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motivation



learning from connected devices data

• Connected devices are widespread and collect increasingly large
and sensitive user data

• Ex: browsing logs, health data, accelerometer, geolocation...

• Great opportunity for providing personalized services but raises
serious privacy concerns

• Centralize data from all devices: best for utility, bad for privacy

• Learn on each device separately: best for privacy, bad for utility
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our focus: fully decentralized network

• Personal data stays on user’s device

• Peer-to-peer and asynchronous communication

• No single point of failure/entry as in server-client architecture

• Scalability-by-design to many devices through local updates
(see e.g. NIPS 2017 paper [Lian et al., 2017])
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our focus: personalized learning

• Learn a personalized model for each user (multi-task learning)

Model

Model
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Model

Model

Model
Model

Model

Model

• General idea: trade-off between model accuracy on local data
and smoothness with respect to similar users
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problem setting



problem setting

• A set V = JnK = {1, . . . ,n} of n learning agents

• A convex loss function ℓ : Rp ×X × Y

• Personalized and imbalanced data: agent i has dataset
Si = {(xji, y

j
i)}

mi
j=1 of size mi ≥ 0 drawn from µi

• Purely local model: agent i can learn a model θi on its own by
minimizing the loss on its local data

Li(θ) =
1
mi

mi∑
j=1

ℓ(θ; xji, y
j
i) + λi∥θ∥2, with λi ≥ 0

• How to improve with the help of other users?
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problem setting

• Network: weighted connected graph G = (V, E)

• E ⊆ V× V set of undirected edges

• Weight matrix W ∈ Rn×n: symmetric, nonnegative, with Wij = 0 if
(i, j) /∈ E or i = j

• Assumption: network weights are given and represent the
underlying similarity between agents
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problem setting
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• Agents have only a local view of the network: they only know
their neighborhood Ni = {j ̸= i : Wij > 0} and associated weights
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problem formulation

• Denoting Θ = [Θ1; . . . ; Θn] ∈ Rnp, we use a graph regularization
formulation [Evgeniou and Pontil, 2004, Vanhaesebrouck et al., 2017]:

min
Θ∈Rnp

QL(Θ) =
1
2

n∑
i<j

Wij∥Θi −Θj∥
2 + µ

n∑
i=1

DiiciLi(Θi;Si)

• µ > 0 trade-off parameter, Dii =
∑

jWij normalization factor
• ci ∈ (0, 1] ∝ mi is the “confidence” of agent i

• Implements a trade-off between having similar models for
strongly connected agents and models that are accurate on
their respective local datasets
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non-private decentralized algorithm



decentralized algorithm in broadcast setting

• Time and communication models:
• Asynchronous time: each agent has a random local clock and
wakes up when it ticks

• Broadcast communication: agents send messages to all their
neighbors at once (without expecting a reply)

• Algorithm: assume agent i wakes up at step t
1. Agent i updates its model based on information from neighbors:

Θi(t+ 1) = (1− α)Θi(t) + α
(∑
j∈Ni

Wij

Dii
Θj(t)− µci∇Li(Θi(t);Si)

)
2. Agent i sends its updated model Θi(t+ 1) to its neighborhood Ni

12



convergence rate

Proposition ([Bellet et al., 2017])

For any T > 0, let (Θ(t))Tt=1 be the sequence of iterates generated
by the algorithm running for T iterations from an initial point Θ(0).
Under appropriate assumptions, we have for some 0 < ρ < 1:

E [QCL(Θ(T))−Q⋆
CL] ≤ (1− ρ)T (QCL(Θ(0))−Q∗

CL) .
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private algorithm



privacy setting

• In some applications, data may be sensitive and agents may not
want to reveal it to anyone else

• In our algorithms, the agents never communicate their local
data but exchange sequences of models computed from data

• Consider an adversary observing all the information sent over
the network (but not the internal memory of agents)

• Goal: how can we guarantee that no/little information about
the local dataset is leaked by the algorithm?
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differential privacy

(ϵ, δ)-Differential Privacy
Let M be a randomized mechanism taking a dataset as input, and
let ϵ > 0, δ ≥ 0. We say that M is (ϵ, δ)-differentially private if for
all datasets S,S ′ differing in a single data point and for all sets of
possible outputs O ⊆ range(M), we have:

Pr(M(S) ∈ O) ≤ eϵPr(M(S ′) ∈ O) + δ.

• Guarantees thatM does not leak much information about any
individual data point

• Information-theoretic (no computational assumptions)
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differentially private algorithm

• Differentially-private algorithm:
1. Replace the update of the algorithm by

Θ̃i(t+1) = (1−α)Θ̃i(t)+α

(∑
j∈Ni

Wij

Dii
Θ̃j(t)−µci(∇Li(Θ̃i(t);Si)+ηi(t))

)
,

where ηi(t) ∼ Laplace(0, si(t))p ∈ Rp

2. Agent i then broadcasts noisy iterate Θ̃i(t+ 1) to its neighbors
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privacy guarantee

Theorem ([Bellet et al., 2017])
Let i ∈ JnK and assume
• ℓ(·; x, y) L0-Lipschitz w.r.t. the L1-norm for all (x, y)
• Agent i wakes up on iterations t1i , . . . , t

Ti
i

• For some ϵi(tki ) > 0, the noise scale is si(tki ) =
2L0

ϵi(tki )mi

Then for any initial point Θ̃(0) independent of Si, the mechanism
Mi(Si) is (ϵ̄i, 0)-DP with ϵ̄i =

∑Ti
k=1 ϵi(tki ).

• Sweet spot: the less data, the more noise added by the agent,
but the least influence in the network
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privacy/utility trade-off

Theorem ([Bellet et al., 2017])

For any T > 0, let (Θ̃(t))Tt=1 be the sequence of iterates generated by
T iterations. Under appropriate assumptions, we have:

E [QCL(Θ(T))−Q⋆
CL] ≤ (1− ρ)T (QCL(Θ(0))−Q∗

CL) + additive error.

• Second term gives additive error due to noise
• More results in the paper
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experiments



collaborative linear classification

• The private variant outperforms the purely local models for
“reasonable” values of ϵ
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collaborative linear classification

• Reduces (data) wealth inequality: all agents benefit but those
with small dataset get a larger boost
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Thank you for your attention!
Come to the poster for more details
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