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Abstract

In many learning problems, ranging from clustering to ranking through metric
learning, empirical estimates of the risk functional consist of an average over tu-
ples (e.g., pairs or triplets) of observations, rather than over individual observa-
tions. In this paper, we focus on how to best implement a stochastic approximation
approach to solve such risk minimization problems. We argue that in the large-
scale setting, gradient estimates should be obtained by sampling tuples of data
points with replacement (incomplete U -statistics) instead of sampling data points
without replacement (complete U -statistics based on subsamples). We develop a
theoretical framework accounting for the substantial impact of this strategy on the
generalization ability of the prediction model returned by the Stochastic Gradient
Descent (SGD) algorithm. It reveals that the method we promote achieves a much
better trade-off between statistical accuracy and computational cost. Beyond the
rate bound analysis, experiments on AUC maximization and metric learning pro-
vide strong empirical evidence of the superiority of the proposed approach.

1 Introduction

In many machine learning problems, the statistical risk functional is an expectation over d-tuples
(d ≥ 2) of observations, rather than over individual points. This is the case in supervised metric
learning [3], where one seeks to optimize a distance function such that it assigns smaller values
to pairs of points with the same label than to those with different labels. Other popular examples
include bipartite ranking (see [27] for instance), where the goal is to maximize the number of con-
cordant pairs (i.e. AUC maximization), and more generally multi-partite ranking (cf [12]), as well
as pairwise clustering (see [7]). Given a data sample, the most natural empirical risk estimate (which
is known to have minimal variance among all unbiased estimates) is obtained by averaging over all
tuples of observations and thus takes the form of a U -statistic (an average of dependent variables
generalizing the means, see [19]). The Empirical Risk Minimization (ERM) principle, one of the
main paradigms of statistical learning theory, has been extended to the case where the empirical risk
of a prediction rule is a U -statistic [5], using concentration properties of U -processes (i.e. collec-
tions of U -statistics). The computation of the empirical risk is however numerically unfeasible in
large and even moderate scale situations due to the exploding number of possible tuples.

In practice, the minimization of such empirical risk functionals is generally performed by means
of stochastic optimization techniques such as Stochastic Gradient Descent (SGD), where at each
iteration only a small number of randomly selected terms are used to compute an estimate of the
gradient (see [27, 24, 16, 26] for instance). A drawback of the original SGD learning method,
introduced in the case where empirical risk functionals are computed by summing over independent
observations (sample mean statistics), is its slow convergence due to the variance of the gradient
estimates, see [15]. This has recently motivated the development of a wide variety of SGD variants
implementing a variance reduction method in order to improve convergence. Variance reduction is

1



achieved by occasionally computing the exact gradient (see SAG [18], SVRG [15], MISO [20] and
SAGA [9] among others) or by means of nonuniform sampling schemes (see [21, 28] for instance).
However, such ideas can hardly be applied to the case under study here: due to the overwhelming
number of possible tuples, computing even a single exact gradient or maintaining a probability
distribution over the set of all tuples is computationally unfeasible in general.

In this paper, we leverage the specific structure and statistical properties of the empirical risk func-
tional when it is of the form of a U -statistic to design an efficient implementation of the SGD
learning method. We study the performance of the following sampling scheme for the gradient
estimation step involved in the SGD algorithm: drawing with replacement a set of tuples directly
(in order to build an incomplete U -statistic gradient estimate), rather than drawing a subset of ob-
servations without replacement and forming all possible tuples based on these (the corresponding
gradient estimate is then a complete U -statistic based on a subsample). While [6] has investigated
maximal deviations between U -processes and their incomplete approximations, the performance
analysis carried out in the present paper is inspired from [4] and involves both the optimization error
of the SGD algorithm and the estimation error induced by the statistical finite-sample setting. We
first provide non-asymptotic rate bounds and asymptotic convergence rates for the SGD procedure
applied to the empirical minimization of a U -statistic. These results shed light on the impact of the
conditional variance of the gradient estimators on the speed of convergence of SGD. We then derive
a novel generalization bound which depends on the variance of the sampling strategies. This bound
establishes the indisputable superiority of the incomplete U -statistic estimation approach over the
complete variant in terms of the trade-off between statistical accuracy and computational cost. Our
experimental results on AUC maximization and metric learning tasks on large-scale datasets are
consistent with our theoretical findings and show that the use of the proposed sampling strategy can
provide spectacular performance gains in practice. We conclude this paper with promising lines
for future research, in particular regarding the trade-offs involved in a possible implementation of
nonuniform sampling strategies to further improve convergence.

The rest of this paper is organized as follows. In Section 2, we briefly review the theory of U -
statistics and their approximations, together with elementary notions of gradient-based stochastic
approximation. Section 3 provides a detailed description of the SGD implementation we propose,
along with a performance analysis conditional upon the data sample. In Section 4, based on these
results, we derive a generalization bound based on a decomposition into optimization and estimation
errors. Section 5 presents our numerical experiments, and we conclude in Section 6. Technical
proofs are sketched in the Appendix, and further details can be found in the Supplementary Material.

2 Background and Problem Setup

Here and throughout, the indicator function of any event E is denoted by I{E} and the variance of
any square integrable r.v. Z by σ2(Z).

2.1 U -statistics: Definition and Examples

Generalized U -statistics are extensions of standard sample mean statistics, as defined below.

Definition 1. Let K ≥ 1 and (d1, . . . , dK) ∈ N∗K . Let X{1, ..., nk} = (X
(k)
1 , . . . , X

(k)
nk ), 1 ≤

k ≤ K, beK independent samples of sizes nk ≥ dk and composed of i.i.d. random variables taking
their values in some measurable spaceXk with distribution Fk(dx) respectively. LetH : X d11 ×· · ·×
X dKK → R be a measurable function, square integrable with respect to the probability distribution
µ = F⊗d11 ⊗ · · · ⊗ F⊗dKK . Assume in addition (without loss of generality) that H(x(1), . . . , x(K))

is symmetric within each block of arguments x(k) (valued in X dkk ), 1 ≤ k ≤ K. The generalized (or
K-sample) U -statistic of degrees (d1, . . . , dK) with kernel H , is then defined as

Un(H) =
1∏K

k=1

(
nk

dk

) ∑
I1

. . .
∑
IK

H
(
X

(1)
I1

;X
(2)
I2

; . . . ;X
(K)
IK

)
, (1)

where n = (n1, . . . , nK), the symbol
∑
I1
· · ·
∑
IK

refers to summation over all elements of Λ,
the set of the

∏K
k=1

(
nk

dk

)
index vectors (I1, . . . , IK), Ik being a set of dk indexes 1 ≤ i1 < . . . <

idk ≤ nk and X
(k)
Ik

= (X
(k)
i1
, . . . , X

(k)
idk

) for 1 ≤ k ≤ K.
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In the above definition, standard mean statistics correspond to the case where K = 1 = d1. More
generally when K = 1, Un(H) is an average over all d1-tuples of observations. Finally, K ≥ 2
corresponds to the multi-sample situation where a dk-tuple is used for each sample k ∈ {1, . . . ,K}.
The key property of the statistic (1) is that it has minimum variance among all unbiased estimates of

µ(H) = E
[
H
(
X

(1)
1 , . . . , X

(1)
d1
, . . . , X

(K)
1 , . . . , X

(K)
dk

)]
= E [Un(H)] .

One may refer to [19] for further results on the theory of U -statistics. In machine learning, general-
ized U -statistics are used as performance criteria in various problems, such as those listed below.

Clustering. Given a distance D : X1 × X1 → R+, the quality of a partition P of X1 with respect
to the clustering of an i.i.d. sample X1, . . . , Xn drawn from F1(dx) can be assessed through the
within cluster point scatter:

Ŵn(P) =
2

n(n− 1)

∑
i<j

D(Xi, Xj) ·
∑
C∈P

I
{

(Xi, Xj) ∈ C2
}
. (2)

It is a one sample U -statistic of degree 2 with kernelHP(x, x′) = D(x, x′) ·
∑
C∈P I{(x, x′) ∈ C2}.

Multi-partite ranking. Suppose that K independent i.i.d. samples X(k)
1 , . . . , X

(k)
nk with nk ≥ 1

and 1 ≤ k ≤ K on X1 ⊂ Rp have been observed. The accuracy of a scoring function s : X1 → R
with respect to the K-partite ranking is empirically estimated by the rate of concordant K-tuples
(sometimes referred to as the Volume Under the ROC Surface):

V̂USn(s) =
1

n1 × · · · × nK

K∑
k=1

nk∑
ik=1

I
{
s(X

(1)
i1

) < · · · < s(X
(K)
iK

)
}
.

The quantity above is a K-sample U -statistic with degrees d1 = . . . = dK = 1 and kernel
H̄s(x1, . . . , xK) = I{s(x1) < · · · < s(xK)}.
Metric learning. Based on an i.i.d. sample of labeled data (X1, Y1), . . . , (Xn, Yn) on X1 =
Rp×{1, . . . , J}, the empirical pairwise classification performance of a distanceD : X1×X1 → R+

can be evaluated by:

R̂n(D) =
6

n(n− 1)(n− 2)

∑
i<j<k

I {D(Xi, Xj) < D(Xi, Xk), Yi = Yj 6= Yk} , (3)

which is a one sample U -statistic of degree three with kernel H̃D((x, y), (x′, y′), (x′′, y′′)) =
I {D(x, x′) < D(x, x′′), y = y′ 6= y′′}.

2.2 Gradient-based minimization of U -statistics

Let Θ ⊂ Rq with q ≥ 1 be some parameter space and consider the risk minimization problem
minθ∈Θ L(θ) with

L(θ) = E[H(X
(1)
1 , . . . , X

(1)
d1
, . . . , X

(K)
1 , . . . , X

(K)
dK

; θ)] = µ(H(.; θ)),

where H :
∏K
k=1 X

dk
k × Θ → R is a convex loss function, the (X

(k)
1 , . . . , X

(k)
dk

)’s, 1 ≤ k ≤ K,
are K independent random variables with distribution F⊗dkk (dx) on X dkk respectively so that H is
square integrable for any θ ∈ Θ. Based on K independent i.i.d. samples X(k)

1 , . . . , X
(k)
nk with

1 ≤ k ≤ K, the empirical version of the risk function is θ ∈ Θ 7→ L̂n(θ) = Un(H(.; θ)). We
denote by∇θ the gradient operator w.r.t. θ.

Many learning algorithms are based on gradient descent, following the iterations θt+1 = θt −
γt∇θL̂n(θt), with an arbitrary initial value θ0 ∈ Θ and a learning rate (step size) γt ≥ 0 such that∑+∞
t=1 γt = +∞ and

∑+∞
t=1 γ

2
t < +∞. Here we place ourselves in a large-scale setting, where the

sample sizes n1, . . . , nK of the training datasets are such that computing the empirical gradient

ĝn(θ)
def
= ∇θL̂n(θ) =

(
1/

K∏
k=1

(
nk
dk

))∑
I1

. . .
∑
IK

∇θH(X
(1)
I1

;X
(2)
I2

; . . . ;X
(K)
IK

; θ) (4)

at each iteration is intractable due to the number #Λ =
∏K
k=1

(
nk

dk

)
of terms to be averaged. Instead,

stochastic approximation suggests the use of an unbiased estimate of (4) that is cheap to compute.
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3 SGD Implementation based on Incomplete U -Statistics

A possible approach consists in replacing (4) by a (complete) U -statistic computed from subsamples
of reduced sizes n′k << nk, {(X ′(k)

1 , . . . , X
′(k)
n′k

) : k = 1, . . . , K} say, drawn uniformly at ran-
dom without replacement among the original samples, leading to the following gradient estimator:

g̃n′(θ) =
1∏K

k=1

(n′k
dk

) ∑
I1

. . .
∑
IK

∇θH(X
′(1)
I1

;X
′(2)
I2

; . . . ;X
′(K)
IK

; θ), (5)

where
∑
Ik

refers to summation over all
(
n′k
dk

)
subsets X′(k)

Ik
= (X

′(k)
i1

, . . . , X
′(k)
idk

) related to a set
Ik of dk indexes 1 ≤ i1 < . . . < idk ≤ n′k and n′ = (n′1, . . . , n

′
K). Although this approach is very

natural, one can obtain a better estimate for the same computational cost, as shall be seen below.

3.1 Monte-Carlo Estimation of the Empirical Gradient

From a practical perspective, the alternative strategy we propose is of disarming simplicity. It is
based on a Monte-Carlo sampling scheme that consists in drawing independently with replacement
among the set of index vectors Λ, yielding a gradient estimator in the form of a so-called incomplete
U -statistic (see [19]):

ḡB(θ) =
1

B

∑
(I1, ..., IK)∈DB

∇θH(X
(1)
I1
, . . . , X

(K)
IK

; θ), (6)

where DB is built by sampling B times with replacement in the set Λ. We point out that the con-
ditional expectation of (6) given the K observed data samples is equal to ĝn(θ). The parameter
B, corresponding to the number of terms to be averaged, controls the computational complexity of
the SGD implementation. Observe incidentally that an incomplete U -statistic is not a U -statistic in
general. Hence, as an unbiased estimator of the gradient of the statistical risk L(θ), (6) is of course
less accurate than the full empirical gradient (4) (i.e., it has larger variance), but this slight increase
in variance leads to a large reduction in computational cost. In our subsequent analysis, we will
show that for the same computational cost (i.e., taking B =

∏K
k=1

(
n′k
dk

)
), implementing SGD with

(6) rather than (5) leads to much more accurate results. We will rely on the fact that (6) has smaller
variance w.r.t. to∇L(θ) (except in the case where K = 1 = d1), as shown in the proposition below.

Proposition 1. Set B =
∏K
k=1

(
n′k
dk

)
. There exists a universal constant c > 0, such that we have:

σ2 (g̃n′(θ)) ≤ c · σ2
θ/

K∑
k=1

n′k and σ2 (ḡB(θ)) ≤ c · σ2
θ/

K∏
k=1

(
n′k
dk

)
,

for all n ∈ N∗K , with σ2
θ = σ2(∇θH(X

(1)
1 , . . . , X

(K)
dK

; θ)). Explicit but lengthy expressions of the
variances are given in [19].
Remark 1. The results of this paper can be extended to other sampling schemes to approximate (4),
such as Bernoulli sampling or sampling without replacement in Λ, following the proposal of [14].
For clarity, we focus on sampling with replacement, which is computationally more efficient.

3.2 A Conditional Performance Analysis

As a first go, we investigate and compare the performance of the SGD methods described above
conditionally upon the observed data samples. For simplicity, we denote by Pn(.) the conditional
probability measure given the data and by En[.] the Pn-expectation. Given a matrix M , we denote
by MT the transpose of M and ‖M‖HS :=

√
Tr(MMT ) its Hilbert-Schmidt norm. We assume

that the loss function H is l-smooth in θ, i.e its gradient is l-Lipschitz, with l > 0. We also restrict
ourselves to the case where L̂n is α-strongly convex for some deterministic constant α:

L̂n(θ1)− L̂n(θ2) 6 ∇θL̂n(θ1)T (x− y)− α

2
‖θ1 − θ2‖2 (7)

and we denote by θ∗n its unique minimizer. We point out that the present analysis can be extended to
the smooth but non-strongly convex case, see [1]. A classical argument based on convex analysis and
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stochastic optimization (see [1, 22] for instance) shows precisely how the conditional variance of the
gradient estimator impacts the empirical performance of the solution produced by the corresponding
SGD method and thus strongly advocates the use of the SGD variant proposed in Section 3.1.

Proposition 2. Consider the recursion θt+1 = θt − γtg(θt) where En[g(θt)|θt] = ∇θL̂n(θt), and
denote by σ2

n(g(θ)) the conditional variance of g(θ). For step size γt = γ1/t
β , the following holds.

1. If 1
2 < β < 1, then:

En[L̂n(θt+1)− L̂n(θ∗n)] 6
σ2
n(g(θ∗n))

tβ
γ1l2

β−1(
1

2α
+

lγ2
1

2β − 1
) + o(

1

tβ
)︸ ︷︷ ︸

C1

.

2. If β = 1 and γ1 >
1

2α , then:

En[L̂n(θt+1)− L̂n(θ∗n)] 6
σ2
n(g(θ∗n))

t+ 1

2αγ1 l exp(2αlγ2
1)γ2

1

(2αγ1 − 1)
+ o(

1

t
)︸ ︷︷ ︸

C2

.

Proposition 2 illustrates the well-known fact that the convergence rate of SGD is dominated by the
variance term and thus one needs to focus on reducing this term to improve its performance.

We are also interested in the asymptotic behavior of the algorithm (when t → +∞), under the
following assumptions:

A1 The function L̂n(θ) is twice differentiable on a neighborhood of θ∗n.

A2 The function ∇L̂n(θ) is bounded.

Let us set Γ = ∇2L̂n(θ∗n). We establish the following result (refer to the Supplementary Material
for a detailed proof).
Theorem 1. Let the covariance matrix Σ∗n be the unique solution of the Lyapunov equation:

ΓΣ∗n + Σ∗nΓ− ηΣ∗n = Σn(θ∗n), (8)
where Σn(θ∗n) = En[g(θ∗n)g(θ∗n)T ] and η = γ1 >

1
2α if β = 1, 0 if not. Then, under Assumptions

A1 −A2, we have:

1/γt

(
L̂n(θt)− L̂n(θ∗)

)
⇒ 1

2
UT (Σ∗n)1/2Γ(Σ∗n)1/2U,

where U ∼ N (0, Iq). In addition, in the case η = 0, we have :

‖(Σ∗nΓ)1/2‖2HS = E[UT (Σ∗n)1/2Γ(Σ∗n)1/2U ] =
1

2
σ2
n(g(θ∗n)). (9)

Theorem 1 reveals that the conditional variance term again plays a key role in the asymptotic per-
formance of the algorithm. In particular, it is the dominating term in the precision of the solution. In
the next section, we build on these results to derive a generalization bound in the spirit of [4] which
explicitly depend on the true variance of the gradient estimator.

4 Generalization Bounds

Let θ∗ = argminθ∈Θ L(θ) be the minimizer of the true risk. As proposed in [4], the mean excess
risk can be decomposed as follows: ∀n ∈ N∗K ,

E[L(θt)− L(θ∗)] ≤ 2E
[
sup
θ∈Θ
|L̂n(θ)− L(θ)|

]
︸ ︷︷ ︸

E1

+E
[
L̂n(θt)− L̂n(θ∗n)

]
︸ ︷︷ ︸

E2

. (10)

Beyond the optimization error (the second term on the right hand side of (10)), the analysis of the
generalization ability of the learning method previously described requires to control the estimation
error (the first term). This can be achieved by means of the result stated below, which extends
Corollary 3 in [5] to the K-sample situation.
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Proposition 3. LetH be a collection of bounded symmetric kernels on
∏K
k=1 X

dk
k such thatMH =

sup(H,x)∈H×X |H(x)| < +∞. Suppose also that H is a VC major class of functions with finite
Vapnik-Chervonenkis dimension V < +∞. Let κ = min {bn1/d1c, . . . , bnK/dKc}. Then, for
any n ∈ N∗K

E
[

sup
H∈H

|Un(H)− µ(H)|
]
≤MH

{
2

√
2V log(1 + κ)

κ

}
. (11)

We are now ready to derive our main result.
Theorem 2. Let θt be the sequence generated by SGD using the incomplete statistic gradient esti-
mator (6) with B =

∏K
k=1

(
n′k
dk

)
terms for some n′1, . . . , n

′
K . Assume that {L(.; θ) : θ ∈ Θ} is a

VC major class class of finite VC dimension V s.t.

MΘ = sup
θ∈Θ, (x(1), ..., x(K))∈

∏K
k=1 X

dk
k

|H(x(1), . . . , x(K); θ)| < +∞, (12)

and NΘ = supθ∈Θ σ
2
θ < +∞. If the step size satisfies the condition of Proposition 2, we have:

∀n ∈ N∗K , E[|L(θt)− L(θ∗)|] 6 CNΘ

Btβ
+ 2MΘ

{
2

√
2V log(1 + κ)

κ

}
.

For any δ ∈ (0, 1), we also have with probability at least 1− δ: ∀n ∈ N∗K ,

|L(θt)− L(θ∗)| 6

(
CNΘ

Btβ
+

√
Dβ log(2/δ)

tβ

)
+ 2MΘ

{
2

√
2V log(1 + κ)

κ
+

√
log(4/δ)

κ

}
.

(13)
for some constants C and Dβ depending on the parameters l, α, γ1, a1.

The generalization bound provided by Theorem 2 shows the advantage of using an incomplete U -
statistic (6) as the gradient estimator. In particular, we can obtain results of the same form as Theo-
rem 2 for the complete U -statistic estimator (5), but B =

∏K
k=1

(
n′k
dk

)
is then replaced by

∑K
k=1 n

′
k

(following Proposition 1), leading to greatly damaged bounds. Using an incomplete U -statistic, we
thus achieve better performance on the test set while reducing the number of iterations (and there-
fore the numbers of gradient computations) required to converge to a accurate solution. To the best
of our knowledge, this is the first result of this type for empirical minimization of U -statistics. In
the next section, we provide experiments showing that these gains are very significant in practice.

5 Numerical Experiments

In this section, we provide numerical experiments to compare the incomplete and complete U -
statistic gradient estimators (5) and (6) in SGD when they rely on the same number of terms B.
The datasets we use are available online.1 In all experiments, we randomly split the data into 80%
training set and 20% test set and sample 100K pairs from the test set to estimate the test performance.
We used a step size of the form γt = γ1/t, and the results below are with respect to the number of
SGD iterations. Computational time comparisons can be found in the supplementary material.

AUC Optimization We address the problem of learning a binary classifier by optimizing the Area
Under the Curve, which corresponds to the VUS criterion (Eq. 2) whenK = 2. Given a sequence of
i.i.d observations Zi = (Xi, Yi) where Xi ∈ Rp and Yi ∈ {−1, 1}, we denote by X+ = {Xi;Yi =
1}, X− = {Xi;Yi = −1} and N = |X+||X−|. As done in [27, 13], we take a linear scoring rule
sθ(x) = θTx where θ ∈ Rp is the parameter to learn, and use the logistic loss as a smooth convex
function upper bounding the Heaviside function, leading to the following ERM problem:

min
θ∈Rp

1

N

∑
X+

i ∈X+

∑
X−j ∈X−

log(1 + exp(sθ(X
−
i )− sθ(X+

i ))).

1http://www.csie.ntu.edu.tw/˜cjlin/libsvmtools/datasets/
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(a) Covtype, Batch size = 9, γ1 = 1 (b) Covtype, Batch size = 400, γ1 = 1

(c) Ijcnn1, Batch size = 25, γ1 = 2 (d) Ijcnn1, Batch size = 100, γ1 = 5

Figure 1: Average over 50 runs of the risk estimate with the number of iterations (solid lines) +/-
their standard deviation (dashed lines)

We use two datasets: IJCNN1 (∼200K examples, 22 features) and covtype (∼600K examples, 54
features). We try different values for the initial step size γ1 and the batch size B. Some results,
averaged over 50 runs of SGD, are displayed in Figure 1. As predicted by our theoretical findings,
we found that the incomplete U -statistic estimator always outperforms its complete variant. The
performance gap between the two strategies can be small (for instance when B is very large or γ1 is
unnecessarily small), but for values of the parameters that are relevant in practical scenarios (i.e., B
reasonably small and γ1 ensuring a significant decrease in the objective function), the difference can
be substantial. We also observe a smaller variance between SGD runs with the incomplete version.

Metric Learning We now turn to a metric learning formulation, where we are given a sample of
N i.i.d observations Zi = (Xi, Yi) where Xi ∈ Rp and Yi ∈ {1, . . . , c}. Following the existing
literature [2], we focus on (pseudo) distances of the form DM (x, x′) = (x− x′)TM(x− x′) where
M is a p × p symmetric positive semi-definite matrix. We again use the logistic loss to obtain a
convex and smooth surrogate for (3). The ERM problem is as follows:

min
M

6

N(N − 1)(N − 2)

∑
i<j<k

I {Yi = Yj 6= Yk} log(1 + exp(DM (Xi, Xj)−DM (Xi, Xk))).

We use the binary classification dataset SUSY (5M examples, 18 features). Figure 2 shows that the
performance gap between the two strategies is much larger on this problem. This is consistent with
the theory: one can see from Proposition 1 that the variance gap between the incomplete and the
complete approximations is much wider for a one-sample U -statistic of degree 3 (metric learning)
than for a two-sample U -statistic of degree 1 (AUC optimization).

6 Conclusion and Perspectives

In this paper, we have studied a specific implementation of the SGD algorithm when the natural em-
pirical estimates of the objective function are of the form of generalized U -statistics. This situation
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(a) SUSY, Batch size = 120, γ1 = 0.5 (b) SUSY, Batch size = 455, γ1 = 1

Figure 2: Average over 50 runs of the error test with the number of iterations (solid lines) +/- their
standard deviation (dashed lines)

covers a wide variety of statistical learning problems such as multi-partite ranking, pairwise cluster-
ing and metric learning. The gradient estimator we propose in this context is based on an incomplete
U -statistic obtained by sampling tuples with replacement. Our main result is a thorough analysis
of the generalization ability of the predictive rules produced by this algorithm involving both the
optimization and the estimation error in the spirit of [4]. This analysis shows that the SGD variant
we propose far surpasses a more naive implementation (of same computational cost) based on sub-
sampling the data points without replacement. Furthermore, we have shown that these performance
gains are very significant in practice when dealing with large-scale datasets. In future work, we
plan to investigate how one may extend the nonuniform sampling strategies proposed in [8, 21, 28]
to our setting in order to further improve convergence. This is a challenging goal since we cannot
hope to maintain a distribution over the set of all possible tuples of data points. A tractable solution
could involve approximating the distribution in order to achieve a good trade-off between statistical
performance and computational/memory costs.

Appendix - Sketch of Technical Proofs

Note that the detailed proofs can be found in the Supplementary Material.

Sketch Proof of Proposition 2

Set at = En[‖θt+1 − θ∗n‖2] and following [1], observe that the sequence (at) satisfies the recursion
at+1 6 at (1− 2αγt(1− γtL))+2γ2

t σ
2
n(θ∗n). A standard stochastic approximation argument yields

an upper bound for at (cf [17, 1]), which, combined with L̂n(θ)− L̂n(θ∗n) 6 L
2 ‖θ− θ

∗
n‖2 (see [23]

for instance), give the desired result.

Sketch of Proof of Theorem 1

The proof relies on stochastic approximation arguments (see [10, 25, 11]). We first show that√
1/γt (θt − θ∗n)⇒ N (0.Σ∗n). Then, we apply the second order delta-method to derive the asymp-

totic behavior of the objective function. Eq. (9) is obtained by standard algebra.

Sketch of Proof of Theorem 2

Combining (10), (12) and Proposition 2 leads to the first part of the result. To derive sharp probability
bounds, we apply the union bound on E1 + E2. To deal with E1, we use concentration results for
U -processes, while we adapt the proof of Proposition 2 to control E2: the r.v.’s are recentered to
make martingale increments appear, and finally we apply Azuma and Hoeffding inequalities.
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[5] S. Clémençon, G. Lugosi, and N. Vayatis. Ranking and empirical risk minimization of U-statistics. Ann.
Statist., 36, 2008.
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