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amaury.habrard@lif.univ-mrs.fr

ECML PKDD ’11, Athens

Bellet, Habrard and Sebban (LaHC, LIF) Learning Good Edit Similarities ECML PKDD ’11 1 / 26



Introduction: Similarity Learning

Introduction:
Similarity Learning

Bellet, Habrard and Sebban (LaHC, LIF) Learning Good Edit Similarities ECML PKDD ’11 2 / 26



Introduction: Similarity Learning

Similarity functions in classification

Common approach in supervised classification: learn to classify
objects using a pairwise similarity (or distance) function.

Successful examples: k-Nearest Neighbor (k-NN), Support Vector
Machines (SVM).

Best way to get a “good” similarity function for a specific task: learn
it from data!
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Introduction: Similarity Learning

Similarity learning

Similarity learning overview

Learning a similarity function K (x , x ′) implying a new instance space
where the performance of a given algorithm is improved.

Learn K

Very popular approach for numerical data

Learn the transformation matrix A of a Mahalanobis distance:

d(x , y) = (x − y)ATA(x − y)
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Introduction: Similarity Learning

Goals of our work

Goals of our work
1 Learn a similarity function for string classification;

2 which is guaranteed to generalize well to new examples;

3 and provably induce low-error classifiers for the task at hand.

Building block

Make use of the theory of learning with (ǫ, γ, τ )-good similarity
functions (Balcan et al.).
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(ǫ, γ, τ)-good similarity functions

(ǫ, γ, τ )-good
similarity functions

Bellet, Habrard and Sebban (LaHC, LIF) Learning Good Edit Similarities ECML PKDD ’11 6 / 26



(ǫ, γ, τ)-good similarity functions Definition

Definition

Balcan et al. (2006, 2008) wanted a definition of good similarity
function that

1 talks in terms of natural, direct properties;

2 includes the usual notion of good kernel, without PSD requirement;

3 provides guarantees for learning.

Definition (Balcan et al., 2008)

A similarity function K ∈ [−1, 1] is an (ǫ, γ, τ)-good similarity function
for a learning problem P if there exists an indicator function R(x) defining
a set of “reasonable points” such that the following conditions hold:

1 A 1 − ǫ probability mass of examples (x , ℓ) satisfy:

E(x ′,ℓ′)∼P

[

ℓℓ′K (x , x ′)|R(x ′)
]

≥ γ

2 Prx ′ [R(x ′)] ≥ τ. ǫ, γ, τ ∈ [0, 1]
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(ǫ, γ, τ)-good similarity functions Intuition behind the definition

Intuition behind the definition

A
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G H

Positive class

Reasonable point

Negative class

K (x , x ′) = −‖x − x ′‖2 is good with ǫ = 0, γ = 0.03, τ = 3/8

Bellet, Habrard and Sebban (LaHC, LIF) Learning Good Edit Similarities ECML PKDD ’11 8 / 26



(ǫ, γ, τ)-good similarity functions Intuition behind the definition

Intuition behind the definition
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Positive class

Reasonable point

Negative class

K (x , x ′) = −‖x − x ′‖2 is good with ǫ = 1/8, γ = 0.12, τ = 3/8
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(ǫ, γ, τ)-good similarity functions Implications for learning

Implications for learning

Strategy

Each example is mapped to the space of “the similarity scores with the
reasonable points”.

K(x,A)

K(x,C)

K(x,G)K(x,G)
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(ǫ, γ, τ)-good similarity functions Implications for learning

Implications for learning

Theorem (Balcan et al., 2008)

Given K is (ǫ, γ, τ)-good, there exists a linear separator α in the

above-defined projection space that has error close to ǫ at margin γ.

K(x,A)

K(x,C)

K(x,G)K(x,G)
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(ǫ, γ, τ)-good similarity functions Balcan et al.’s learning rule

Learning rule

Learning the separator α with a linear program

min
α

dl
∑

i=1



1 −

du
∑

j=1

αjℓiK (xi , x
′
j )





+

+ λ‖α‖1

where [1 − c]+ = max(1 − c , 0) is the hinge-loss.

Automatic selection of reasonable points

The best set of reasonable points is automatically chosen among the
examples thanks to the L1-regularization on α.
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(ǫ, γ, τ)-good similarity functions L1-norm and Sparsity

L1-norm and Sparsity

Why does L1-norm constraint/regularization induce sparsity?
Geometric interpretation:

L1 constraintL2 constraint

Examples corresponding to non-zero coordinates in α are the
reasonable points.
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Learning good edit similarities

Learning good
edit similarities
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Learning good edit similarities Motivations

Motivations for our work

Two main motivations for our work:

Motivation 1

The definition of (ǫ, γ, τ)-good similarity function gives us a natural
objective to optimize:

E(x ′,ℓ′)∼P

[

ℓℓ′K (x , x ′)|R(x ′)
]

≥ γ.

If we satisfy this, then we can find a low-error classifier for the task.

Motivation 2

Similarity functions for structured data (strings, trees...) are often not
PSD. Not so easy to use in SVM.
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Learning good edit similarities The string edit distance

The string edit distance

Standard (Levenshtein) edit distance eL between two strings x and y :
minimum number of operations to transform x into y . Allowable
operations are insertion, deletion and substitution of symbols.

Example 1

eL(abb, aa) = C (b, a) + C (b, $) = 1 + 1 = 2

Generalized version eC: use a cost for each operation.

Example 2

C $ a b

$ - 1 0

a 1 - 3

b 0 3 -

=⇒ eC (abb, aa) = C (b, $) + C (b, $) + C ($, a) = 1

$: empty symbol
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Learning good edit similarities Edit cost learning: state-of-the-art

A feel of the state-of-the-art in edit cost learning

There exists a decent amount of literature on learning edit costs (or
probabilities) from data. See Ristad & Yianilos (1998), Bilenko &
Mooney (2003), Oncina & Sebban (2006), Takasu (2009)...

Drawbacks of the state-of-the-art

most of them use an iterative procedure, which can be costly.

they often make use of positive pairs only (i.e., moving examples of
the same class “closer” together). What about negative pairs?

above all, they are not learned to be (ǫ, γ, τ )-good.
→֒ they are not guaranteed to perform well for the task at hand.
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Learning good edit similarities Our edit similarity function

Our edit similarity function

An iterative approach is usually needed because the optimal edit script
(= best sequence of operations) depends on the edit costs.
→֒ Solution: define a different type of edit function!

Definition of eG

eG (x , x ′) =
∑

0≤i ,j≤A

Ci ,j × #i ,j(x , x ′)

where A is the size of the alphabet, C the edit cost matrix and #i ,j(x , x ′)
the number of times the operation (i , j) appears in the Levenshtein script.
We will optimize:

Definition of KG

KG (x , x ′) = 2e−eG (x ,x ′) − 1 ∈ [−1, 1]
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Learning good edit similarities Optimize the goodness

Optimize the goodness

Optimizing the (ǫ, γ, τ)-goodness of KG is difficult for two reasons:

1 Optimizing the definition directly would result in nonconvexity
(summing/subtracting up exponential terms).

2 We do not know the set of reasonable points R at this point.

Solution to the first issue

Optimize a criterion that bounds goodness:

E(x ,l)

[

E(x ′,ℓ′)

[

[

1 − ℓℓ′KG (x , x ′)/γ
]

+
|R(x ′)

]]

≤ ǫ′.

Interpretation: goodness is required with respect to each reasonable
point (instead of considering the average similarity to these points).
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Learning good edit similarities Optimize the goodness

Optimize the goodness ctd

What about the second issue?

Taking all points as reasonable is not a good idea (defines an
overconstrained problem).

Reasonable points can be seen as good representatives of a subset of
the class examples.

Solution to second issue

Use an indicator matching function fland : T × SL → {0, 1} that associates
each training example in T with NL examples in SL.

In our experiments, we matched each example with its P nearest-neighbors
of same class and its P farthest-neighbor of opposite class in T using the
Levenshtein distance.
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Learning good edit similarities Convex formulation of the problem

Convex formulation of the problem

Recall the underlying idea

Moving closer pairs of the same class and further those of opposite class.

Our convex formulation

min
C ,B1,B2

1
NT NL

∑

1≤i≤NL,
1≤j≤NT ,

fland (xi ,x
′

j )=1

V (C , zi , z
′
j ) + β‖C‖2

s.t. V (C , zi , z
′
j ) =

{

[B1 − eG (xi , x
′
j )]+ if ℓi 6= ℓ′j

[eG (xi , x
′
j ) − B2]+ if ℓi = ℓ′j

B1 ≥ − log(1
2), 0 ≤ B2 ≤ − log(1

2), B1 − B2 = ηγ

Ci ,j ≥ 0, 0 ≤ i , j ≤ A

Parameters:

β: regularization parameter on the edit costs.
ηγ : the “desired margin”.
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Learning good edit similarities Learning guarantees

Learning guarantees

Bounding the true error of an edit model C

L(C ) = Ezk ,z ′
j
[V (C , zk , z ′j )]

Uniform stability [Bousquet et al. 02, Jin et al. 09]

Idea: study the impact of a small change in the training sample.

∀(T , z), |T | = NT ,∀i , sup
z1,z2

|V (CT , z1, z2) − V (CT i,z , z1, z2)| ≤
κ

NT

T i ,z set obtained by replacing zi ∈ T by z

→֒ Generalization bound
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Learning good edit similarities Learning guarantees

Convergence and learning guarantees

Theorem: Algorithm has a uniform stability in κ/NT

κ =
2(2 + α)W 2

βα

W is a bound on the string sizes; 0 ≤ α ≤ 1 such that NL = αNT .

Theorem: Generalization bound - Convergence in O(
√

1/NT )

L(C ) < L̂(C ) + 2
κ

NT

+ (2κ + B)

√

ln(2/δ)

2NT

L̂(C ): empirical error on learning sample.

→֒ Independence from the size of the alphabet
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Learning good edit similarities Experimental results

Convergence rate: accuracy

Task: classify words as either French or English (top words lists from
Wiktionary).
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Learning good edit similarities Experimental results

Classification performance: sparsity
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Conclusions

Conclusions

Recap

We made use of the framework of Balcan et al. to create a novel,
efficient way to learn string similarities.

The resulting similarities provably generalize well to new examples
and induce low-error classifiers for the task at hand.

Future work

Adapt our method to tree edit cost learning (straightforward).

Learn other types of similarities (e.g. numerical distances such as
Mahalanobis distance).
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