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Abstract

We consider the problem of stratified sampling for Monte-Carlo integration. We model this
problem in a multi-armed bandit setting, where the arms represent the strata, and the goal
is to estimate a weighted average of the mean values of the arms. We propose a strategy that
samples the arms according to an upper bound on their standard deviations and compare
its estimation quality to an ideal allocation that would know the standard deviations of the
strata. We provide two pseudo-regret1 analyses: a distribution-dependent bound of order
Õ(n−3/2) that depends on a measure of the disparity of the strata, and a distribution-free

bound Õ(n−4/3) that does not2. We also provide the first problem independent (minimax)
lower bound for this problem and demonstrate that MC-UCB matches this lower bound
both in terms of number of samples n and in terms of number of strata K. Finally, we
link the pseudo-regret with the difference between the mean squared error on the estimated
weighted average of the mean values of the arms, and the optimal “oracle” strategy: this
provides us also a problem dependent and a problem independent rate for this measure of
performance and, as a corollary, asymptotic optimality.

Keywords: Bandit Theory, Stratified Monte-Carlo, Minimax strategies.

1. Introduction

Consider a polling institute that has to estimate as accurately as possible the average income
of a country, given a finite budget for polls. The institute has call centers in every region in
the country, and gives a part of the total sampling budget to each center so that they can
call random people in the area and ask about their income. A naive method would allocate
a budget proportionally to the number of people in each area. However some regions show

1. We define this notion in Section 2. It is a proxy on the difference between the mean squared error on
the estimated weighted average of the mean values of the arms, and the optimal “oracle” strategy.

2. The notation Õ(·) corresponds to O(·) up to logarithmic factors.

c©2000 Alexandra Carpentier, Remi Munos and Andras Antos.
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a high variability in the income of their inhabitants whereas others are very homogeneous.
Now if the polling institute knows the level of variability within each region, it could adjust
the budget allocated to each region in a more clever way (allocating more polls to regions
with high variability) in order to reduce the final estimation error.

This example is just one of many for which an efficient method of sampling a function
with natural strata (i.e., the regions) is of great interest. Note that even in the case that
there are no natural strata, it is always a good strategy to design arbitrary strata and
allocate a budget to each stratum that is proportional to the size of the stratum, compared
to a crude Monte-Carlo. There are many good surveys on the topic of stratified sampling
for Monte-Carlo, such as (Rubinstein and Kroese, 2008)[Subsection 5.5] or (Glasserman,
2004).

The main problem for performing an efficient sampling is that the variances within
the strata (in the previous example, the income variability per region) are unknown. One
possibility is to estimate the variances online while sampling the strata. There is some in-
teresting research along this direction, such as (Arouna, 2004) and more recently (Etoré and
Jourdain, 2010; Kawai, 2010). The work of Etoré and Jourdain (2010) matches exactly our
problem of designing an efficient adaptive sampling strategy. In this article they propose
to sample according to an empirical estimate of the variance of the strata, whereas Kawai
(2010) addresses a computational complexity problem which is slightly different from ours.
The recent work of Etoré et al. (2011) describes a strategy that enables to sample asymp-
totically according to the (unknown) standard deviations of the strata and at the same
time adapts the shape (and number) of the strata online. This is a very difficult problem,
especially in high dimension, that we will not address here, although we think this is a very
interesting and promising direction for further researches.

These works provide asymptotic convergence of the variance of the estimate to the
targeted stratified variance 3 divided by the sample size. They also prove that the number
of pulls within each stratum converges asymptotically to the desired number of pulls i.e. the
optimal allocation if the variances per stratum were known. Like Etoré and Jourdain (2010),
we consider a stratified Monte-Carlo setting with fixed strata. Our contribution is to design
a sampling strategy for which we can derive a finite-time analysis (where ’time’ refers to the
number of samples). This enables us to predict the quality of our estimate for any given
budget n.

We model this problem using the setting of multi-armed bandits where our goal is to
estimate a weighted average of the mean values of the arms. Although our goal is different
from a usual bandit problem where the objective is to play the best arm as often as possi-
ble, this problem also exhibits an exploration-exploitation trade-off. The arms have to be
pulled both in order to estimate the initially unknown variability of the arms (exploration)
and to allocate correctly the budget according to our current knowledge of the variability
(exploitation).

Our setting is close to the one described in (Antos et al., 2010) which aims at estimating
uniformly well the mean values of all the arms. The authors present an algorithm, called
GAFS-MAX, that allocates samples proportionally to the empirical variance of the arms,
while imposing that each arm is pulled at least

√
n times to guarantee a sufficiently good

3. The target is defined in [Subsection 5.5] of (Rubinstein and Kroese, 2008) and later in this paper, see
Equation 4.
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estimation of the true variances. Another approach for this problem, still with a bandit
formalism, can be found in (Carpentier et al., 2011), and the analysis is extended.

Note tough that in the Master Thesis (Grover, 2009), the author presents an algorithm
named GAFS-WL which is similar to GAFS-MAX and has an analysis close to the one of
GAFS-MAX. It deals with stratified sampling, i.e. it targets an allocation which is propor-
tional to the standard deviation (and not to the variance) of the strata time their size4.
They define a proxy on the mean squared error that they write loss, and prove that the
difference between the loss of GAFS-WL and the optimal static loss is of order Õ(n−3/2),
where the Õ(.) depends of the problem. There are however some open questions in this
very good Master Thesis. A first one is on the existence of a problem dependent bound for
GAFS-WL. A second important issue is on the links between the loss they define and the
intuitive, related measure of performance, which is the mean squared error. Without this
link, they are not able to prove that GAFS-WL is asymptotically optimal.

Our objective is similar, and we extend the analysis of this setting. We introduced
in paper (Carpentier and Munos, 2011) algorithm MC-UCB, a new algorithm based on
Upper-Confidence-Bounds (UCB) on the standard deviations. They are computed from the
empirical standard deviation and a confidence interval derived from Bernstein’s inequal-
ities. The algorithm, called MC-UCB, samples the arms proportionally to an UCB5 on
the standard deviation times the size of the stratum. We provided finite-time, problem
dependent and problem independent bounds for the loss of this algorithm, filling the gap
in (Grover, 2009). We however, as in (Grover, 2009), did not link this pseudo-regret to the
mean squared-error.

Contributions: In this paper we extend the analysis of MC-UCB in (Carpentier and
Munos, 2011). Our contributions are the following:

• We detail the proofs of paper (Carpentier and Munos, 2011), which have not been
published in this version due to space constraints. They correspond to two pseudo-
regret analysis: (i) a distribution-dependent bound of order Õ(n−3/2) that depends
on the disparity of the stratas (a measure of the problem complexity), and which
corresponds to a stationary regime where the budget n is large compared to this
complexity. (ii) A distribution-free bound of order Õ(n−4/3) that does not depend
on the the disparity of the stratas, and corresponds to a transitory regime where n
is small compared to the complexity. The characterization of those two regimes and
the fact that the corresponding excess error rates differ enlightens the fact that a
finite-time analysis is very relevant for this problem.

• More precisely, we improve the problem independent upper bound in terms of K.

This bound on the expectation of the pseudo-regret is of order Õ(K
1/3

n4/3 ) where K is
the number of strata.

• We also provide a minimax lower bound on the expectation of the pseudo-regret

for the problem of stratified Monte-Carlo of order Ω(K
1/3

n4/3 ). As a matter of fact, the

4. This is explained in (Rubinstein and Kroese, 2008) and will be formulated precisely later.
5. Note that we consider a sampling strategy based on UCBs on the standard deviations of the arms whereas

the so-called UCB algorithm of Auer et al. (2002), in the usual multi-armed bandit setting, computes
UCBs on the mean rewards of the arms.
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problem independent lower-bound matches the problem independent upper-bound for
MC-UCB, in terms of n and K. It induces that MC-UCB is minimax optimal in terms
of pseudo-regret.

• Finally, by clarifying the notion of pseudo-regret that we introduce in Section 2, we
provide finite-time bound on the mean squared error of the estimate of the integral.
As a corollary, we obtain also asymptotic consistency of our algorithm.

The rest of the paper is organized as follows. In Section 2 we formalize the problem
and introduce the notations used throughout the paper. Section 3 states the minimax lower
bound on the pseudo-regret. Section 4 introduces the MC-UCB algorithm and reports
performance bounds. Section 5 discusses the bridges between the pseudo regret and the
mean squared error. We then discuss in Section 6 about the parameters of the algorithm
and its performances. In Section 7 we report numerical experiments that illustrate our
method to the problem of pricing Asian options as introduced in (Glasserman et al., 1999).
Finally, Section 8 concludes the paper and suggests future works.

2. Preliminaries

The allocation problem mentioned in the previous section is formalized as a K-armed bandit
problem where each arm (stratum) k = 1, . . . ,K is characterized by a distribution νk with
mean value µk and variance σ2

k. At each round t ≥ 1, an allocation strategy (or algorithm) A
selects an arm kt and receives a sample drawn from νkt independently of the past samples.
Note that a strategy may be adaptive, i.e., the arm selected at round t may depend on
past observed samples. Let {wk}k=1,...,K denote a known set of positive weights which sum
to 1. For example in the setting of stratified sampling for Monte-Carlo, this would be the
probability mass in each stratum. The goal is to define a strategy that estimates as precisely
as possible µ =

∑K
k=1wkµk using a total budget of n samples.

Let us write Tk,t =
∑t

s=1 I {ks = k} the number of times arm k has been pulled up to

time t, and µ̂k,t =
1

Tk,t

Tk,t∑
s=1

Xk,s the empirical estimate of the mean µk at time t, where Xk,s

denotes the sample received when pulling arm k for the s-th time.
After n rounds, the algorithm A returns the empirical estimate µ̂k,n of all the arms.

Note that in the case of a deterministic strategy, the expected quadratic estimation error
of the weighted mean µ as estimated by the weighted average µ̂n =

∑K
k=1wkµ̂k,n satisfies:

E
[(
µ̂n − µ

)2]
= E

[(∑K
k=1wk(µ̂k,n − µk)

)2]
=
∑K

k=1w
2
k
σ2
k

Tk,n
,

where E
[
.
]

is the expectation integrated over all the samples of all arms.

We thus use the following measure for the performance of any algorithm A:

Ln(A) =
∑K

k=1w
2
k
σ2
k

Tk,n
. (1)

We denote this quantity by pseudo-loss, as it is a proxy of the true loss of the algorithm,

which is E
[(
µ̂n−µ

)2]
. This loss is not the same as in (Grover, 2009) and in (Carpentier and
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Munos, 2011). We give some properties of this pseudo-loss in Section 5. We also provide in
Subsection 5.1 properties of the loss defined in papers (Grover, 2009) and (Carpentier and
Munos, 2011).

The goal is to define an allocation strategy that minimizes the global pseudo-loss defined
in Equation 1. If the variance of the arms were known in advance, one could design an
optimal static6 allocation strategy A∗ by pulling each arm k proportionally to the quantity
wkσk. Indeed, if arm k is pulled a deterministic number of times T ∗k,n, then 7

Ln(A∗) =
∑K

k=1w
2
k
σ2
k

T ∗k,n
. (2)

By choosing T ∗k,n such as to minimize Ln under the constraint that
∑K

k=1 T
∗
k,n = n, the

optimal static allocation (up to rounding effects) of algorithm A∗ is to pull each arm k,

T ∗k,n =
wkσk∑K
i=1wiσi

n , (3)

times, and achieves a global pseudo-loss (or loss as the (T ∗k,n)k are deterministic)

Ln(A∗) =
Σ2
w

n
, (4)

where Σw =
∑K

i=1wiσi (we assume in the sequel that Σw > O). In the following, we write

λk =
T ∗k,n
n = wkσk

Σw
the optimal allocation proportion for arm k and λmin = min1≤k≤K λk.

Note that a small λmin means a large disparity of the wkσk and, as explained later, provides
for the algorithm we build in Section 4 a characterization of the hardness of a problem.

However, in the setting considered here, the σk are unknown, and thus the optimal
allocation is out of reach. A possible allocation is the uniform strategy Au, i.e., such that
T uk = wk∑K

i=1 wi
n. Its pseudo-loss (and loss as the (T uk )k are deterministic) is

Ln(Au) =
∑K

k=1wk
∑K

k=1
wkσ

2
k

n =
Σw,2
n ,

where Σw,2 =
∑K

k=1wkσ
2
k. Note that by Cauchy-Schwartz’s inequality, we have Σ2

w ≤ Σw,2

with equality if and only if the (σk)k are all equal. Thus A∗ is always at least as good as
Au. In addition, since

∑
iwi = 1, we have Σ2

w−Σw,2 = −
∑

k wk(σk−Σw)2. The difference
between those two quantities is the weighted quadratic variation of the σk around their
weighted mean Σw. In other words, it is the variance of the (σk)1≤k≤K . As a result the
gain of A∗ compared to Au grow with the disparity of the σk.

We would like to do better than the uniform strategy by considering an adaptive strategy
A that would estimate the σk at the same time as it tries to implement an allocation
strategy as close as possible to the optimal allocation algorithm A∗. This introduces a
natural trade-off between the exploration needed to improve the estimates of the variances
and the exploitation of the current estimates to allocate the pulls nearly-optimally.

6. Static means that the number of pulls allocated to each arm does not depend on the received samples.
7. As it will be discussed later, this equality does not hold when the number of pulls is random, as it is the

case of adaptive algorithms where the strategy depends on the observed samples.
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In order to assess how well A solves this trade-off and manages to sample according to
the true standard deviations without knowing them in advance, we compare its performance
to that of the optimal allocation strategy A∗. For this purpose we define the notion of
pseudo-regret of an adaptive algorithm A as the difference between the pseudo-loss incurred
by the algorithm and the optimal pseudo-loss:

Rn(A) = Ln(A)− Ln(A∗). (5)

The pseudo-regret indicates how much we loose in terms of expected quadratic estimation

error by not knowing in advance the standard deviations (σk). Note that since Ln(A∗) = Σ2
w
n ,

a consistent strategy i.e., asymptotically equivalent to the optimal strategy, is obtained
whenever its regret is negligible compared to 1/n.

We also defined the true regret as

R̄n(A) = E[(µ̂n − µ)2]− Ln(A∗). (6)

This is the difference between the mean-squared error and the optimal mean squared error.
The pseudo-regret is a proxy for the true regret.

3. Minimax lower-bound on the pseudo-regret

We now study the minimax rate for the pseudo-regret of any algorithm on a given stratifi-
cation in K strata of equal size.

Theorem 1 Let inf be the infimum taken over all online stratified sampling algorithms
using K strata and sup represent the supremum taken over all environments, then:

inf supERn ≥ C
K1/3

n4/3
,

where C is a numerical constant.

Proof [Sketch of proof (The full proof is reported in Appendix A)] We consider a strat-
ification with 2K strata. On the K first strata, the samples are drawn from Bernoulli
distributions of parameter µk where µk ∈ {µ2 , µ, 3

µ
2}, and on the K last strata, the samples

are drawn from a Bernoulli of parameter 1/2. We write σ =
√
µ(1− µ) the standard devia-

tion of a Bernoulli of parameter µ. We index by ε a set of 2K possible environments, where
ε = (ε1, . . . , εK) ∈ {−1,+1}K , and the K first strata are defined by µk = µ+ εk

µ
2 . Write Pσ

the probability under such an environment, also consider Pσ the probability under which
all the K first strata are Bernoulli with mean µ.

We define Ωε the event on which there are less than K
3 arms not pulled correctly for

environment ε (i.e. for which Tk,n is larger than the optimal allocation corresponding to
µ when actually µk = µ

2 , or smaller than the optimal allocation corresponding to µ when
µk = 3µ2 ). See the Appendix A for a precise definition of these events. Then, the idea
is that there are so many such environments that any algorithm will be such that for at
least one of them we have Pσ(Ωε) ≤ exp(−K/72). Then we derive by a variant of Pinsker’s

inequality applied to an event of small probability that Pε(Ωε) ≤ KL(Pσ ,Pε)
K = O(σ

3/2n
K ).
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Finally, by choosing σ of order (Kn )1/3, we have that Pε(Ωc
ε) is bigger than a constant, and

on Ωc
ε we know that there are more than K

3 arms not pulled correctly. This leads to an

expected pseudo-regret in environment ε of order Ω(K
1/3

n4/3 ).

This is the first lower-bound for the problem of online stratified sampling for Monte-
Carlo. We sketch the proof in the main text because we believe that the technique of proof
for this bound is original. It follows from the fact that no algorithm can allocate the samples
in every problem according to the unknown best proportions with a better precision than
n2/3

K2/3 for a number of arms non negligible when compared to K, with a probability larger
than a non negligible constant.

4. Allocation based on Monte Carlo Upper Confidence Bound

4.1 The algorithm

In this section, we introduce our adaptive algorithm for the allocation problem, called Monte
Carlo Upper Confidence Bound (MC-UCB). The algorithm computes a high-probability
bound on the standard deviation of each arm and samples the arms proportionally to their
bounds times the corresponding weights. The MC-UCB algorithm, AMC−UCB, is described
in Figure 1. It requires three parameters as inputs: c1 and c2 which are related to the shape
of the distributions (see Assumption 1), and δ which defines the confidence level of the
bound. In Subsection 6.4, we discuss a way to reduce the number of parameters from three
to one. The amount of exploration of the algorithm can be adapted by properly tuning
these parameters.

Input: c1, c2, δ. Let a =
√

2 log(2/δ)
√
c1 log(c2/δ) +

√
c1δ(1+log(c2/δ))n

1/2

2(1−δ) .

Initialize: Pull each arm twice.
for t = 2K + 1, . . . , n do

Compute Bk,t = wk

Tk,t−1

(
σ̂k,t−1 + 2a

√
1

Tk,t−1

)
for each arm 1 ≤ k ≤ K

Pull an arm kt ∈ arg max1≤k≤K Bk,t
end for
Output: µ̂k,t for each arm 1 ≤ k ≤ K

Figure 1: The pseudo-code of the MC-UCB algorithm. The empirical standard deviations
σ̂k,t−1 are computed using Equation 7.

The algorithm starts by pulling each arm twice in rounds t = 1 to 2K. From round
t = 2K + 1 on, it computes an upper confidence bound Bk,t on the standard deviation σk,
for each arm k, and then pulls the one with largest Bk,t. The upper bounds on the standard
deviations are built by using Theorem 10 in (Maurer and Pontil, 2009)8 and based on the

8. We could also have used the variant reported in (Audibert et al., 2009).
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empirical standard deviation σ̂k,t−1 :

σ̂2
k,t−1 =

1

Tk,t−1 − 1

Tk,t−1∑
i=1

(Xk,i − µ̂k,t−1)2, (7)

where Xk,i is the i-th sample received when pulling arm k, and Tk,t−1 is the number of pulls
allocated to arm k up to time t− 1. After n rounds, MC-UCB returns the empirical mean
µ̂k,n for each arm 1 ≤ k ≤ K.

4.2 Pseudo-Regret analysis of MC-UCB

Before stating the main results of this section, we state the assumption that the distributions
are sub-Gaussian, which includes e.g., Gaussian or bounded distributions. See (Buldygin
and Kozachenko, 1980) for more precisions.

Assumption 1 There exist c1, c2 > 0 such that for all 1 ≤ k ≤ K and any ε > 0,

PX∼νk(|X − µk| ≥ ε) ≤ c2 exp(−ε2/c1) . (8)

We provide two analyses, a distribution-dependent and a distribution-free, of MC-UCB,
which are respectively interesting in two regimes, i.e., stationary and transitory regimes, of
the algorithm. We will comment on this later in Section 6.

A distribution-dependent result: We now report the first bound on the expectation
of the pseudo-regret of MC-UCB algorithm. The proof is reported in Appendix C (in
the supplementary material) and relies on upper- and lower-bounds on Tk,t − T ∗k,t, i.e.,
the difference in the number of pulls of each arm compared to the optimal allocation (see
Lemma 15).

Theorem 2 Under Assumption 1 and if we choose c2 such that c2 ≥ 2Kn−5/2, the pseudo-
regret of MC-UCB launched with parameter δ = n−7/2 with n ≥ 4K is bounded in expectation
as

E[Rn] ≤ 336
√

2c1(c2 + 2)(
√
c2 + 1)2/3K1/3Σw

log(n)

n4/3
+

5KΣw,2

n2
.

Note that this result crucially depends on the smallest proportion λmin which is a mea-
sure of the disparity of product of the standard deviations and the weights. For this reason
we refer to it as “distribution-dependent” result. The full proof for this result is in Ap-
pendix C.

A distribution-free result: Now we report our second pseudo-regret bound that does
not depend on λmin but whose rate is poorer. The proof is given in Appendix D of the
supplementary material and relies on other upper- and lower-bounds on Tk,t− T ∗k,t detailed
in Lemma 16.

Theorem 3 Under Assumption 1 and if we choose c2 such that c2 ≥ 2Kn−5/2, the pseudo-
regret of MC-UCB launched with parameter δ = n−7/2 with n ≥ 4K is bounded in expectation
as

E[Rn] ≤ Σ2
w

n
+ 336

√
2c1(c2 + 2)(

√
c2 + 1)2/3K1/3Σw

log(n)

n4/3
+

5KΣw,2

n2
.
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This bound does not depend on 1/λmin, not even in the negligible term, as detailed in
Appendix D9. This is obtained at the price of the slightly worse rate Õ(n−4/3).

5. Links between the pseudo-loss and the mean-squared error

As mentioned in Section 2, the pseudo-loss is trivially equal to the mean-squared error
of the estimate µ̂n of µ if the number of samples Tk,n in each stratum is independent of
the samples. This is not the case for any reasonable adaptive strategy, as such methods
precisely aim at adapting the number of samples in each stratum to the standard deviation
inside the stratum.
It is however important to derive links between those two quantities, in order for the pseudo-
loss and the pseudo-regret to be meaningful. The mean squared error can be decomposed
as

E
[
(µ̂n − µ)2

]
=

K∑
k=1

w2
kE
[
(µ̂k,n − µk)2

]
+

n∑
k=1

∑
k′ 6=k

wkwqE
[
(µ̂k,n − µk)(µ̂q,n − µq)

]
.

The quantity
∑K

k=1w
2
kE
[
(µ̂k,n−µk)2

]
is equal to the loss defined in (Grover, 2009) and (Car-

pentier and Munos, 2011). If the (Tk,n)k are deterministic, this quantity is equal to the
pseudo-loss and also to the mean squared error E

[
(µ̂n − µ)2

]
. If the (Tk,n)k are determin-

istic, the cross-products
∑n

k=1

∑
k′ 6=k wkwqE

[
(µ̂k,n − µk)(µ̂q,n − µq)

]
are equal to 0.

A natural way to proceed is to (i) prove that the expectation of the pseudo-loss is not

very different from
∑K

k=1w
2
kE
[
(µ̂k,n − µk)

2
]

(and thus from Σ2
w
n ) and (ii) prove that the

cross-products are close to 0.

5.1 Bounds on
∑K

k=1w
2
kE
[
(µ̂k,n − µk)2

]
The technique for bounding

∑K
k=1w

2
kE
[
(µ̂k,n−µk)2

]
is very similar to the one for bounding

the expectation of the pseudo-loss. The only additional technical passage is to use Wald’s
identity to bound

∑K
k=1w

2
kE
[
(µ̂k,n − µk)2

]
with a quantity close to the expectation of the

pseudo-loss.
We have in the same way a problem dependent bound and a problem independent bound.

Problem dependent bound.

Proposition 4 Under Assumption 1 and if we choose c2 such that c2 ≥ 2Kn−5/2, then for
algorithm MC-UCB launched with parameter δ = n−7/2 with n ≥ 4K, we have

K∑
k=1

w2
kE
[
(µ̂k,n − µk)2

]
− Σ2

w

n

≤ log(n)

n3/2λ
3/2
min

(
112Σw

√
c1(c2 + 2) + 6c1(c2 + 2)K

)
+

19

λ3
minn

2

(
KΣ2

w + 720c1(c2 + 1) log(n)2
)
.

The full proof is in Appendix C.

9. Note that the bound is not entirely distribution free since Σw appears. But it can be proved using
Assumption 1 that Σ2

w ≤ c1c2.
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Problem independent bound.

Proposition 5 Under Assumption 1 and if we choose c2 such that c2 ≥ 2Kn−5/2, then for
algorithm MC-UCB launched with parameter δ = n−7/2 with n ≥ 4K, we have

K∑
k=1

w2
kE
[
(µ̂k,n − µk)2

]
− Σ2

w

n

≤
200
√
c1(c2 + 2)ΣwK

n4/3
log(n) +

365

n3/2

(
129c1(c2 + 2)2K2 log(n)2 +KΣ2

w

)
.

The full proof is in Appendix D.

5.2 Bounds on the cross-products

The difficulty in bounding the cross-product comes from the fact that the (Tk,n)k depend
on the samples, and more exactly for algorithm MC-UCB, on the sequence of empirical
standard deviations (σk,t)t≤n of each arm k. As in general µ̂k,n depends on (σk,t)t≤n, there
is no direct reason why the cross-products should be equal to 0.

We prove three results for bounding these cross-products. The first one corresponds
to the specific case where the distribution of the arms are symmetric. We then provide a
problem dependent and a problem independent bound in the general case.

Equality holds when the distributions of the arms are symmetric. A first result
is in the specific case of symmetric distributions. Intuitively in this setting, the empirical
standard deviations are independent of the signs of (µ̂k,n−µk). This implies that the signs
of (µ̂k,n − µk) and (µ̂q,n − µq) are independent of each other when k 6= q. From that we
deduce the following result.

Proposition 6 Assume that the distributions (νk)k of the arms are symmetric around µk
respectively. For algorithm MC-UCB launched with any parameters, we have

n∑
k=1

∑
k′ 6=k

wkwqE
[
(µ̂k,n − µk)(µ̂q,n − µq)

]
= 0.

The proof of this result is to be found in Appendix F.1.

Problem dependent bound in the general case. On an event of high probability,
|Tk,n − T ∗k,n| = Õ(n−1/2) as explained in Lemma 15 in the Appendices10. This means that
even though Tk,n is random, it does not deviate too much from T ∗k,n. From that we deduce
the following problem dependent bound.

Proposition 7 Under Assumption 1 and if we choose c2 such that c2 ≥ 2Kn−5/2, then for
algorithm MC-UCB launched with parameter δ = n−7/2 with n ≥ 4K, we have

n∑
k=1

∑
k′ 6=k

wkwqE
[
(µ̂k,n − µk)(µ̂q,n − µq)

]
≤ Õ(n−3/2),

where Õ(.) hides an invert dependency in λmin.

The proof of this result is in Appendix F.2

10. Here Õ(·) depends on λ−1
min.

10
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Problem independent bound in the general case. On an event of high probability,
|Tk,n−T ∗k,n| = Õ(n−2/3) as explained in Lemma 16 in the Appendices. From that we deduce
in the same way that for he previous proposition the following problem independent bound.

Proposition 8 Under Assumption 1 and if we choose c2 such that c2 ≥ 2Kn−5/2, then for
algorithm MC-UCB launched with parameter δ = n−7/2 with n ≥ 4K, we have

n∑
k=1

∑
k′ 6=k

wkwqE
[
(µ̂k,n − µk)(µ̂q,n − µq)

]
≤ Õ(n−7/6),

where Õ(.) does not depend on λmin.

The proof of this result is in Appendix F.2.

5.3 Bounds on the true regret and asymptotic optimality

We are finally able to fulfill the objective of this Section, that is to say bound the true regret

R̄n = E[(µ̂n − µ)2]− Σ2
w
n . We have the following Theorem directly by combining the results

of the Propositions in Subsections 5.1 and 5.

Theorem 9 Under Assumption 1 and if we choose c2 such that c2 ≥ 2Kn−5/2, then for
algorithm MC-UCB launched with parameter δ = n−7/2 with n ≥ 4K, the true regret is
bounded as

R̄n = Õ(n−3/2),

where Õ(.) hides a dependency in λ−1
min, and

R̄n = Õ(n−7/6),

where Õ(.) does not depend on λmin.

An immediate corollary on asymptotic optimality follows, when the parameter δn (for
a given budget n) is chosen wisely.

Corollary 10 Under Assumption 1 and if we choose c2 such that c2 ≥ 2Kn−5/2, then
for algorithm MC-UCB launched with parameter δ = n−7/2 with n ≥ 4K, the true regret
converges and

lim
n→+∞

R̄n = 0.

Proof [Proof of Corollary 10] The proof follows directly from Borel-Cantelli, as
∑

n δn <
+∞.

6. Discussion on the results

We make several comments on the algorithm MC − UCB in this Section.

11
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6.1 Problem dependent and independent bounds for the expectation of the
pseudo-loss

Theorem 2 provides a pseudo-regret bound of order λ̃
−3/2
min O(n−3/2), whereas Theorem 3

provides a bound of order Õ(n−4/3) independently of λmin. Hence, for a given problem
i.e., a given λmin, the distribution-free result of Theorem 3 is more informative than the
distribution-dependent result of Theorem 2 in the transitory regime, that is to say when
n is small compared to λ−1

min. The distribution-dependent result of Theorem 2 is better in
the stationary regime i.e., for n large. This distinction reminds us of the difference between
distribution-dependent and distribution-free bounds for the UCB algorithm in usual multi-
armed bandits11.

The problem dependent lower bound is similar to the one provided for GAFS-WL in
(Grover, 2009). In their article, their pseudo-loss measure is

∑K
k=1w

2
kE
[
(µ̂k,n − µk)2

]
so

we compare their bound with the ones in Propositions 4 and 5. We however expect that
GAFS-WL has for some problems a sub-optimal behavior: it is possible to find cases where

E
[∑

k w
2
k(µ̂k,n − µk)

2
]
− Σ2

w
n ≥ O(1/n), see Appendix E for more details. It is not the

case for MC-UCB, for which E
[∑

k w
2
k(µ̂k,n − µk)2

]
− Σ2

w
n ≤ Õ(n−4/3). Note however that

when there is an arm with 0 standard deviation, GAFS-WL is likely to perform better than
MC-UCB, as it will only sample this arm O(

√
n) times while MC-UCB samples it Õ(n2/3)

times.

6.2 Finite-time bounds for E[(µ̂n − µ)2], and on the true regret, and asymptotic
optimality

We also bound the true regret R̄n = E[(µ̂n − µ)2]− Σ2
w
n in o( 1

n). This means that the mean
squared error of the estimate is very close to the “oracle” smallest mean squared error
possible, obtained with a deterministic strategy that has access to (σk)k.

The first result in Theorem 9 states that for MC-UCB, the true regret is of order
Õ(n−3/2), where the Õ hides a dependency in λmin. This is the equivalent of the problem
dependent bound on the pseudo-loss. This Theorem also states that for MC-UCB, an upper
bound on the true regret is of order Õ(n−7/6), where the Õ does not depend in any way
on λmin. This is the equivalent of the problem independent bound on the pseudo-loss.
Unfortunately, we do not obtain a problem independent bound that is of the same order as
the problem independent bound of the pseudo-regret, i.e. Õ(n−4/3). This comes from the
fact that the bound on the cross-products in Proposition 8 is of order Õ(n−7/6). Whether
this bound is tight or not is an open problem.

These results imply that algorithm MC-UCB is asymptotically optimal (like the al-
gorithms of Kawai (2010); Etoré and Jourdain (2010)): the estimate µ̂n =

∑
k wkµ̂k,n is

asymptotically equal to µ and the variance of µ̂n is asymptotically equal to the variance
of the optimal allocation Σ2

w/n for any problem. Note that the asymptotic optimality of
GAFS-WL is not provided in Grover (2009), although we believe it to hold.

11. The distribution dependent bound is in O(K logn/∆), where ∆ is the difference between the mean value
of the two best arms, and the distribution-free bound is in O(

√
nK logn) as explained in (Auer et al.,

2002; Audibert and Bubeck, 2009).
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Note also that whenever there is some disparity among the arms, i.e., when Σ2
w−Σ2,w <

0, the MC-UCB is asymptotically strictly more efficient than the uniform strategy.

6.3 MC-UCB and the lower bound

We provide in this paper a minimax (problem independent) lower-bound for the pseudo-

regret that is in expectation of order Ω(K
1/3

n4/3 ) (see Theorem 1). An important achievement
is that the problem independent upper bound on the pseudo-regret of MC-UCB is in expec-
tation of the same order up to a logarithmic factor (see Theorem 3). It is thus impossible
to improve this strategy uniformly on every problem, more than by a log factor.

Although we do not have a problem dependent lower bound on the pseudo-regret yet, we
believe that the rate Õ(n−3/2) cannot be improved for general distributions. As explained
in the proof in Appendix C, this rate is a direct consequence of the high probability bounds
on the estimates of the standard deviations of the arms which are in O(1/

√
n), and those

bounds are tight. Because of the minimax lower-bound that is of order O(n−4/3), it is
however clear that there exists no algorithm with a regret of order Õ(n−3/2) without any
dependence in λ−1

min (or another related problem-dependent quantity).

6.4 The parameters of the algorithm

Our algorithm takes three parameters as input, namely c1, c2 and δ, but we only use a com-
bination of them in the algorithm, with the introduction of a =

√
2 log(2/δ)

√
c1 log(c2/δ)+√

c1δ(1+log(c2/δ))n1/2

2(1−δ) . For practical use of the method, it is enough to tune the algorithm
with a single parameter a. By the choice of the value assigned to δ in the two theorems,
a ≈ c log(n), where c can be interpreted as a high probability bound on the range of the
samples. We thus simply require a rough estimate of the magnitude of the samples. Note

that in the case of bounded distributions, a can be chosen as a = 2
√

5
2c
√

log(n) where c is

a true bound on the variables. This result is easy to deduce by simplifying Lemma 11 in
Appendix B for the case of bounded variables.

6.5 Making MC-UCB anytime

An interesting question is on whether and how it is possible to make algorithm MC-UCB
anytime.
Although we will not provide formal proofs of this result in this paper, we believe that
setting a δ that evolves with the current time, as δt = t−7/2, is sufficient to make all the
regret bounds of this paper hold with slightly modified constants. Some ideas on how to
prove this result can be found in the article (Grover, 2009), and also (Auer et al., 2002) for
something more specific to UCB algorithms.

7. Numerical experiment: Pricing of an Asian option

We consider the pricing problem of an Asian option introduced in (Glasserman et al.,
1999) and later considered in (Kawai, 2010; Etoré and Jourdain, 2010). This uses a Black-
Scholes model with strike C and maturity T . Let (W (t))0≤t≤1 be a Brownian motion that
is discretized at d equidistant times {i/d}1≤i≤d, which defines the vector W ∈ Rd with

13
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components Wi = W (i/d). The discounted payoff of the Asian option is defined as a
function of W , by:

F (W ) = exp(−rT ) max
[

1
d

∑d
i=1 S0 exp

[
(r − 1

2s
2
0) iTd + s0

√
TWi

]
− C, 0

]
, (9)

where S0, r, and s0 are constants, and the price is defined by the expectation p = EWF (W ).
We want to estimate the price p by Monte-Carlo simulations (by sampling on W =

(Wi)1≤i≤d). In order to reduce the variance of the estimated price, we can stratify the space
of W . Glasserman et al. (1999) suggest to stratify according to a one dimensional projection
of W , i.e., by choosing a projection vector u ∈ Rd and define the strata as the set of W such
that u ·W lies in intervals of R. They further argue that the best direction for stratification
is to choose u = (0, · · · , 0, 1), i.e., to stratify according to the last component Wd of W .
Thus we sample Wd and then conditionally sample W1, ...,Wd−1 according to a Brownian
Bridge as explained in (Kawai, 2010). Note that this choice of stratification is also intuitive
since Wd has the biggest exponent in the payoff (9), and thus the highest volatility. Kawai
(2010) and Etoré and Jourdain (2010) also use the same direction of stratification.

Like in (Kawai, 2010) we consider 5 strata of equal weight. Since Wd follows a N (0, 1),
the strata correspond to the 20-percentile of a normal distribution. The left plot of Figure
2 represents the cumulative distribution function of Wd and shows the strata in terms of
percentiles of Wd. The right plot represents, in dot line, the curve E[F (W )|Wd = x] versus
P(Wd < x) parameterized by x, and the box plot represents the expectation and standard
deviations of F (W ) conditioned on each stratum. We observe that this stratification pro-
duces an important heterogeneity of the standard deviations per stratum, which indicates
that a stratified sampling would be profitable compared to a crude Monte-Carlo sampling.
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Figure 2: Left: Cdf of Wd and the definition of the strata. Right: expectation and standard
deviation of F (W ) conditioned on each stratum for a strike C = 90.

We choose the same numerical values as Kawai (2010): S0 = 100, r = 0.05, s0 = 0.30,
T = 1 and d = 16. Note that the strike C of the option has a direct impact on the variability
of the strata. Indeed, the larger C, the more probable F (W ) = 0 for strata with small Wd,
and thus, the smaller λmin.
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Our two main competitors are the SSAA algorithm of Etoré and Jourdain (2010) and
GAFS-WL of Grover (2009). We did not compare to (Kawai, 2010) which aims at minimiz-
ing the computational time and not the loss considered here12. SSAA works in Kr rounds of
length Nk where, at each round, it allocates proportionally to the empirical standard devi-
ations computed in the previous rounds. Etoré and Jourdain (2010) report the asymptotic
consistency of the algorithm whenever k

Nk
goes to 0 when k goes to infinity. Since their goal

is not to obtain a finite-time performance, they do not mention how to calibrate the length
and number of rounds in practice. We choose the same parameters as in their numerical
experiments (Section 3.2.2 of (Etoré and Jourdain, 2010)) using 3 rounds. In this setting
where we know the budget n at the beginning of the algorithm, GAFS-WL pulls each arm

a
√
n times and then pulls at time t+ 1 the arm kt+1 that maximizes

wkσ̂k,t
Tk,t

. We set a = 1.

As mentioned in Subsection 6.4, an advantage of our algorithm is that it requires a single
parameter to tune. We chose b = 1000 log(n) where 1000 is a high-probability range of the
variables (see right plot of Figure 2). Table 7 reports the performance of MC-UCB, GAFS-
WL, SSAA, and the uniform strategy, for different values of strike C i.e., for different values

of λ−1
min and Σw,2/Σ

2
w =

∑
wkσ

2
k

(
∑
k wkσk)2

. The total budget is n = 105. The results are averaged on

50000 trials. We notice that MC-UCB outperforms the uniform strategy, SSAA, and GAFS-
WL. Note however that, in the case of GAFS-WL strategy, the small gain could come from
the fact that there are more parameters in MC-UCB, and that we were thus able to adjust
them (even if we kept the same parameters for the three values of C). Note however that for
small (but non-zero) values of λmin, we proved in Appendix E that algorithm GAFS-WL
was arbitrarily inefficient.

C 1
λmin

Σw,2/Σ
2
w Uniform SSAA GAFS-WL MC-UCB

60 6.18 1.06 2.52 10−2 5.87 10−3 8.25 10−4 7.29 10−4

90 15.29 1.24 3.32 10−2 6.14 10−3 8.58 10−4 8.07 10−4

120 744.25 3.07 3.56 10−2 6.22 10−3 9.89 10−4 9.28 10−4

Table 1: Characteristics of the distributions (λ−1
min and Σw,2/Σ

2
w) and regret of the Uniform,

SSAA, and MC-UCB strategies, for different values of the strike C.

In the left plot of Figure 3, we plot the rescaled true regret R̄nn
3/2, averaged over 50000

trials, as a function of n, where n ranges from 50 to 5000. The value of the strike is C = 120.
Again, we notice that MC-UCB performs better than Uniform and SSAA because it adapts
faster to the distributions of the strata. But it performs very similarly to GAFS-WL. In
addition, it seems that the true regret of Uniform and SSAA grows faster than the rate n3/2,
whereas MC-UCB, as well as GAFS-WL, grow with this rate. The right plot focuses on the
MC-UCB algorithm and rescales the y−axis to observe the variations of its rescaled true
regret more accurately. The curve grows first and then stabilizes. This could correspond to
the two regimes discussed previously.

12. In that article, the computational costs for each stratum vary, i.e. it is faster to sample in some strata
than in others, and the aim of the article is to minimize the global computational cost while achieving
a given performance.
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Figure 3: Left: Rescaled true regret (R̄nn
3/2) of the Uniform, SSAA, and MC-UCB strate-

gies. Right: zoom on the rescaled regret for MC-UCB that illustrates the two
regimes.

8. Conclusions

We provide a finite-time analysis for stratified sampling for Monte-Carlo in the case of fixed
strata. We reported two bound on the expectation of the pseudo-regret: (i) a distribution

dependent bound of order Õ(n−3/2λ
−5/2
min ) which is of interest when n is large compared

to a measure of disparity λ−1
min of the standard deviations (stationary regime), and (ii) a

distribution free bound of order Õ(n−4/3) which is of interest when n is small compared
to λ−1

min (transitory regime). We also link the expectation of the pseudo-loss to the mean-
squared error of algorithm MC-UCB and provide also problem dependent and problem
independent bounds. An immediate consequence is the asymptotic convergence of the
variance of our estimate to the optimal variance that requires the knowledge of the standard
deviations per stratum.

We also provide the first problem independent (minimax) lower bound on the expecta-
tion of the pseudo-regret for this problem. Interestingly, the problem independent bound
on expectation of the pseudo-regret of MC-UCB matches this lower-bound, both in terms
of number of strata K and in terms of budget n. This means that algorithm MC-UCB is
minimax-optimal in terms of pseudo-regret.

Possible directions for future work include: (i) making the MC-UCB algorithm anytime
(i.e. not requiring the knowledge of n) and (ii) deriving distribution-dependent lower-bound
for this problem and (iii) proposing efficient ways to stratify the space depending on the
regularity of the function.
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Supplementary material for the paper :
Finite Time Analysis of Stratified Sampling for Monte
Carlo

Appendix A. Proof of Theorem 1

Let us write the proof of the lower bound using the terminology of multi-armed bandits.
Each arm k represents a stratum and the distribution associated to this arm is defined as
the distribution of the noisy samples of the function collected when sampling uniformly on
the strata.

Let us choose µ < 1/2 and α = µ
2 . Consider 2K Bernoulli bandits (i.e., 2K strata

where the samples follow Bernoulli distributions) where the K first bandits have parameter
(µk)1≤k≤K and the K last ones have parameter 1/2. The µk take values in {µ−α, µ, µ+α}.

Define σ2 = µ(1 − µ) the variance of a Bernoulli of parameter µ, and is such that√
1
2µ ≤ σ ≤

√
µ. We wite σ−α and σ+α the two other standard deviations, and notice that

1
2

√
µ ≤ σ−α ≤

√
µ, and

√
1
2µ ≤ σ+α ≤

√
µ.

We consider the 2K bandit environments M(ε) (characterized by ε = (εk)1≤k≤K ∈
{−1,+1}K) defined by (µk = µ+ εkα)1≤k≤K . We write Pε the probability with respect to
the environment M(ε) at time n. We also write M(σ) the environment defined by all K
first arms having a parameter σ, and write Pσ the associated probability at time n.

The optimal oracle allocation for environment M(ε) is to play arm k ≤ K, tk(ε) =
σεkα∑K

i=1 σεiα+K/2
n times and arm k > K, tk(ε) = 1/2∑K

i=1 σεiα+K/2
n times. The corresponding

quadratic error of the resulting estimate is l(ε) =
(
∑K
i=1 σεiα+K/2)2

(2K)2n
. For the environment

M(σ), the optimal oracle allocation is to play arm k ≤ K, t(σ) = σ
Kσ+K/2n times (and arm

k > K, t2(σ) = 1/2
Kσ+K/2n times).

Consider deterministic algorithms first (extension to randomized algorithms will be dis-
cussed later). An algorithm is a set (for all t = 1 to n− 1) of mappings from any sequence
(r1, . . . , rt) ∈ {0, 1} of t observed samples (where rs ∈ {0, 1} is the sample observed at the
s-th round) to the choice of an arm It+1 ∈ {1, . . . , 2K}. Write Tk(r1, . . . , rn) the (ran-
dom variable) corresponding to the number of pulls of arm k up to time n. We thus have
n =

∑2K
k=1 Tk.

Now, consider the set of algorithms that know that the K first arms have parameter
µk ∈ {µ − α, µ, µ + α}, and that also know that the K last arms have their parameters in
{1/4, 3/4}. Given this knowledge, an optimal algorithm will not pull any arm k ≤ K more

than
(

σ+α
Kσ−α+

√
3K/4

)
n times. Indeed, the optimal oracle allocation in all such environments

allocates less than
(

σ+α
Kσ−α+

√
3K/4

)
n samples to each arm k ≤ K. In addition, since the

samples of all arms are independent, a sample collected from arm k does not provide any
information about the relative allocations among the other arms. Thus, once an arm has
been pulled as many times as recommended by the optimal oracle strategy, there is no
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need to allocate more samples to that arm. Writing A the class of all algorithms that do
not know the set of possible environments, Aε the class of algorithms that know the set of
possible environments M(ε) and Aopt the subclass of Aε that pull all arms k ≤ K less than(

σ+α
Kσ−α+

√
3K/4

)
n times, we have

inf
A

sup
M(ε)

ERn ≥ inf
Aε

sup
M(ε)

ERn = inf
Aopt

sup
M(ε)

ERn,

where the first inequality comes from the fact that algorithms in Aε possess more information
than those in A, which they can use or not. Thus A ⊂ Aε.

Now for any ε = (ε1, . . . , εK), define the events

Ωε = {ω : ∀U ⊂ {1, . . . ,K} : |U| ≤ K

3
and ∀k ∈ Uc, εkTk ≥ εkt(σ)}.

Note that by definition

Ωε =

K
3⋃

p=1

⋃
U⊂{1,...,K}:|U|=p

{{ ⋂
k∈U
{εkTk < εkt(σ)}

}⋂{ ⋂
k∈UC

{εkTk ≥ εkt(σ)}
}}

.

By the sub-additivity of the probabilities, we have

Pσ(Ωε) ≤

K
3∑

p=1

∑
U⊂{1,...,K}:|U|=p

P

[{{ ⋂
k∈U
{εkTk < εkt(σ)}

}⋂{ ⋂
k∈UC

{εkTk ≥ εkt(σ)}
}}]

.

The events

{{⋂
k∈U{εkTk < εkt(σ)}

}⋂{⋂
k∈UC{εkTk ≥ εt(σ)}

}}
are disjoint for dif-

ferent ε, and form a partition of the space, thus
∑

ε Pσ

[{{⋂
k∈U{εkTk < εkt(σ)}

}⋂{⋂
k∈UC{εTk ≥

εkt(σ)}
}}]

= 1.

We deduce that

∑
ε

Pσ(Ωε) ≤
∑
ε

K
3∑

p=1

∑
U⊂{1,...,K}:|U|=p

Pσ

[{{ ⋂
k∈U
{εTk < εkt(σ)}

}⋂{ ⋂
k∈UC

{εkTk ≥ εkt(σ)}
}}]

=

K
3∑

p=1

∑
U⊂{1,...,K}:|U|=p

∑
ε

[{{ ⋂
k∈U
{εkTk < εkt(σ)}

}⋂{ ⋂
k∈UC

{εTk ≥ εkt(σ)}
}}]

=

K
3∑

p=1

∑
U⊂{1,...,K}:|U|=p

1

=

K
3∑

p=1

(
K
p

)
.
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Since there are 2K environments ε, we have

min
ε

Pσ(Ωε) ≤
1

2K

∑
ε

Pσ(Ωε) ≤
1

2K

K
3∑

p=1

(
K
p

)
.

Note that 1
2K

∑K
3
p=1

(
K
p

)
= P(

∑K
k=1Xk ≤ K

3 ) where (X1, . . . , XK) are K independent

Bernoulli random variables of parameter 1/2. By Chernoff-Hoeffding’s inequality, we have
P(
∑K

k=1Xk ≤ K
3 ) = P( 1

K

∑K
k=1Xk − 1

2 ≤
K
6 ) ≤ exp(−K/72). Thus there exists εmin such

that Pσ(Ωεmin) ≤ exp(−K/72).

Let us write p = Pεmin(Ωεmin) and pσ = Pσ(Ωεmin). Let kl(a, b) = a log(ab ) + (1 −
a) log(1−a

1−b ) denote the KL for Bernoulli distributions with parameters a and b. Note that
because ∀Ω, KL(Pεmin(.|Ω),Pσ(.|Ω)) ≥ 0, we have

kl(p, pσ) ≤ KL(Pεmin ,Pσ).

From that we deduce that p(log(p) − log(pσ)) + (1 − p)(log(1 − p) − log(1 − pσ)) ≤
KL(Pεmin ,Pσ), which leads to

p ≤ max(
36

K

(
KL(Pεmin ,Pσ)

)
, exp(−K/72)). (10)

Let us now consider any environment (ε). Let Rt = (r1, . . . , rt) be the sequence of
observations, and let Ptε be the law of Rt for environment M(ε). Note first that Pε = Pnε .
Adapting the chain rule for Kullback-Leibler divergence, we get

KL(Pnε ,Pnσ)

= KL(P1
ε ,P1

σ) +
n∑
t=2

∑
Rt−1

Pt−1
ε (Rt−1)KL(Ptε(.|Rt−1),Ptσ(.|Rt))

= KL(P1
σ,P1

ε ) +

n∑
t=2

[ ∑
Rt−1|εIt=+1

Pt−1
σ (Rt−1)kl(µ+ α, µ) +

∑
Rt−1|εIt=−1

Pt−1
σ (Rt−1)kl(µ− α, µ)

]
= kl(µ− α, µ)Eε[

∑
k:εk=−1

Tk] + kl(µ+ α, µ)Eε[
∑

k:εk=+1

Tk].

We thus have, using the property that kl(a, b) ≤ (a−b)2
b(1−b) ,

KL(Pε,Pσ) = kl(µ− α, µ)Eε[
∑

k:εk=−1

Tk] + kl(µ+ α, µ)Eε[
∑

k:εk=+1

Tk]

≤ Eσ[
∑
k≤K

Tk]
α2

µ(1− µ)

= Eσ[
∑
k≤K

Tk]
α2

σ2
.
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Note that for an algorithm in Aopt, we have
∑K

k=1 Tk ≤ Tk ≤ K
(

σ+α
Kσ−α+

√
3K/4

)
n. Since

α = µ
2 and 0 < µ ≤ 1

2 we have

KL(Pε,Pσ) ≤
(
K

σ+α

Kσ−α +
√

3K/4

)α2

σ2
n

≤ 4σ+α
α2

σ2
n

≤ 8
α2

σ
n,

We thus deduce using Equation 10

Pεmin(Ωεmin) = p ≤ max(
18

K

(
KL(Pεmin ,Pσ)

)
, exp(−K/72))

≤ 144

K

α2

σ
n.

Now choose σ ≤ 1
7(Kn )1/3 (as α = µ

2 = σ2

2 ). Note that this implies that Pεmin(Ωεmin) ≤ 1
2 .

Let ω ∈ Ωc
εmin

. We know that for ω, there are at least K
3 arms among the K first which

are not pulled correctly: either K
6 arms among the arms with parameter µ − α or among

the arms with parameter µ+α are not pulled correctly. Assume that for this fixed ω, there
are K

6 arms among the arms with parameter µ−α which are not pulled correctly. Let U(ω)
be this subset of arms.

We write ∆T =
∑

k∈U Tk −
K
6 t(σ−α) the number of times those arms are over pulled.

Note that on ω we have ∆T ≥ K
6 t(σ)− t(σ−α). We have

∆T =
K

6
t(σ)− K

6
t(σ−α) =

1

6

Kσ

Kσ +K/2
n− 1

6

Kσ−α∑K
i=1 σεiα +K/2

n

≥ 1

6

Kσ

Kσ +K/2
n− 1

6

Kσ/
√

2√
3Kσ/

√
2 +K/2

n

≥ 1

6

1

Kσ +K/2

1√
3Kσ/

√
2 +K/2

(
K2σ/2−K2σ/2

√
2
)
n

≥ 1

2
(1− 1/

√
2)σn

≥ 1

35
K1/3n2/3
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Thus on ω, the regret is such that

Rn,εmin(ω) ≥
3K∑
k=1

w2
kσ

2
k

Tk(ω)
− 1

(2K)2

(
∑K

i=1 σεiα +K/2
)2

n

≥
∑

k∈U(ω)

w2
kσ

2
k

Tk(ω)
+

∑
k∈U(ω)C

w2
kσ

2
k

Tk(ω)
− 1

(2K)2

(
∑K

i=1 σεiα +K/2
)2

n

≥ 1

K2

K

6

σ2
−α

tk(σ−α) + 6∆T/K
+

(∑K
i=1 σεiα −Kσ−α/6 +K/2

)2
(2K −K/6)2(n−∆T )

− 1

(2K)2

(
∑K

i=1 σεiα +K/2
)2

n

≥ 1

(2K)2

(∑K
i=1 σεiα +K/2

)2
n

1 +
((∑K

i=1 σεiα+K/2
)

∆T(
Kσ−α/6

)
n

−
(∑K

i=1 σεiα+K/2
)

∆T(∑K
i=1 σεiα−Kσ−α/6+K/2

)
n

)
(

1 +
6∆T

(∑K
i=1 σεiα+K/2

)
Kσ−αn

)(
1−

(∑K
i=1 σεiα+K/2

)
∆T(∑K

i=1 σεiα−Kσ−α/6+K/2
)
n

)
− 1

(2K)2

(
∑K

i=1 σεiα +K/2
)2

n

≥ 1

(2K)2

(
∑K

i=1 σεiα +K/2
)2

n

( (∑K
i=1 σεiα+K/2

)
∆T(∑K

i=1 σεiα−Kσ−α/6+K/2
)
n

)((∑K
i=1 σεiα+K/2

)
∆T(

Kσ−α/6
)
n

)
(

1 +
6∆T

(∑K
i=1 σεiα+K/2

)
Kσ−αn

)(
1−

(∑K
i=1 σεiα+K/2

)
∆T(∑K

i=1 σεiα−Kσ−α/6+K/2
)
n

)
≥ C (∆T )2

n3σ

≥ CK
1/3

n4/3
,

where C is a numerical constant. Note that for events ω where there are K
6 arms among

the arms with parameter µ+ α which are not pulled correctly, the same result holds.

Note finally that P(Ωc
εmin

) ≥ 1/2. We thus have that the regret is bigger than

ERn,εmin ≥
∑

ω∈Ωcεmin

Rn,εmin(ω)Pεmin(ω)

≥
∑

ω∈Ωcεmin

C
K1/3

n4/3
Pεmin(ω)

≥ 1

2
C
K1/3

n4/3
,

which proves the lower bound for deterministic algorithms. Now the extension to random-
ized algorithms is straightforward: any randomized algorithm can be seen as a static (i.e.,
does not depend on samples) mixture of deterministic algorithms (which can be defined
before the game starts). Each deterministic algorithm satisfies the lower bound above in
expectation, thus any static mixture does so too.
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Appendix B. Main technical tools for the regret and pseudo-regret
bounds

B.1 The main tool: a high probability bound on the standard deviations

Upper bound on the standard deviation: The upper confidence bounds Bk,t used
in the MC-UCB algorithm is motivated by Theorem 10 in (Maurer and Pontil, 2009) (a
variant of this result is also reported in (Audibert et al., 2009)). We extend this result to
sub-Gaussian random variables.

Lemma 11 Let Assumption 1 hold and n ≥ 2. Define the following event

ξ = ξK,n(δ) =
⋂

1≤k≤K, 2≤t≤n


∣∣∣∣∣
√√√√ 1

t− 1

t∑
i=1

(
Xk,i −

1

t

t∑
j=1

Xk,j

)2
− σk

∣∣∣∣∣ ≤ 2a

√
log(2/δ)

t

 ,

(11)

where a =
√

2c1 log(c2/δ) +

√
c1δ(1+c2+log(c2/δ))

(1−δ)
√

2 log(2/δ)
n1/2. Then Pr(ξ) ≥ 1− 2nKδ.

Note that the first term in the absolute value in Equation 11 is the empirical standard
deviation of arm k computed as in Equation 7 for t samples. The event ξ plays an important
role in the proofs of this section and a number of statements will be proved on this event.

Proof

Step 1. Truncating sub-Gaussian variables. We want to characterize the mean and
variance of the variables Xk,t given that |Xk,t − µk| ≤

√
c1 log(c2/δ). For any positive

random variable Y and any b ≥ 0, E(Y I {Y > b}) =
∫∞
b P(Y > ε)dε+ bP(Y > b). If we take

b = c1 log(c2/δ) and use Assumption 1, we obtain:

E
[
|Xk,t − µk|2I

{
|Xk,t − µk|2 > b

} ]
=

∫ +∞

b
P
(
|Xk,t − µk|2 > ε

)
dε+ bP(|Xk,t − µk|2 > b)

≤
∫ +∞

b
c2 exp(−ε/c1)dε+ bc2 exp(−b/c1)

≤ c1δ + c1 log(c2/δ)δ

≤ c1δ(1 + log(c2/δ)).

We have E
[
|Xk,t−µk|2I

{
|Xk,t − µk|2 > b

} ]
+E
[
|Xk,t−µk|2I

{
|Xk,t − µk|2 ≤ b

} ]
= σ2

k,

which, combined with the previous equation, implies that

∣∣∣E[|Xk,t − µk|2 | |Xk,t − µk|2 ≤ b
]
− σ2

k

∣∣∣ =

∣∣∣E[((Xk,t − µk)2 − σ2
k

)
I
{
|Xk,t − µk|2 > b

} ]∣∣∣
P
(
|Xk,t − µk|2 ≤ b

)
≤
c1δ(1 + log(c2/δ)) + δσ2

k

1− δ
. (12)
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Note also that Cauchy-Schwartz inequality implies∣∣∣E[(Xk,t − µk
)
I
{
|Xk,t − µk|2 > b

} ]∣∣∣ ≤√E
[
(Xk,t − µk)2I {|Xk,t − µk|2 > b}

]
≤
√
c1δ(1 + log(c2/δ)).

Now, notice that E
[
Xk,tI

{
|Xk,t − µk|2 > b

} ]
+E
[
Xk,tI

{
|Xk,t − µk|2 ≤ b

} ]
= µk, which,

combined with the previous result and using n ≥ K ≥ 2, implies that

|µ̃k − µk| =

∣∣∣E[(Xk,t − µk
)
I
{
|Xk,t − µk|2 > b

} ]∣∣∣
P
(
|Xk,t − µk|2 ≤ b

) ≤
√
c1δ(1 + log(c2/δ))

1− δ
, (13)

where µ̃k
def
= E

[
Xk,t | |Xk,t − µk|2 ≤ b

]
=

E
[
Xk,tI{|Xk,t−µk|2≤b}

]
P
(
|Xk,t−µk|2≤b

) .

We note σ̃2
k

def
= V

[
Xk,t | |Xk,t−µk|2 ≤ b

]
= E

[
|Xk,t−µk|2 | |Xk,t−µk|2 ≤ b

]
−(µk−µ̃k)2.

From Equations 12 and 13, we derive

|σ̃2
k − σ2

k| ≤
∣∣∣E[|Xk,t − µk|2 | |Xk,t − µk|2 ≤ b

]
− σ2

k

∣∣∣+ |µ̃k − µk|2

≤
c1δ(1 + log(c2/δ)) + δσ2

k

1− δ
+
c1δ(1 + log(c2/δ))

(1− δ)2

≤
2c1δ(1 + log(c2/δ)) + δσ2

k

(1− δ)2
,

from which we deduce, because σ2
k ≤ c1c2

|σ̃k − σk| ≤
√

2c1δ(1 + c2 + log(c2/δ))

1− δ
. (14)

Step 2. Application of large deviation inequalities.
Let ξ1 = ξ1,K,n(δ) be the event:

ξ1 =
⋂

1≤k≤K, 1≤t≤n

{
|Xk,t − µk| ≤

√
c1 log(c2/δ)

}
.

Under Assumption 1, using a union bound, we have that the probability of this event is at
least 1− nKδ.

We now recall Theorem 10 of (Maurer and Pontil, 2009):

Theorem 1 (Maurer and Pontil (2009)) Let (X1, ..., Xt) be t ≥ 2 i.i.d. random vari-
ables of variance σ2 and mean µ and such that ∀i ≤ t,Xi ∈ [a, a+ c]. Then with probability
at least 1− δ: ∣∣∣∣∣

√√√√ 1

t− 1

t∑
i=1

(
Xi −

1

t

t∑
j=1

Xj

)2
− σ

∣∣∣∣∣ ≤ 2c

√
log(2/δ)

t− 1
.
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On ξ1, the {Xk,i}i, 1 ≤ k ≤ K, 1 ≤ i ≤ t are t i.i.d. bounded random variables with
standard deviation σ̃k.

Let ξ2 = ξ2,K,n(δ) be the event:

ξ2 =
⋂

1≤k≤K, 1≤t≤n


∣∣∣∣∣
√√√√ 1

t− 1

t∑
i=1

(
Xk,i −

1

t

t∑
j=1

Xk,j

)2
− σ̃k

∣∣∣∣∣ ≤ 2
√
c1 log(c2/δ)

√
log(2/δ)

t− 1

 .

Using Theorem 10 of (Maurer and Pontil, 2009) and a union bound, we deduce that
Pr(ξ1 ∩ ξ2) ≥ 1− 2nKδ.

Now, from Equation 14, we have on ξ1 ∩ ξ2, for all 1 ≤ k ≤ K, 2 ≤ t ≤ n:∣∣∣∣∣
√√√√ 1

t− 1

t∑
i=1

(
Xk,i −

1

t

t∑
j=1

Xk,j

)2
− σk

∣∣∣∣∣ ≤ 2
√
c1 log(c2/δ)

√
log(2/δ)

t− 1

+

√
2c1δ(1 + c2 + log(c2/δ))

1− δ

≤ 2
√

2c1 log(c2/δ)

√
log(2/δ)

t

+

√
2c1δ(1 + c2 + log(c2/δ))

1− δ
,

from which we deduce Lemma 11 (since ξ1 ∩ ξ2 ⊆ ξ and 2 ≤ t ≤ n).

We deduce the following corollary when the number of samples Tk,t are random.

Corollary 12 For any k = 1, . . . ,K and t = 2K, . . . , n, let {Xk,i}i be n i.i.d. random
variables drawn from νk, satisfying Assumption 1. Let Tk,t be any random variable taking
values in {2, . . . , n}. Let σ̂2

k,t be the empirical variance computed from Equation 7. Then,
on the event ξ, we have:

|σ̂k,t − σk| ≤ 2a

√
log(2/δ)

Tk,t
. (15)

B.2 Other important properties

A stopping time problem: We now draw a connection between the adaptive sampling
and stopping time problems. We report the following proposition which is a type of Wald’s
Theorem for variance (see e.g. Resnick (1999)).

Proposition 13 Let {Ft} be a filtration and Xt a Ft-adapted sequence of i.i.d. random
variables with variance σ2. Assume that Ft and the σ-algebra generated by {Xi : i ≥ t+ 1}
are independent and T is a stopping time w.r.t. Ft with a finite expected value. If E[X2

1 ] <∞
then

E

[( T∑
i=1

Xi − T µ
)2
]

= E[T ] σ2. (16)
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Bound on E
[
|µ̂k,n−µk|2I

{
ξC
} ]

. The next lemma provides a bound for the loss whenever
the event ξ does not hold.

Lemma 14 Let Assumption 1 holds. Then for every arm k:

E
[
|µ̂k,n − µk|2I

{
ξC
} ]
≤ 2c1n

2Kδ(1 + log(c2/2nKδ)) .

Proof Since the arms have sub-Gaussian distribution, for any 1 ≤ k ≤ K and 1 ≤ t ≤ n,
we have

P
(
|Xk,t − µk|2 ≥ ε

)
≤ c2 exp(−ε/c1) ,

and thus by setting ε = c1 log(c2/2nKδ)
13, we obtain

P
(
|Xk,t − µk|2 ≥ c1 log(c2/2nKδ)

)
≤ 2nKδ .

We thus know that

max
Ω/P(Ω)=2nKδ

E
[
|Xk,t − µk|2I {Ω}

]
≤
∫ ∞
c1 log(c2/2nKδ)

c2 exp(−ε/c1)dε+ c1 log(c2/2nKδ)P
(

Ω
)

= 2c1nKδ(1 + log(c2/2nKδ)) .

Since the event ξC has a probability at most 2nKδ, for any 1 ≤ k ≤ K and 1 ≤ t ≤ n, we
have

E
[
|Xk,t − µk|2I

{
ξC
} ]
≤ max

Ω/P(Ω)=2nKδ
E
[
|Xk,t − µk|2I {Ω}

]
≤ 2c1nKδ(1 + log(c2/2nKδ)) .

The claim follows from the fact that E
[
|µ̂k,n−µk|2I

{
ξC
} ]
≤
∑n

t=1 E
[
|Xk,n−µk|2I

{
ξC
} ]
≤

2c1n
2Kδ(1 + log(c2/2nKδ)).

B.3 Technical inequalities

Upper and lower bound on a: If δ = n−7/2, with n ≥ 4K ≥ 8

a =
√

2c1 log(c2/δ) +

√
c1δ(1 + c2 + log(c2/δ))

(1− δ)
√

2 log(2/δ)
n1/2

≤
√

7c1(c2 + 1) log(n) +
1

n3/2

√
c1(2 + c2)

≤ 2
√

2c1(c2 + 2) log(n).

We also have by just keeping the first term and choosing c2 such that c2 ≥ eδ = en−7/2

a =
√

2c1 log(c2/δ) +

√
c1δ(1 + c2 + log(c2/δ))

(1− δ)
√

2 log(2/δ)
n1/2

≥
√

2c1 ≥
√
c1.

13. Note that we need to choose c2 such that c2 ≥ 2nKδ = 2Kn−5/2 if δ = n−7/2.
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Lower bound on c(δ) when δ = n−7/2: Since the arms have sub-Gaussian distribution,
for any 1 ≤ k ≤ K and 1 ≤ t ≤ n, we have

P
(
|Xk,t − µk|2 ≥ ε

)
≤ c2 exp(−ε/c1) ,

We then have

E
[
|Xk,t − µk|2

]
≤
∫ ∞

0
c2 exp(−ε/c1)dε = c2c1

We then have Σw ≤
√
c2c1.

If δ = n−7/2, we obtain by using the lower bound on a that

c(δ = n−7/2) =
( 2a

√
log(2/δ)

Σw + 4a
√

log(2/δ)

)2/3

=
(1

2
− 1

2

Σw

Σw + 4a
√

log(2/δ)

)2/3

≥
(1

2
− 1

2

Σw

Σw + 4
√
c1 log(n)

)2/3

≥
(1

2

)2/3( √
c1

Σw +
√
c1

)2/3
≥
( 1

2K

)2/3( 1
√
c2 + 1

)2/3
,

by using Σw ≤
√
c2c1 for the last step.

Upper bound on E
[
|µ̂k,n−µk|2I

{
ξC
} ]

when δ = n−7/2: We get from Lemma 14 when

δ = n−7/2 and when choosing c2 such that c2 ≥ 2nKδ = 2Kn−5/2

E
[
|µ̂k,n − µk|2I

{
ξC
} ]
≤ 2c1n

2Kδ(1 + log(c2/2nKδ))

≤ 2c1K
(
1 +

5

2
(c2 + 1) log(n)

)
n−3/2

≤ 6c1K(c2 + 1) log(n)n−3/2.

Appendix C. Proof of Theorems 2 and Proposition 4

In this section, we first provide the proof for an important Lemma on the number of pulls
of the arms, and then use the result to prove Theorem 2 and Proposition 4.

C.1 Problem dependent bound on the number of pulls

Lemma 15 Let Assumption 1 hold. Let 0 < δ ≤ 1 be arbitrary and and n ≥ 4K. The
difference between the allocation Tp,n implemented by the MC-UCB algorithm described in
Figure 1 and the optimal allocation rule T ∗p,n has the following upper and lower bounds, on
ξ (and thus with probability at least 1− 2nKδ), for any arm 1 ≤ p ≤ K:

−12aλp

√
log(2/δ)

Σwλ
3/2
min

√
n− 4Kλp ≤ Tp,n − T ∗p,n ≤ 12a

√
log(2/δ)

Σwλ
3/2
min

√
n+ 4K . (17)
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where a =
√

2c1 log(c2/δ) +

√
c1δ(1+c2+log(c2/δ))

(1−δ)
√

2 log(2/δ)
n1/2.

In Equation 17, the difference Tp,n−T ∗p,n is bounded with Õ(
√
n). This is directly linked

to the parametric rate of convergence of the estimation of σk, which is of order 1/
√
n. Note

that Equation 17 also shows the inverse dependency on the smallest proportion λmin.
Proof [Lemma 15] The proof consists of the following three main steps.

Step 1. Properties of the algorithm. Recall the definition of the upper bound used in
MC-UCB when t > 2K:

Bq,t+1 =
wq
Tq,t

(
σ̂q,t + 2a

√
log(2/δ)

Tq,t

)
, 1 ≤ q ≤ K .

From Corollary 12, we obtain the following upper and lower bounds for Bq,t+1 on ξ:

wqσq
Tq,t

≤ Bq,t+1 ≤
wq
Tq,t

(
σq + 4a

√
log(2/δ)

Tq,t

)
. (18)

Let t+1 > 2K be the time at which a given arm k is pulled for the last time, i.e., Tk,t =
Tk,n−1 and Tk,(t+1) = Tk,n. Note that as n ≥ 4K, there is at least one arm k such that this
happens, i.e. such that it is pulled after the initialization phase. Since AMC−UCB chooses
to pull arm k at time t+ 1, we have for any arm p

Bp,t+1 ≤ Bk,t+1 . (19)

From Equation 18 and the fact that Tk,t = Tk,n − 1, we obtain

Bk,t+1 ≤
wk
Tk,t

(
σk + 4a

√
log(2/δ)

Tk,t

)
=

wk
Tk,n − 1

(
σk + 4a

√
log(2/δ)

Tk,n − 1

)
. (20)

Using the lower bound in Equation 18 and the fact that Tp,t ≤ Tp,n, we may lower bound
Bp,t+1 as

Bp,t+1 ≥
wpσp
Tp,t

≥ wpσp
Tp,n

. (21)

Combining Equations 19, 20, and 21, we obtain

wpσp
Tp,n

≤ wk
Tk,n − 1

(
σk + 4a

√
log(2/δ)

Tk,n − 1

)
. (22)

Note that at this point there is no dependency on t, and thus, the probability that
Equation 22 holds for any p and for any k such that arm k is pulled after the initialization
phase, i.e., such that Tk,n > 2, is at least 1− 2nKδ (probability of event ξ).
Step 2. Lower bound on Tp,n. If an arm p is under-pulled compared to its optimal
allocation without taking into account the initialization phase,i.e., Tp,n − 2 < λp(n − 2K),
then from the constraint

∑
k(Tk,n−2) = n−2K and the definition of the optimal allocation,
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we deduce that there exists at least another arm k that is over-pulled compared to its optimal
allocation without taking into account the initialization phase, i.e., Tk,n − 2 > λk(n− 2K).
Note that for this arm, Tk,n − 2 > λk(n − 2K) ≥ 0, so we know that this specific arm is
pulled at least once after the initialization phase and that it satisfies Equation 22. Using
the definition of the optimal allocation T ∗k,n = nwkσk/Σw, and the fact that Tk,n ≥ λk(n−
2K) + 2, Equation 22 may be written as for any arm p

wpσp
Tp,n

≤ wk
T ∗k,n

n

(n− 2K)

(
σk + 4a

√
log(2/δ)

λk(n− 2K) + 1

)

≤ Σw

n
+

4KΣw

n2
+ 8
√

2a

√
log(2/δ)

n3/2λ
3/2
k

,

because n ≥ 4K. The previous Equation, combined with the fact that λk ≥ λmin, may
be written as

wpσp
Tp,n

≤ Σw

n
+ 12a

√
log(2/δ)

n3/2λ
3/2
min

+
4KΣw

n2
. (23)

By rearranging Equation 23, we obtain the lower bound on Tp,n:

Tp,n ≥
wpσp

Σw
n + 12a

√
log(2/δ)

n3/2λ
3/2
min

+ 4KΣw
n2

≥ T ∗p,n − 12aλp

√
log(2/δ)

Σwλ
3/2
min

√
n− 4Kλp , (24)

where in the second inequality we use 1/(1 + x) ≥ 1− x (for x > −1). Note that the lower
bound holds on ξ for any arm p.

Step 3. Upper bound on Tp,n. Using Equation 24 and the fact that
∑

k Tk,n = n, we
obtain

Tp,n = n−
∑
k 6=p

Tk,n ≤
(
n−

∑
k 6=p

T ∗k,n

)
+
∑
k 6=p

(
12aλp

√
log(2/δ)

Σwλ
3/2
min

√
n+ 4Kλp

)
.

And we deduce because
∑

k 6=p λk ≤ 1

Tp,n ≤ T ∗p,n + 12a

√
log(2/δ)

Σwλ
3/2
min

√
n+ 4K . (25)

The lemma follows by combining the lower and upper bounds in Equations 24 and 25.

C.2 Proof of Theorem 2

We are now ready to prove Theorem 2.
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Proof [Theorem 2] By definition, the pseudo-loss of the algorithm is

E[Ln] =

K∑
k=1

w2
kE
[ σ2

k

Tk,n

]
=

K∑
k=1

w2
kE
[ σ2

k

Tk,n
I{ξ}

]
+

K∑
k=1

w2
kE
[ σ2

k

Tk,n
I{ξC}

]
≤

K∑
k=1

w2
k

σ2
k

T k,n
+

K∑
k=1

w2
k

σ2
k

2
P(ξc).

where T k,n is the lower bound on Tk,n on the event ξ, and also because Tk,n ≥ 2 by definition
of algorithm MC-UCB.

Using Equation 23 for wkσk/T k,n (result of Lemma 15, which is equivalent to using a
lower bound on Tk,n on the event ξ), we obtain

K∑
k=1

w2
k

σ2
k

T k,n
≤

K∑
k=1

wkσk

(Σw

n
+ 12a

√
log(2/δ)

n3/2λ
3/2
min

+
4KΣw

n2

)
≤ Σ2

w

n
+ 12aΣw

√
log(2/δ)

n3/2λ
3/2
min

+
4KΣ2

w

n2
.

Finally we have, because of Lemma 11 tells us that P(ξc) ≤ 2nKδ, that

E[Ln] ≤ Σ2
w

n
+ 12aΣw

√
log(2/δ)

n3/2λ
3/2
min

+
4KΣ2

w

n2
+ Σw,2nKδ

≤ Σ2
w

n
+ 168

√
2c1(c2 + 2) log(n)Σw

√
log(n)

n3/2λ
3/2
min

+
4KΣ2

w

n2
+

Σw,2

n5/2
K

≤ Σ2
w

n
+ 168

√
2c1(c2 + 2)Σw

log(n)

n3/2λ
3/2
min

+
5KΣw,2

n2
.

where we use a ≤ 2
√

2c1(c2 + 2) log(n) and δ = n−7/2. Those bounds are made explicit in
Appendix B.3.

This concludes the proof.

C.3 Proof of Proposition 4

We are also ready to prove Proposition 4

Proof [Proposition 4] The proof consists of the following two steps.

Step 1. Tk,n is a stopping time. Consider an arm k. At each time step t+1, the MC-UCB
algorithm decides which arm to pull according to the current values of the upper-bounds
{Bk,t+1}k. Thus for any arm k, Tk,(t+1) depends only on the values {Tk,t}k and {σ̂k,t}k. So
by induction, Tk,(t+1) depends on the sequence {Xk,1, . . . , Xk,Tk,t}, and on the samples of
the other arms (which are independent of the samples of arm k). We deduce that Tk,n is a
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stopping time adapted to the process (Xk,t)t≤n.

Step 2. Bound on
∑K

k=1w
2
kE
[
(µ̂k,n − µk)2

]
. By definition, we have

K∑
k=1

w2
kE
[
(µ̂k,n − µk)2

]
=

K∑
k=1

w2
kE
[
(µ̂k,n − µk)2I{ξ}

]
+

K∑
k=1

w2
kE
[
(µ̂k,n − µk)2I{ξC}

]
.

Using the definition of µ̂k,n and Proposition 13 we bound the first term as

K∑
k=1

w2
kE
[
(µ̂k,n − µk)2I{ξ}

]
≤

K∑
k=1

w2
k

σ2
kE[Tk,n]

T 2
k,n

, (26)

where T k,n is the lower bound on Tk,n on the event ξ.

Note that as
∑

k Tk,n = n, we also have
∑

k E[Tk,n] = n.

Using Equation 26 and Equation 23 for wkσk/T k,n (which is equivalent to using a lower
bound on Tk,n on the event ξ), we obtain

K∑
k=1

w2
k

σ2
kE[Tk,n]

T 2
k,n

≤
K∑
k=1

(Σw

n
+ 12a

√
log(2/δ)

n3/2λ
3/2
min

+
4KΣw

n2

)2
E[Tk,n]. (27)

Equation 27 may be bounded using the fact that
∑

k E[Tk,n] = n as

K∑
k=1

w2
k

σ2
kE[Tk,n]

T 2
k,n

≤
(Σw

n
+ 12a

√
log(2/δ)

n3/2λ
3/2
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+
4KΣw

n2

)2
n

≤
(

(
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n
)2 + 24aΣw

√
log(2/δ)

n5/2λ
3/2
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+
8KΣ2

w

n3
+ 288a2 log(2/δ)

n3λ3
min

+
8K2Σ2

w

n4

)
n

=
Σ2
w

n
+ 24aΣw

√
log(2/δ)

n3/2λ
3/2
min

+
8KΣ2

w

n2
+ 288a2 log(2/δ)

n2λ3
min

+
8K2Σ2

w

n3

≤ Σ2
w

n
+ 24aΣw

√
log(2/δ)
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3/2
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+
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2

(
KΣ2

w + 18a2 log(2/δ)
)
.
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From Lemma 14, we have E
[
(µ̂k,n − µk)2I{ξC}

]
≤ 2c1n

2Kδ(1 + log(c2/2nKδ)). Thus

using the previous equation, we deduce

K∑
k=1

w2
kE
[
(µ̂k,n − µk)2

]
≤Σ2

w

n
+ 24aΣw

√
log(2/δ)

n3/2λ
3/2
min

+
16

λ3
minn

2

(
KΣ2

w + 18a2 log(2/δ)
)

+ 2c1n
2Kδ(1 + log(c2/2nKδ))

≤Σ2
w

n
+ 54aΣw

√
log(n)

n3/2λ
3/2
min

+
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λ3
minn

2

(
KΣ2

w + 90a2 log(n)
)

+ 6c1K(c2 + 1) log(n)n−3/2

≤Σ2
w

n
+

log(n)

n3/2λ
3/2
min

(
112Σw

√
c1(c2 + 2) + 6c1(c2 + 2)K

)
+

19

λ3
minn

2

(
KΣ2

w + 720c1(c2 + 1) log(n)2
)
.

where we use a ≤ 2
√

2c1(c2 + 2) log(n) and E
[
|µ̂k,n−µk|2I

{
ξC
} ]
≤ 6c1K(c2+1) log(n)n−3/2.

Those bounds are made explicit in B.3.

The Theorem follows by expressing the regret.

Appendix D. Proof of Theorems 3 and Proposition 5

Again, we first state and prove the following Lemma and then use this result to prove
Theorem 3 and Proposition 5.

D.1 Problem independent Bound on the number of pulls of each arm

Lemma 16 Let Assumption 1 hold. For any 0 < δ ≤ 1 and for n ≥ 4K, the algorithm
MC-UCB satisfies on ξ, and thus with probability at least 1− 2nKδ, for any arm p,

Tp,n ≥ T ∗p,n −
(

24aK1/3 1

Σw
λq

√
log(2/δ)

c(δ)
n2/3 + 12Kλq

)
, (28)

and

Tp,n ≤ T ∗p,n +
(

24aK1/3 1

Σw

√
log(2/δ)

c(δ)
n2/3 + 12KΣw

)
, (29)

where c(δ) =
(

2a
√

log(2/δ)

Σw+4a
√

log(2/δ)

1
K

)2/3
and a =

√
2c1 log(c2/δ) +

√
c1δ(1+c2+log(c2/δ))

(1−δ)
√

2 log(2/δ)
n1/2.

Unlike the bounds proved in Lemma 15, the difference between Tp,n and T ∗p,n is bounded

by Õ(n2/3) without any inverse dependency on λmin.

Proof [Proof of Lemma 16]
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Step 1. Lower bound of order Õ(n2/3). Let k be the index of an arm that is such that
Tk,n− 2 ≥ wk(n− 2K) (this implies Tk,n ≥ 3 as n ≥ 4K, and arm k is thus pulled after the
initialization)14. Let t+ 1 ≤ n be the last time at which it was pulled, i.e., Tk,t = Tk,n − 1
and Tk,t+1 = Tk,n. From Equation 15 and the fact that Tk,n ≥ wkn, we obtain on ξ

Bk,t ≤
wk
Tk,t

(
σk + 4a

√
log(2/δ)

Tk,t

)
≤

(
maxp σp + 4a

√
log(2/δ)

)
n

, (30)

where the second inequality follows from the facts that Tk,t ≥ 1, wkσk ≤ Σw, and wk ≤∑
k wk = 1. Since at time t+ 1 the arm k has been pulled, then for any arm q, we have

Bq,t ≤ Bk,t. (31)

From the definition of Bq,t, and also using the fact that Tq,t ≤ Tq,n, we deduce on ξ that

Bq,t ≥ 2awq

√
log(2/δ)

T
3/2
q,t

≥ 2awq

√
log(2/δ)

T
3/2
q,n

. (32)

Combining Equations 30–32, we obtain on ξ

2awq

√
log(2/δ)

T
3/2
q,n

≤
maxp σp + 4a

√
log(2/δ)

n
.

Finally, this implies on ξ that for any q,

Tq,n ≥
( 2awq

√
log(2/δ)

Σw + 4a
√

log(2/δ)
n
)2/3

. (33)

In order to simplify the notation, in the following we define

c(δ) =
( 2a

√
log(2/δ)

Σw + 4a
√

log(2/δ)

)2/3
,

thus the lower bound on Tq,n on ξ writes Tq,n ≥ w2/3
q c(δ)n2/3.

Step 2. Properties of the algorithm. We follow a similar analysis to Step 1 of the proof
of Lemma 15. We first recall the definition of Bq,t+1 used in the MC-UCB algorithm

Bq,t+1 =
wq
Tq,t

(
σ̂q,t + 2a

√
log(2/δ)

Tq,t

)
.

Using Corollary 12 it follows that, on ξ

wqσq
Tq,t

≤ Bq,t+1 ≤
wq
Tq,t

(
σq + 4a

√
log(2/δ)

Tq,t

)
. (34)

14. Note that such an arm always exists for any possible allocation strategy, as n − 2K =
∑
q(Tq,n − 2),

1 =
∑
q wq, and ∀q, wq > 0.
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Let t + 1 ≥ 2K + 1 be the time at which an arm q is pulled for the last time, that is
Tq,t = Tq,n−1. Note that there is at least one arm such that this happens as n ≥ 4K. Since
at t+ 1 arm q is chosen, then for any other arm p, we have

Bp,t+1 ≤ Bq,t+1 . (35)

From Equation 34 and Tq,t = Tq,n − 1, we obtain on ξ

Bq,t+1 ≤
wq
Tq,t

(
σq + 4a

√
log(2/δ)

Tq,t

)
=

wq
Tq,n − 1

(
σq + 4a

√
log(2/δ)

Tq,n − 1

)
. (36)

Furthermore, since Tp,t ≤ Tp,n, then on ξ

Bp,t+1 ≥
wpσp
Tp,t

≥ wpσp
Tp,n

. (37)

Combining Equations 35–37, we obtain on ξ

wpσp
Tp,n

(Tq,n − 1) ≤ wq

(
σq + 4a

√
log(2/δ)

Tq,n − 1

)
.

Summing over all q such that the previous Equation is verified, i.e. such that Tq,n ≥ 3, on
both sides, we obtain on ξ

wpσp
Tp,n

∑
q|Tq,n≥3

(Tq,n − 1) ≤
∑

q|Tq,n≥3

wq

(
σq + 4a

√
log(2/δ)
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)
.

This implies

wpσp
Tp,n

(n− 2K) ≤
K∑
q=1

wq

(
σq + 4a

√
log(2/δ)

Tq,n − 1

)
. (38)

Step 3. Lower bound. Plugging Equation 33 in Equation 38,

wpσp
Tp,n

(n− 2K) ≤
∑
q

wq

(
σq + 4a

√
log(2/δ)

Tq,n − 1

)

≤
∑
q

wq

(
σq + 4a

√
2 log(2/δ)

w
2/3
q c(δ)n2/3

)

≤ Σw +
∑
q

4aw2/3
q

√
2

log(2/δ)

c(δ)n2/3
≤ Σw + 6aK1/3

√
log(2/δ)

c(δ)n2/3
,

on ξ, since
∑

q w
2/3
q ≤ K1/3 by Jensen inequality and because Tq,n − 1 ≥ Tq,n

2 (as Tq,n ≥ 2).
Finally as n ≥ 4K, we obtain on ξ the following bound

wpσp
Tp,n

≤ Σw

n
+ 24aK1/3

√
log(2/δ)

c(δ)
n−4/3 +

12KΣw

n2
. (39)
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We now invert the bound and obtain on ξ the final lower-bound on Tp,n as follows:

Tp,n ≥
wpσp

Σw
n + 24aK1/3

√
log(2/δ)
c(δ) n−4/3 + 12KΣw

n2

≥ T ∗p,n−24aK1/3 1

Σw
λp

√
log(2/δ)

c(δ)
n2/3−12Kλp,

as 1
1+x ≥ 1− x. Note that the above lower bound holds with high probability for any arm

p.

Step 4. Upper bound. An upper bound on Tp,n on ξ follows by using Tp,n = n−
∑

q 6=p Tq,n
and the previous lower bound, that is

Tp,n ≤ n−
∑
q 6=p

T ∗q,n +
∑
q 6=p

(
12Kλq + 24aK1/3 1

Σw
λq

√
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≤ T ∗p,n +
(

24aK1/3 1

Σw

√
log(2/δ)

c(δ)
n2/3 + 12K

)
,

because
∑

q 6=p λq ≤ 1.

D.2 Proof of Theorem 3

We are now ready to prove Theorem 3.

Proof [Theorem 3]

By definition, the pseudo-loss of the algorithm is

E[Ln] =
K∑
k=1

w2
kE
[ σ2

k

Tk,n

]
=

K∑
k=1

w2
kE
[ σ2

k

Tk,n
I{ξ}

]
+

K∑
k=1

w2
kE
[ σ2
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I{ξC}

]
≤

K∑
k=1

w2
k

σ2
k

T k,n
+

K∑
k=1

w2
k

σ2
k

2
P(ξc).

where T k,n is the lower bound on Tk,n on the event ξ, and also because Tk,n ≥ 2 by definition
of algorithm MC-UCB.

Using Equation 39 for wkσk/T k,n (result of Lemma 16, which is equivalent to using a
lower bound on Tk,n on the event ξ), we obtain

K∑
k=1

w2
k

σ2
k

T k,n
≤

K∑
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wkσk

(Σw

n
+ 24aK1/3
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log(2/δ)

c(δ)
n−4/3 +

12KΣ2
w
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. (40)

34



Minimax strategy for Stratified Sampling Monte Carlo

Finally we have, as by Lemma 11, we know that P(ξc) ≤ 2nKδ, that

E[Ln] ≤ Σ2
w

n
+ 24aK1/3Σw

√
log(2/δ)

c(δ)
n−4/3 +

12KΣ2
w

n2
+ Σw,2nKδ

≤ Σ2
w

n
+ 336

√
2c1(c2 + 2)(

√
c2 + 1)2/3K1/3Σw

log(n)
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+
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,

where we use a ≤ 2
√

2c1(c2 + 2) log(n), c(δ) ≥
(

1√
c2+1

)2/3
and δ = n−7/2. These bounds

are made explicit in Appendix B.3.

This concludes the proof.

D.3 Proof of Proposition 5

We are also ready to prove Proposition 5.

Proof [Proposition 5]

We decompose
∑K

k=1w
2
kE
[
(µ̂k,n − µk)2

]
on ξ and its complement:

K∑
k=1

w2
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[
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=
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+
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.

Using the definition of µ̂k,n and Proposition 13 we bound the first term as
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]
≤
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k

σ2
kE[Tk,n]

T 2
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, (41)

where T k,n is the lower bound on Tk,n on ξ.

Note also that as
∑

k Tk,n = n, we also have
∑

k E[Tk,n] = n. Using Equation 41 and
Equation 39 which provides an upper bound on ξ on wkσk

Tk,n
(and thus a lower bound on ξ on

Tk,n), we deduce
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(42)

Using the fact that
∑

k E[Tk,n] = n, Equation 42 may be rewritten as
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K∑
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.

From Lemma 14, we have E
[
(µ̂k,n − µk)2I{ξC}

]
≤ 2c1n

2Kδ(1 + log(c2/2nKδ)). Thus

using the last equation and the fact that δ = n−7/2, the loss is bounded as
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where we use a ≤ 2
√

2c1(c2 + 2) log(n), c(δ) ≥
(

1√
c2+1

)2/3
and E

[
|µ̂k,n − µk|2I
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} ]
≤

6c1K(c2 + 1) log(n)n−3/2. Those bound are made explicit in B.3.

36



Minimax strategy for Stratified Sampling Monte Carlo

Appendix E. Comments on problem independent bound for GAFS-WL

Let n ≥ 4 be the budget. We face a two-arms bandit problem with w1 = w2 = 1
2 and such

that (i) the distribution of the first arm is a Bernoulli of parameter p = 1
n1/2+ε with ε such

that 1/6 > ε > 0 and that (ii) the distribution of the second arm is such that σ2 = 1 and
bounded by c.

Note that

1

2n1/4+ε/2
≤ σ1 ≤

1

n1/4+ε/2
and σ2 = 1,

because σ1 =
√
p(1− p) and that thus

L∗n ≤
(1 + n−1/4−ε/2)2

4n
≤ 1 + 3n−1/4−ε/2

4n
≤ 1

4n
+

1

n5/4+ε/2
.

We run algorithm GAFS-WL on that problem. Note that algorithm GAFS-WL pull

each arm ba
√
nc times and then pull the arms according to

wkσ̂k,t
Tk,t

.

We call {Xp,u}p=1,2;u=1,...,n the samples of the arms.
Note that:

P
(
X1,1 = 0, . . . , X1,ba

√
nc = 0

)
≥ (1− 1

n1/2+ε
)a
√
n

≥ (1− an−ε

a
√
n

)a
√
n

≥ (1− an−ε) exp(−an−ε) ≥ (1− an−ε)2.

Note on the other hand, that P(|σ̂2,a
√
n − 1| ≥ 2

√
log(2/δ)√
an1/4 ) ≤ δ. This means that with

probability at least 1− 2 exp(−a
√
n/4), we have σ̂2,a

√
n > 0.

The probability that σ̂1,a
√
n = 0 goes to 1 when n goes to +∞. The probability that

σ̂2,a
√
n > 0 goes to 1 when n goes to +∞. This means that the probability that GAFS-WL

stops pulling arm 1 after a
√
n pulls goes to 1 when n goes to +∞, and arm 1 is under-pulled

if ε < 1/2 (it should be pulled n3/4−ε/2).

Note that on the event such that
(
X1,1 = 0, . . . , X1,ba

√
nc = 0

)
, we know that µ̂1,a

√
n = 0.

Note also that we know that as arm 2 is gaussian, we have E(µ̂2,n − µ2)2 ≤ 1
4n . The

performance of GAFS-WL then verifies

E
[∑

k

w2
k(µ̂k,n − µk)2

]
≥ 1

4n
+ P(σ̂1,a

√
n = 0)P(σ̂2,a

√
n > 0)

(
n−1/2−ε

)2

≥ 1

4n
+ (1− 2 exp(−a

√
n/4))(1− an−ε)2

(
n−1−2ε

)
≥ 1

4n
+ (1− 8

a
√
n

)(1− 2
a

nε
)

1

n1+2ε

≥ 1

4n
+

1

n1+2ε
− 8

an3/2+2ε
− 2a

n1+3ε

≥ 1

4n
+

1

n1+2ε
− 10 max(a, 1/a)

n1+3ε
,
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where the last line is obtained using the fact that ε < 1/6. Note that we used the proxy
defined in paper Grover (2009) to measure performance, so that we can compare with their
bound.

We thus have

E
[∑

k

w2
k(µ̂k,n − µk)2

]
− Σ2

w

n
≥ 1

n1+2ε
− 10 max(a, 1/a)

n1+3ε
− 1

n5/4+ε/2

≥ 1

n1+2ε
− 11 max(a, 1/a)

n1+3ε
,

again because ε < 1/6. This implies that for n such that n ≥ (11 max(a,1/a)
2 )1/ε, we have

E
[∑

k

w2
k(µ̂k,n − µk)2

]
− Σ2

w

n
≥ 1

2n1+2ε
,

with ε arbitrarily close to 0.

Appendix F. Proof of Propositions 6, 7 and 8

F.1 Proof of Proposition 6

We first prove that the bounds of Theorems 4 and 5 can be directly expressed as bounds
on the mean squared error E[(µ̂n − µ)2] when the distributions of the arms are symmetric.

Proof [Proof of Proposition 6]

Step 1: Expression of E[
(
µ̂k,n−µk

)(
µ̂q,n−µq

)
|Tk,n = T1, Tq,n = T2]. At each time step

t + 1 > 2K, the MC-UCB algorithm decides which arm to pull according to the current
values of the upper-bounds {Bp,t+1}p. Thus for any arm k, Tk,(t+1) depends only of the
values {Tp,t}p and {σ̂p,t}p. So by induction, Tk,n depends of the samples of the arms only
trough the K sequences {σ̂p,t′}p,t′≤n.

Let us consider another arm q 6= k. The samples of arm k and arm q depend of each
other only trough (Tk,t)t≤n and (Tq,t)t≤n, and thus by induction only trough the sequence
{σ̂p,t′}p,t′≤n. The samples are thus independent conditionally to the {σ̂p,t′}p,t′≤n.
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This leads to:

E[
(
µ̂k,n − µk

)(
µ̂q,n − µq

)
|Tk,n = T1, Tq,n = T2]

= E
[( 1

T1

T1∑
u=1

Xk,u − µk
)( 1

T2

T2∑
u=1

Xq,u − µq
)
|Tk,n = T1, Tq,n = T2

]
= E

[
E
[( 1

T1

T1∑
u=1

Xk,u − µk
)( 1

T2

T2∑
u=1

Xq,u − µq
)
|{σ̂p,t′}p,t′≤n

]
× P

(
{σ̂p,t′}p,t′≤n|Tk,n = T1, Tq,n = T2

)
|Tk,n = T1, Tq,n = T2

]
= E

[
E
[( 1

T1

T1∑
u=1

Xk,u − µk
)
|{σ̂p,t′}p,t′≤n

]
P
(
{σ̂p,t′}p,t′≤n|Tk,n = T1, Tq,n = T2

)
|Tk,n = T1, Tq,n = T2

]
× E

[
E
[( 1

T2

T2∑
u=1

Xq,u − µq
)
|{σ̂p,t′}p,t′≤n

]
P
(
{σ̂p,t′}p,t′≤n|Tk,n = T1, Tq,n = T2

)
|Tk,n = T1, Tq,n = T2

]
,

(43)

where the Xp,u are the u-th samples pulled from arm p.

Step 2: The distribution of
∑T

u=1Xk,u−µk conditioned on {σ̂p,t′}p,t′≤n is symmet-

ric. Consider an arm k, and a time T . As the distributions νk is symmetric, 1
T

∑T
u=1Xk,u−

µk conditioned on {σ̂k,t′}t′≤n is symmetric.

As 1
T

∑T
u=1Xk,u−µk depends on {σ̂p,t′}p 6=k,t′≤n only trough {σ̂k,t′}t′≤n, the 1

T

∑T
u=1Xk,u−

µk conditioned on {σ̂k,t′}t′≤n is independent of {σ̂p,t′}p 6=k,t′≤n. The distribution of 1
T

∑T
u=1Xk,u−

µk conditioned on {σ̂p,t′}p,t′≤n is thus symmetric around 0, as νk is symmetric around µk.

This leads to

E
[( 1

T

T∑
u=1

Xk,u − µk
)
|{σ̂p,t′}p,t′≤n

]
= 0. (44)

Step 4: The cross products E[
(
µ̂k,n−µk

)(
µ̂q,n−µq

)
] are null. We combine Equations

43 and 44 to get

E[
(
µ̂k,n − µk

)(
µ̂q,n − µq

)
|Tk,n = T1, Tq,n = T2]

= E
[
0|Tk,n = T1, Tq,n = T2

]
E
[
0|Tk,n = T1, Tq,n = T2

]
= 0,

Now note that

E
[(
µ̂k,n − µk

)(
µ̂q,n − µq

)]
=

n∑
T1=2

n∑
T2=2

E
[(
µ̂k,n − µk

)(
µ̂q,n − µq

)
|Tk,n = T1, Tq,n = T2

]
P
(
Tk,n = T1, Tq,n = T2

)
= 0,

where we use the previous Equation at the end.
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Finally, we conclude the proof with

E
[
(µ̂n − µ)2

]
= E

[( K∑
k=1

wk(µ̂k,n − µk)
)2]

=
K∑
k=1

w2
kE
[
(µ̂k,n − µk)2

]
+ 2

∑
k 6=q

wkwqE
[
(µ̂k,n − µk)(µ̂q,n − µq)

]
= Ln(AMC−UCB).

F.2 Proof of Propositions 7 and 8

We also relate the bounds in Theorems 4 and 5 to a bound on E[(µ̂n − µ)2] in the general
case. The proof Propositions 7 and 8 are very similar up to the end, where we use for the
problem dependent Proposition 7 the results of Lemma 15, and for the problem independent
Proposition 8 the results of Lemma 16.
Proof

Step 0: A useful Lemma.

Lemma 17 Let X be a random variables such that E(X) = 0. Let (Ωu)u=1,...,p be a partition
of the space of random events. Let (au)u=1,...,p be a positive decreasing sequence of random
numbers. We have

|E(X

p∑
u=1

auI {X ∈ Ωu})| ≤ (a1 − ap)
√
E(X2).

Proof
First note that as the sequence of au is positive decreasing, the following equation holds

X

p∑
u=1

auI {X ∈ Ωu} ≤ Xa1I {X ≥ 0}+XapI {X < 0} .

This implies

E
[
X

p∑
u=1

auI {X ∈ Ωu}
]
≤ E

[
Xa1I {X ≥ 0}+XapI {X < 0}

]
≤ E

[
(a1 − ap)XI {X ≥ 0}+ apX(I {X < 0}+ I {X ≥ 0})

]
≤ (a1 − ap)E

[
XI {X ≥ 0}

]
≤ (a1 − ap)

√
E
[
X2I {X ≥ 0}

]
≤ (a1 − ap)

√
E
[
X2
]
,
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where the fourth line follows by Cauchy-Schwartz.
By remarking that

X

p∑
u=1

auI {X ∈ Ωu} ≥ Xa1I {X ≤ 0}+XapI {X > 0} ,

we prove in the same way that

E
[
X

p∑
u=1

auI {X ∈ Ωu}
]
≥ −(a1 − ap)

√
E
[
X2
]
.

Those two inequalities lead to the desired result.

Note first that

E[(µ̂n − µ)2] =
∑
k 6=q

w2
kE
[(
µ̂k,n − µk

)2]
+ 2

∑
k 6=q

wkwqE
[(
µ̂k,n − µk

)(
µ̂q,n − µq

)]
.

As problem dependent and problem independent bounds on
∑

k 6=q w
2
kE
[(
µ̂k,n − µk

)2]
are

available in Theorem 4 and 5, it is sufficient to bound the cross-products.

Step 1: E
[(∑Tk,n

t=1 (Xk,t−µk)
)(∑Tq,n

t=1 (Xq,t−µq)
)]

= 0. Let us denote by tk,t the moment

where the algorithm pulls arm k the t−th time.

E
[( Tk,n∑

t=1

(Xk,t − µk)
)( Tq,n∑

t=1

(Xq,t − µq)
)]

= E
[( n∑

t=1

(Xk,t − µk)I {Tk,n ≥ t}
)( n∑

t=1

(Xq,t − µq)I {Tq,n ≥ t}
)]

=
n∑
t=1

n∑
t′=1

E
[(
Xk,t − µk

)(
Xq,t′ − µq

)
I
{
Tq,n ≥ t′

}
I {Tk,n ≥ t}

]
=

n∑
t=1

n∑
t′=1

E
[(
Xk,t − µk

)(
Xq,t′ − µq

)
I
{
Tq,n ≥ t′

}
I {Tk,n ≥ t} I

{
tk,t < tq,t′

} ]
+

n∑
t=1

n∑
t′=1

E
[(
Xk,t − µk

)(
Xq,t′ − µq

)
I
{
Tq,n ≥ t′

}
I {Tk,n ≥ t} I

{
tk,t > tq,t′

} ]
.

Let us call Ft1,...,tK = σ
(
X1,1, . . . , X1,t1 , . . . , XK,1, . . . , XK,tK

)
the multidimensional fil-

tration generated, for all k, by the tk first instance of the k−th arm. Note that the algorithm
MC-UCB disposes at time t of the informations from a certain Ft1,...,tK where

∑
k tk = t and

picks an arm (i.e. a dimension of the filtration) according only to information in Ft1,...,tK .
If the algorithm picks arm k, the information at the disposal of MC-UCB is, after pulling
arm k, in Ft1,...,tk+1,...,tK .
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Now let us consider consider two arms k and q. Note that the collection of events
τ = σ(Xq,t′) ∩ {Tq,n ≥ t′} ∩ {Tk,n ≥ t} ∩ {tk,t > tq,t′} is in Fn,...,t−1,...,n

15: indeed, no
information of Xk,u with u greater than t− 1 is needed in addition Fn,...,t−1,...,n to know if
we are in an event of τ and in which one. This means that Xk,t is independent of all events
in τ . Finally, we have

E
[(
Xk,t − µk

)(
Xq,t′ − µq

)
I
{
Tq,n ≥ t′

}
I {Tk,n ≥ t} I

{
tk,t > tq,t′

} ]
= E

[(
Xq,t′ − µq

)
I
{
Tq,n ≥ t′

}
I {Tk,n ≥ t} I

{
tk,t ≤ tq,t′

}
E
[(
Xk,t − µk

)
|Fn,...,t−1,...,n

]]
= E

[(
Xq,t′ − µq

)
I
{
Tq,n ≥ t′

}
I {Tk,n ≥ t} I

{
tk,t > tq,t′

}
0
]

= 0.

By summing and doing the same reasoning for arm q, we obtain that

E
[( Tk,n∑

t=1

(Xk,t − µk)
)( Tq,n∑

t=1

(Xq,t − µq)
)]

= 0. (45)

Note that we have by doing a similar reasoning, that

E
[( min(Tk,n,T̄k)∑

t=max(Tk,n,Tk)

(Xk,t − µk)
)( min(Tq,n,T̄q)∑

t′=max(Tq,n,T q)

(Xq,t′ − µq)
)]

= 0, (46)

where T k, T q, T̄k and T̄q are any constants.

Step 2: Definition of an event τ of high probability. We remind that on ξ, by
combining Lemmas 15 and 16, we have for all p,

Tp,n ≥ T p,n = max
(
T ∗p,n −B

√
n, T ∗p,n −Aλpn2/3, En2/3

)
,

and

Tp,n ≤ T̄p,n = min
(
T ∗p,n +D

√
n, T ∗p,n + Cn2/3

)
,

where B and D are as in Lemma 15, A and C are as in Lemma 16, and E is as in the proof
of Lemma 16 (Equation 33). Note that B and D display an invert dependency in λmin, but
that A, C, and E do not. The probability of ξ is more than 1− 2nKδ.

Now let us define the event τ such that for all p,

Tp,n ≥ T p,n = max
(
T ∗p,n −B

√
n, T ∗p,n −Aλpn2/3, En2/3

)
,

and

Tp,n ≤ T̄p,n = min
(
T ∗p,n +D

√
n, T ∗p,n + Cn2/3

)
.

15. Here there are n at all positions except at the k − 1 where there is a t.
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Note that ξ ⊂ τ because of Lemmas 15 and 16. We have, because of ξ ⊂ τ ,

|E[(µ̂q,n − µq)(µk,n − µk)I {τ c}]| (47)

≤
√
E[(µ̂q,n − µq)2I {τ c}]

√
E[(µ̂k,n − µk)2I {τ c}]

≤
√
E[(µ̂q,n − µq)2I {ξc}]

√
E[(µ̂k,n − µk)2I {ξc}]

≤ 2c1n
2Kδ(1 + log(c2/2nKδ))

≤ 2c1K(1 + log(c2n
5/2/2K))n−3/2

≤ Cτn−3/2, (48)

as in Appendix B and because δ = n−7/2. Here Cτ = 2c1K(1 + log(c2n
5/2/2K)).

Step 3: Bounding the cross-products. Using step 1 and 2 together, we get

E
[( Tk,n∑

t=1

(Xk,t − µk)
)( Tq,n∑

t=1

(Xq,t − µq)
)
I {τ}

]

= E
[( min(Tk,n,T̄k,n)∑

t=max(Tk,n,Tk,n)

(Xk,t − µk)
)( min(Tq,n,T̄q,n)∑

t′=max(Tq,n,T q,n)

(Xq,t′ − µq)
)]

= 0.

Let us call Z =
(∑min(Tk,n,T̄k,n)

t=max(Tk,n,Tk,n)(Xk,t−µk)
)(∑min(Tq,n,T̄q,n)

t′=max(Tq,n,T q,n)(Xq,t′−µq)
)
. Note that

E[Z] = 0. We thus have by Lemma 17∣∣∣E[(µ̂k,n − µk)(µ̂q,n − µq)I {τ} ]∣∣∣
=
∣∣∣E[( 1

Tk,n

min(Tk,n,T̄k,n)∑
t=max(Tk,n,Tk,n)

(Xk,t − µk)
)( 1

Tq,n

min(Tq,n,T̄q,n)∑
t′=max(Tq,n,T q,n)

(Xq,t′ − µq)
)]∣∣∣

=
∣∣∣E[ 1

Tk,n

1

Tq,n
Z
]∣∣∣

=
∣∣∣ T̄k,n∑
t=Tk,n

T̄q,n∑
t′=T q,n

Z
1

t

1

t′
I
{
Tk,n = t, Tq,n = t′

} ∣∣∣
≤ E[Z2]

( 1

T k,n

1

T q,n
− 1

T̄k,n

1

T̄q,n

)
.

Note now that

E[Z2] =
∣∣∣E[( min(Tk,n,T̄k,n)∑

t=max(Tk,n,Tk,n)

(Xk,t − µk)
)( min(Tq,n,T̄q,n)∑

t′=max(Tq,n,T q,n)

(Xq,t′ − µq)
)]∣∣∣

≤

√√√√√E
[( min(Tk,n,T̄k,n)∑

t=max(Tk,n,Tk,n)

(Xk,t − µk)
)2]E[( min(Tq,n,T̄q,n)∑

t′=max(Tq,n,T q,n)

(Xq,t′ − µq)
)2]

≤ σk
√
T̄k,nσq

√
T̄q,n.
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From that, one gets

wkwq

∣∣∣E[(µ̂k,n − µk)(µ̂q,n − µq)I {τ} ]∣∣∣ ≤ wkσk√T̄k,nwqσq√T̄q,n( 1

T k,n

1

T q,n
− 1

T̄k,n

1

T̄q,n

)

≤ 4A2 Σ2

n2

√
T̄k,nT̄q,n

T̄k,nT̄q,n

(
T̄k,nT̄q,n − T k,nT q,n

)
(49)

≤ 4A2 Σ2

n2

1√
T̄k,nT̄q,n

(
T̄k,nT̄q,n − T k,nT q,n

)
. (50)

where the second inequality comes from the fact that ∀p, T p,n ≥ T ∗p,n − Aλpn
2/3, which

implies that
wpσp
T p,n

≤ Σw
(n−A2/3)

≤ 2AΣw
n .

Step 4: problem dependent upper bound We deduce from Equation 50 that

wkwq

∣∣∣E[(µ̂k,n − µk)(µ̂q,n − µq)I {τ} ]∣∣∣
≤4A2 Σ2

w

n2

1√
T̄k,nT̄q,n

(
T̄k,nT̄q,n − T k,nT q,n

)

≤4A2 Σ2
w

n2

((
λkn+D

√
n
)(
λqn+D

√
n
)
−
(
λkn−B

√
n
)(
λqn−B

√
n
))√(

λkn+D
√
n
)(
λqn+D

√
n
)

=4A2 Σ2
w

n2

(
(D +B)(λp + λq)n

√
n+ (D2 −B2)n

)
√(

λkλqn2 + (D +B)(λp + λq)n
√
n+D2n

)
≤4A2 Σ2

w

n2

(D +B +D2)n
√
n

n
√

(λkλq)

≤4A2 (D +B +D2)√
(λkλq)

Σ2
w

n3/2
.

Finally, we have

wkwq

∣∣∣E[(µ̂k,n − µk)(µ̂q,n − µq)I {τ} ]∣∣∣ ≤ C1n
−3/2, (51)

where C1 = 4A2 (D+B+D2)(λp+λq)√
(λkλq)

Σ2
w.

Finally, using Equation 48, we have

wkwqE
[(
µ̂k,n − µk

)(
µ̂q,n − µq

)]
= E

[(
µ̂k,n − µk

)(
µ̂q,n − µq

)
I {ξ}

]
+ E

[(
µ̂k,n − µk

)(
µ̂q,n − µq

)
I {ξc}

]
≤ C1n

−3/2 + Cτn
−3/2,

≤
(
C1 + Cτ

)
n−3/2,

where C2 and Cτ depend only polynomially on log(n), on Σw, on K, on (c1, c2), and on
1

λmin
.
This concludes the proof for the problem dependent bound.
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Step 4bis: problem independent upper bound From Equation 50, we deduce that

wkwq

∣∣∣E[(µ̂k,n − µk)(µ̂q,n − µq)I {τ} ]∣∣∣
≤16A2 Σ2

w

n2

1√
T̄k,nT̄q,n

(
T̄k,nT̄q,n − T k,nT q,n

)

≤16A2 Σ2
w

n2

((
λkn+ Cn2/3

)(
λqn+ Cn2/3

)
−
(
λkn−An2/3

)(
λqn−An2/3

))√(
λkn+ Cn2/3

)(
λqn+ Cn2/3

)
=16A2 Σ2

w

n2

(
(A+ C)(λp + λq)nn

2/3 + (C2 −A2)n4/3
)

√(
λkλqn2 + (A+ C)(λp + λq)nn2/3 + C2n4/3

)
≤16A2 Σ2

w

n2

[
(A+ C)(λp + λq)nn

2/3√
(A+ C)(λp + λq)nn2/3

+
(C2 −A2)n4/3

√
C2n4/3

]

≤16A2 Σ2
w

n2

[√
(A+ C)(λp + λq)n

5/6 + Cn2/3

]

≤16A2

[√
(A+ C)(λp + λq) + C

]
Σ2
w

n7/6
.

Finally, we have

wkwq

∣∣∣E[(µ̂k,n − µk)(µ̂q,n − µq)I {τ} ]∣∣∣ ≤ C2n
−7/6, (52)

where C2 = 16A2

[√
(A+ C) + C

]
Σ2
w.

Finally, using Equation 48, we have

wkwqE
[(
µ̂k,n − µk

)(
µ̂q,n − µq

)]
= E

[(
µ̂k,n − µk

)(
µ̂q,n − µq

)
I {ξ}

]
+ E

[(
µ̂k,n − µk

)(
µ̂q,n − µq

)
I {ξc}

]
≤ C2n

−7/6 + Cτn
−3/2,

≤
(
C2 + Cτ

)
n−7/6,

where C2 and Cτ depend only polynomially on log(n), on Σw, on K and on (c1, c2).
This concludes the proof for the problem dependent bound.
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noise. Theoretical Computer Science, 411:2712–2728, June 2010.

B. Arouna. Adaptative monte carlo method, a variance reduction technique. Monte Carlo
Methods and Applications, 10(1):1–24, 2004.

J.Y. Audibert and S. Bubeck. Minimax policies for adversarial and stochastic bandits. In
22nd annual conference on learning theory, 2009.
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Pierre Etoré and Benjamin Jourdain. Adaptive optimal allocation in stratified sampling
methods. Methodol. Comput. Appl. Probab., 12(3):335–360, September 2010.
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