abs/1911.07963 (2019). arXiv:1911.07963 http://arxiv.org/abs/1911.07963

[59] WANG TianXiang, ZhongLong ZHENG, TANG ChangBing, and PENG Hao. 2019. Aggregation rules based on stochastic gradient
descent in byzantine consensus. In 2019 IEEE 8th Joint International Information Technology and Artificial Intelligence Conference (ITAIC).
IEEE, 317–324.

[60] Vale Tolpegin, Stacey Truex, Mehmet Emre Gursoy, and Ling Liu. 2020. Data poisoning attacks against federated learning systems. In
European Symposium on Research in Computer Security. Springer, 480–501.

[61] Andras Varga and Rudolf Hornig. 2020. OMNeT++ Discrete Event Simulator. https://github.com/omnetpp/omnetpp
[62] Hongyi Wang, Kartik Sreenivasan, Shashank Rajput, Harit Vishwakarma, Saurabh Agarwal, Jy-yong Sohn, Kangwook Lee, and Dimitris S.

Papailiopoulos. 2020. Attack of the Tails: Yes, You Really Can Backdoor Federated Learning. CoRR abs/2007.05084 (2020). arXiv:2007.05084
https://arxiv.org/abs/2007.05084

[63] Jun Wang, Qiang Tang, Afonso Arriaga, and Peter Y. A. Ryan. 2019. Novel Collaborative Filtering Recommender Friendly to Privacy
Protection. In Proceedings of the 28th International Joint Conference on Artificial Intelligence (Macao, China) (IJCAI’19). AAAI Press,
4809–4815.

[64] Qinyong Wang, Hongzhi Yin, Tong Chen, Junliang Yu, Alexander Zhou, and Xiangliang Zhang. 2021. Fast-adapting and Privacy-
preserving Federated Recommender System. CoRR abs/2104.00919 (2021). arXiv:2104.00919 https://arxiv.org/abs/2104.00919

[65] Davey Winder. [n.d.]. 235 Million Instagram, TikTok And YouTube User Profiles Exposed In Massive Data Leak. https://www.forbes.com/
sites/daveywinder/2020/08/19/massive-data-leak235-million-instagram-tiktok-and-youtube-user-profiles-exposed/

[66] Qiang Yang, Yang Liu, Tianjian Chen, and Yongxin Tong. 2019. Federated Machine Learning: Concept and Applications. CoRR
abs/1902.04885 (2019). arXiv:1902.04885 http://arxiv.org/abs/1902.04885

[67] Dong Yin, Yudong Chen, Ramchandran Kannan, and Peter Bartlett. 2018. Byzantine-robust distributed learning: Towards optimal
statistical rates. In International Conference on Machine Learning. PMLR, 5650–5659.

Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, Vol. 6, No. 3, Article 101. Publication date:
September 2022.

https://doi.org/10.1145/3365109.3368788
http://arxiv.org/abs/1909.02803
https://doi.org/10.1109/TKDE.2018.2805356
https://doi.org/10.1109/TKDE.2018.2805356
https://www.forbes.com/sites/daveywinder/2020/08/19/massive-data-leak235-million-instagram-tiktok-and-youtube-user-profiles-exposed/
https://www.forbes.com/sites/daveywinder/2020/08/19/massive-data-leak235-million-instagram-tiktok-and-youtube-user-profiles-exposed/
http://arxiv.org/abs/1911.07963
http://arxiv.org/abs/1911.07963
https://github.com/omnetpp/omnetpp
http://arxiv.org/abs/2007.05084
https://arxiv.org/abs/2007.05084
https://arxiv.org/abs/2104.00919
https://www.forbes.com/sites/daveywinder/2020/08/19/massive-data-leak235-million-instagram-tiktok-and-youtube-user-profiles-exposed/
https://www.forbes.com/sites/daveywinder/2020/08/19/massive-data-leak235-million-instagram-tiktok-and-youtube-user-profiles-exposed/
http://arxiv.org/abs/1902.04885
http://arxiv.org/abs/1902.04885


PEPPER: Empowering User-Centric Recommender Systems over Gossip Learning • 101:25

Appendices

A INDIVIDUAL PERFORMANCE COMPARISON
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Fig. 10. Top-K recommendation quality distribution comparison on Foursquare-NYC (GMF, K = 10 and K = 5).
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Fig. 11. Top-K recommendation quality distribution comparison on Foursquare-NYC (GMF, K = 10 and K = 5).
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Fig. 12. Top-K recommendation quality distribution comparison on MovieLens-100K (GMF, K = 10 and K = 5).

0.0 0.2 0.4 0.6 0.8 1.0
Local NDCG10

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

FedAvg (Centralized)
Reptile (Centralized)
FedFast (Centralized)
Pepper (Decentralized)
Model-age-based (Decentralized)
FedAvg (Decentralized)
Reptile (Decentralized)

(a) Local NDCG@10 cumulative distribution function.

0.0 0.2 0.4 0.6 0.8 1.0
Local NDCG5

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

FedAvg (Centralized)
Reptile (Centralized)
FedFast (Centralized)
Pepper (Decentralized)
Model-age-based (Decentralized)
FedAvg (Decentralized)
Reptile (Decentralized)

(b) Local NDCG@5 cumulative distribution function.

Fig. 13. Top-K recommendation quality distribution comparison on MovieLens-100K (GMF, K = 10 and K = 5).
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Fig. 14. Top-K F1-Score cumulative distribution function on Foursquare-NYC (PRME-G, K = 10 and K = 5).
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(b) Local F1 score@5 cumulative distribution function.

Fig. 15. Top-K F1-Score cumulative distribution function on Gowalla-NYC (PRME-G, K = 10 and K = 5).
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