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Abstract. We consider batch reinforcement learning problems in contin-
uous space, expected total discounted-reward Markovian Decision Prob-
lems. As opposed to previous theoretical work, we consider the case when
the training data consists of a single sample path (trajectory) of some
behaviour policy. In particular, we do not assume access to a generative
model of the environment. The algorithm studied is policy iteration where
in successive iterations the Q-functions of the intermediate policies are ob-
tained by means of minimizing a novel Bellman-residual type error. PAC-
style polynomial bounds are derived on the number of samples needed
to guarantee near-optimal performance where the bound depends on the
mixing rate of the trajectory, the smoothness properties of the underlying
Markovian Decision Problem, the approximation power and capacity of
the function set used.

1 Introduction

Consider the problem of optimizing a controller for an industrial environment. In
many cases the data is collected on the field by running a fixed controller and then
taken to the laboratory for optimization. The goal is to derive an optimized con-
troller that improves upon the performance of the controller generating the data.

In this paper we are interested in the performance improvement that can
be guaranteed given a finite amount of data. In particular, we are interested
in how performance scales as a function of the amount of data available. We
study Bellman-residual minimization based policy iteration assuming that the
environment is stochastic and the state is observable and continuous valued.
The algorithm considered is an iterative procedure where each iteration involves
solving a least-squares problem, similar to the Least-Squares Policy Iteration
algorithm of Lagoudakis and Parr [1]. However, whilst Lagoudakis and Parr
considered the so-called least-squares fixed-point approximation to avoid prob-
lems with Bellman-residual minimization in the case of correlated samples, we
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modify the original Bellman-residual objective. In a forthcoming paper we study
policy iteration with approximate iterative policy evaluation [2].

The main conditions of our results can be grouped into three parts: Condi-
tions on the system, conditions on the trajectory (and the behaviour policy used
to generate the trajectory) and conditions on the algorithm. The most impor-
tant conditions on the system are that the state space should be compact, the
action space should be finite and the dynamics should be smooth in a sense to be
defined later. The major condition on the trajectory is that it should be rapidly
mixing. This mixing property plays a crucial role in deriving a PAC-bound on the
probability of obtaining suboptimal solutions in the proposed Bellman-residual
minimization subroutine. The major conditions on the algorithm are that an
appropriate number of iterations should be used and the function space used
should have a finite capacity and be sufficiently rich at the same time. It follows
that these conditions, as usual, require a good balance between the power of
the approximation architecture (we want large power to get good approximation
of the action-value functions of the policies encountered during the algorithm)
and the number of samples: If the power of the approximation architecture is in-
creased the algorithm will suffer from overfitting, as it also happens in supervised
learning. Although the presence of the tradeoff between generalization error and
model complexity should be of no surprise, this tradeoff is somewhat underrep-
resented in the reinforcement literature, presumably because most results where
function approximators are involved are asymptotic.

The organization of the paper is as follows: In the next section (Section 2)
we introduce the necessary symbols and notation. The algorithm is given in
Section 3. The main results are presented in Section 4. This section, just like the
proof, is broken into three parts: In Section 4.1 we prove our basic PAC-style
lemma that relates the complexity of the function space, the mixing rate of the
trajectory and the number of samples. In Section 4.2 we prove a bound on the
propagation of errors during the course of the procedure. Here the smoothness
properties of the MDP are used to bound the ‘final’ approximation error as
a function of the individual errors. The proof of the main result is finished
Section 4.3. In Section 5 some related work is discussed. Our conclusions are
drawn in Section 6.

2 Notation

For a measurable space with domain S we let M(S) denote the set of all prob-
ability measures over S. For ν ∈ M(S) and f : S → R measurable we let
‖f‖ν denote the L2(ν)-norm of f : ‖f‖2

ν =
∫

f2(s)ν(ds). We denote the space of
bounded measurable functions with domain X by B(X ), the space of measurable
functions bounded by 0 < K < ∞ by B(X ; K). We let ‖f‖∞ denote the supre-
mum norm: ‖f‖∞ = supx∈X |f(x)|. IE denotes the indicator function of event
E, whilst 1 denotes the function that takes on the constant value 1 everywhere
over the domain of interest.
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A discounted Markovian Decision Problem (MDP) is defined by a quintuple
(X , A, P, S, γ), where X is the (possible infinite) state space, A = {a1, a2, . . . , aL}
is the set of actions, P : X × A → M(X ) is the transition probability kernel,
P (·|x, a) defining the next-state distribution upon taking action a from state
x, S(·|x, a) gives the corresponding distribution of immediate rewards, and γ ∈
(0, 1) is the discount factor.

We make the following assumptions on the MDP:

Assumption 1 (MDP Regularity). X is a compact subspace of the s-dimen-
sional Euclidean space. We assume that the random immediate rewards are
bounded by R̂max, the conditional expectations r(x, a) =

∫
rS(dr|x, a) and con-

ditional variances v(x, a) =
∫

(r − r(x, a))2S(dr|x, a) of the immediate rewards
are both uniformly bounded as functions of (x, a) ∈ X × A. We let Rmax denote
the bound on the expected immediate rewards: ‖r‖∞ ≤ Rmax.

A policy is defined as a mapping from past observations to a distribution over
the set of actions. A policy is deterministic if the probability distribution con-
centrates on a single action for all histories. A policy is called stationary if the
distribution depends only on the last state of the observation sequence.

The value of a policy π when it is started from a state x is defined as the total
expected discounted reward that is encountered while the policy is executed:
V π(x) = Eπ [

∑∞
t=0 γtRt|X0 = x] . Here Rt is the reward received at time step t,

Rt ∼ S(·|Xt, At), Xt evolves according to Xt+1 ∼ P (·|Xt, At) where At is sam-
pled from the distribution assigned to the past observations by π. We introduce
Qπ : X × A → R, the action-value function, or simply the Q-function of policy
π: Qπ(x, a) = Eπ [

∑∞
t=0 γtRt|X0 = x, A0 = a].

The goal is to find a policy that attains the best possible values, V ∗(x) =
supπ V π(x) for all states x ∈ X . V ∗ is called the optimal value function. A policy
is called optimal if it attains the optimal values V ∗(x) for any state x ∈ X , i.e.,
if Vπ(x) = V ∗(x) for all x ∈ X . The function Q∗(x, a) is defined analogously:
Q∗(x, a) = supπ Qπ(x, a). It is known that for any policy π, V π, Qπ are bounded
by Rmax/(1 − γ), just like Q∗ and V ∗. We say that a (deterministic stationary)
policy π is greedy w.r.t. an action-value function Q ∈ B(X × A) if, for all x ∈
X ,a ∈ A, π(x) ∈ argmaxa∈A Q(x, a). Since A is finite, such a greedy policy
always exist. It is known that under mild conditions the greedy policy w.r.t.
Q∗ is optimal [3]. For a deterministic stationary policy π define the operator
T π : B(X ×A) → B(X ×A) by (T πQ)(x, a) = r(x, a)+γ

∫
Q(y, π(y))P (dy|x, a).

For any deterministic stationary policy π : X → A let the operator Eπ :
B(X × A) → B(X ) be defined by (EπQ)(x) = Q(x, π(x)); Q ∈ B(X × A).
We define two operators corresponding to the transition probability kernel P
as follows: A right-linear operator is defined by P · : B(X ) → B(X × A) and
(PV )(x, a) =

∫
V (y)P (dy|x, a), whilst a left-linear operator is defined by ·P :

M(X ×A) → M(X ) with (ρP )(dy) =
∫

P (dy|x, a)ρ(dx, da). This operator is also
extended to act on measures over X via (ρP )(dy) = 1

L

∑
a∈A

∫
P (dy|x, a)ρ(dx).
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FittedPolicyQ(D,K,Q0,PEval)
// D: samples (e.g. trajectory)
// K: number of iterations
// Q0: Initial Q-function
// PEval: Policy evaluation routine
Q ← Q0 // Initialization
for k = 0 to K − 1 do

Q′ ← Q
Q ←PEval(π̂(·; Q′), D)

end for
return Q // or π̂(·; Q), the greedy policy w.r.t. Q

Fig. 1. Model-free Policy Iteration

By composing P and Eπ, we define P π = PEπ. Note that this equation defines
two operators: a right- and a left-linear one.

Throughout the paper F ⊂ {f : X → R} will denote some subset of real-
valued functions. For convenience, we will treat elements of FL as real-valued
functions f defined over X × A with the obvious identification f ≡ (f1, . . . , fL),
f(x, aj) = fj(x), j = 1, . . . , L. For ν ∈ M(X ), we extend ‖·‖ν to FL by ‖f‖ν =
(

1
L

∑L
j=1 ‖fj‖2

ν

)1/2
.

3 Algorithm

Assume that we are given a finite but long trajectory {(Xt, At, Rt)}1≤t≤N gener-
ated by some stochastic stationary policy π: At ∼ π(·|Xt), Xt+1 ∼ P (·|Xt, At),
Rt ∼ S(·|Xt, At). We shall assume that π is ‘persistently exciting’ in the sense
that {(Xt, At, Rt)} mixes fast (this will be made precise in the next section).

The algorithm studied in this paper is shown in Figure 1. It is an instance of pol-
icy iteration, where policies are only implicitly represented via action-value func-
tions. In the figure D denotes the sample {(Xt, At, Rt)}1≤t≤N , K is the number of
iterations, Q0 is the initial action-value function. PEval is a procedure that takes
data in the form of a long trajectory and a policy π̂ = π̂(·; Q′), the greedy policy
with respect to Q′. Based on π̂, PEval should return an estimate of the action-value
function Qπ̂. There are many possibilities to approximate Qπ̂. In this paper we
consider Bellman-residualminimization (BRM). The basic idea of BRM is that Qπ̂

is the fixed point of the operator T π̂: Qπ̂ −T π̂Qπ̂ = 0. Hence, given some function
class FL, functions Q ∈ FL with small Bellman-residual L(Q; π̂) =

∥
∥Q − T π̂Q

∥
∥2

(with some norm ‖·‖) should be close to Qπ̂, provided that F is sufficiently rich
(more precisely, the hope is that the performance of the greedy policy w.r.t. the
obtained function will be close to the performance of the policy greedy w.r.t. Qπ̂).
The most widely used norm is the L2-norm, so let L(Q; π̂) =

∥
∥Q − T π̂Q

∥
∥2

ν
. We

chase Q = argminf∈FL L(f ; π̂). In the sample based version the minimization of
the norm L(f ; π̂) is replaced by minimizing a sample based approximation to it:
If we let
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L̂N(f ; π̂) =
1

NL

N∑

t=1

L∑

j=1

I{At=aj}
π(aj |Xt)

(f(Xt, aj) − Rt − γf(Xt+1, π̂(Xt+1)))
2

then the most straightforward way to compute an approximation to Qπ̂ seems to
use Q = argminf∈FL L̂N(f ; π̂). At a first sight, the choice of L̂N seems to be logi-
cal as for any given Xt, At and f , Rt+γf(Xt+1, π̂(Xt+1) is an unbiased estimate of
(T π̂f)(Xt, At). However, as it is well known (see e.g. [4][pp. 220], [5, 1]), L̂N is not
a “proper” approximation to the corresponding L2 Bellman-error:E

[
L̂N (f ; π̂)

]

=

L(f ; π̂). In fact, an elementary calculus shows that for Y ∼ P (·|x, a), R ∼ S(·|x, a),

E
[
(f(x, a) − R − γf(Y, π̂(Y )))2

]
= (f(x, a) − (T π̂f)(x, a))2

+Var [R + γf(Y, π̂(Y ))] .

It follows that minimizing L̂N(f ; π̂) involves minimizing the term Var [f(Y, π̂(Y ))]
in addition to minimizing the ‘desired term’ L(f ; π̂). The unwanted term acts like a
penalty factor, favouring smooth solutions (if f is constant then Var [f(Y, π̂(Y ))] =
0). Although in some cases smooth functions are preferable, in general it is better
to control smoothness penalties in a direct way.

The common suggestion to overcome this problem is to use “double” (uncor-
related) samples. In our setup, however, this is not an option. Another possibil-
ity is to reuse samples that are close in space (e.g., use nearest neighbours). The
difficulty with that approach is that it requires a definition of what it means for
samples being close. Here, we pursue an alternative approach based on the intro-
duction of an auxiliary function that is used to cancel the variance penalty. The
idea is to select h to ‘match’ (T π̂f)(x, a) = E [R + γf(Y, π̂(Y ))] and use it to can-
cel the unwanted term. Define L(f, h; π̂) = L(f ; π̂) −

∥
∥h − T π̂f

∥
∥2

ν
and

L̂N(f, h; π̂) =
1

NL

N∑

t=1

L∑

j=1

I{At=aj}
π(aj |Xt)

(
(f(Xt, aj) − Rt − γf(Xt+1, π̂(Xt+1)))2

−(h(Xt, aj) − Rt − γf(Xt+1, π̂(Xt+1)))2
)
. (1)

Then, E

[
L̂N (f, h; π̂)

]
= L(f, h; π̂) and L(f, T π̂f ; π̂) = L(f ; π̂). Hence we let PE-

val solve for Q = argminf∈FL suph∈FL L̂N (f, h; π̂). Note that for linearly parame-
terized function classes the solution can be obtained in a closed form. In general,
one may expect that the number of parameters doubles as a result of the intro-
duction of the auxiliary function. Although this may represent a considerable ad-
ditional computational burden on the algorithm, given the merits of the Bellman-
residual minimization approach over the least-squares fixed point approach [5] we
think that the potential gain in the performance of the final policy might well
worth the extra effort. However, the verification of this claim is left for future work.

Our main result can be formulated as follows: Let ε, δ > 0 be given and choose
some target distribution ρ that will be used to measure performance. Regarding
the function setF weneed the following essential assumptions:F has finite pseudo-
dimension (similarly to the VC-dimension, the pseudo-dimension of a function
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class also describes the ‘complexity’ of the class) and the set of 0 level-sets of the dif-
ferences of pairs of functions from F should be a VC-class.Further, we assume that
the set FL is ε/2-invariant under operators from T = {T π̂(·;Q) : Q ∈ FL} with
respect to the ‖·‖ν norm (cf. Definition 3) and that FL approximates the fixed-
points of the operators of T well (cf. Definition 4). The MDP has to be regular
(satisfying Assumption 1), the dynamics has to satisfy some smoothness proper-
ties and the sample path has to be fast mixing. Then for large enough values of N ,
K the value-function V πK of the policy πK returned by fitted policy iteration with
the modified BRM criterion will satisfy

‖V πK − V ∗‖ρ ≤ ε

with probability larger than 1 − δ. In particular, if the rate of mixing of the tra-
jectory is exponential with parameters (b, κ), then N, K ∼ poly(L, R̂max/(1 −
γ), 1/b, V, 1/ε, log(1/δ)), where V is a VC-dimension like quantity characterizing
the complexity of the function class F and the degree of the polynomial is 1+1/κ.

The main steps of the proof are the followings:

1. PAC-Bounds for BRM: Starting from a (random) policy that is derived from
a random action-value function, we show that BRM is “PAC-consistent”, i.e.,
one can guarantee small Bellman-error with high confidence provided that the
number of samples N is large enough.

2. Error propagation: If for approximate policy iteration the Bellman-error is
small for K steps, then the final error will be small, too (this requires the
smoothness conditions).

3. Final steps: The error of the whole procedure is small with high probability
provided that the Bellman-error is small throughout all the steps with high
probability.

4 Main Result

Before describing the main result we need some definitions.
We start with a mixing-property of stochastic processes. Informally, a process

is mixing if future depends only weakly on the past, in a sense that we now make
precise:

Definition 1. Let {Zt}t=1,2,... be a stochastic process. Denote by Z1:n the collec-
tion (Z1, . . . , Zn), where we allow n = ∞. Let σ(Zi:j) denote the sigma-algebra
generated by Zi:j (i ≤ j). The m-th β-mixing coefficient of {Zt}, βm, is defined by

βm = sup
t≥1

E

[

sup
B∈σ(Zt+m:∞)

|P (B|Z1:t) − P (B)|
]

.

A stochastic process is said to be β-mixing if βm → 0 as m → ∞.

Note that there exist many other definitions of mixing. The weakest among those
most commonly used is called α-mixing. Another commonly used one is φ-mixing
which is stronger than β-mixing (see [6]). A β-mixing process is said to mix at an
exponential rate with parameters b, κ > 0 if βm = O(exp(−bmκ)).
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Assumption 2 (SamplePath Properties).Assume that {(Xt, At, Rt)}t=1,...,N

is the sample path of π, Xt is strictly stationary, and Xt ∼ ν ∈ M(X ). Further, we
assume that {(Xt, At, Rt, Xt+1)} is β-mixing with exponential-rate (b, κ). We fur-
ther assume that the sampling policy π satisfies π0

def= mina∈A infx∈X π(a|x) > 0.

The β-mixing property will be used to establish tail inequalities for certain em-
pirical processes.

Let us now define some smoothness constants C(ν) and C(ρ, ν), that depend
on the MDP. Remember that ν is the stationary distribution of the samples Xt

and ρ is the distribution that is used to evaluate the performance of the algorithm.

Definition 2. We call C(ν) ∈ R
+ ∪{+∞} the transition probabilities smoo-

thness constant, defined as the smallest constant such that for x ∈ X , B ⊂ X
measurable, a ∈ A,

P (B|x, a) ≤ C(ν)ν(B),

(if no such constant exists, we set C(ν) = ∞). Now, for all integer m ≥ 1, we define
c(m) ∈ R

+ ∪ {+∞} to be the smallest constant such that, for any m stationary
policies π1, π2, . . . , πm,

ρP π1P π2 . . . Pπm ≤ c(m)ν, (2)

and write c(0) = 1.1 Note that these constants depend on ρ and ν.
We let C(ρ, ν), the second order discounted future state distribution

smoothness constant, be defined by the equation

C(ρ, ν) = (1 − γ)2
∑

m≥1

mγm−1c(m). (3)

One of the major restriction on the MDP’s dynamics will be that C(ρ, ν) < ∞ is
finite. In fact, one can show that if C(ν) < ∞ then C(ρ, ν) < ∞ holds for any dis-
tribution ρ. Hence, the condition C(ρ, ν) < ∞ is less restrictive than C(ν) < ∞.
C(ν) < ∞ is satisfied whenever the transition density kernel is absolute continu-
ous w.r.t. ν.2

During the course of the proof, we will need several capacity concepts of func-
tion sets. Here we assume that the reader is familiar with the concept of VC-
dimension (see, e.g. [7]), but we introduce covering numbers because slightly dif-
ferent definitions of it exist in the literature:

For a semi-metric space (M, d) and for each ε > 0, define the covering number
N (ε, M, d) as the smallest value of m for which there exist g1,g2,. . . ,gm ∈ M
1 Again, if there exists no such constants, we simply set c(m) = ∞. Note that in (2)

≤ is used to compare two operators. The meaning of ≤ in comparing operators H, G
is the usual: H ≤ G iff Hf ≤ Gf holds for all f ∈ Dom(H). Here ν is viewed as an
operator acting on B(X × A).

2 Further discussion of this condition can be found in the forthcoming paper [2] where
these smoothness constants are related to the top-Lyapunov exponent of the system’s
dynamics.
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such that for every f ∈ M, minj d(f, gj) < ε. If no such finite m exists then
N (ε, M, d) = ∞. In particular, for a class F of X → R functions and points
x1:N = (x1, x2, . . . , xN ) in X , we use the empirical covering numbers, i.e., the
covering number of F with respect to the empirical L1 distance

lx1:N (f, g) =
1
N

N∑

t=1

|f(xt) − g(xt)|.

In this case N (ε, F , lx1:N ) shall be denoted by N1(ε, F , x1:N ).

Assumption 3 (Capacity Assumptions on the Function Set). Assume that
F ⊂ B(X ; Qmax) and that the pseudo-dimension (VC-subgraph dimension) VF+

of F is finite.3 Let C2 = {{x ∈ X : f1(x) ≥ f2(x)} : f1, f2 ∈ F}. Assume also that
the VC-dimension, VC2 , of C2 is finite.

We shall also need that FL is almost-invariant with respect to (certain) policy-
evaluation operators:

Definition 3. F , a subset of a normed function-space is said to be ε-invariant with
respect to the set of operators T acting on the function-space if
infg∈F ‖g − Tf‖ ≤ ε holds for any T ∈ T and f ∈ F .

Similarly, we need that FL contains ε-fixed points of (certain) policy-evaluation
operators:

Definition 4. f is an ε-fixed point of T w.r.t. the norm ‖·‖ if ‖Tf − f‖ ≤ ε.

Our main result is the following:

Theorem 1. Choose ρ ∈ M(X ) and let ε, δ > 0 be fixed. Let Assumption 1 and
2 hold and let Qmax ≥ Rmax/(1 − γ). Fix F ⊂ B(X ; Qmax). Let T be the set of
policy evaluation operators {T π̂(·;Q) : Q ∈ FL}. Assume that FL is ε/2-invariant
with respect to ‖·‖ν and T and contains the ε/2-fixed points of T . Further, assume
that F satisfies Assumption 3. Then there exists integers N, K that are polynomi-
als in L, Qmax, 1/b, 1/π0, VF+ , VC2 , 1/ε, log(1/δ), 1/(1 − γ) and C(ν) such that
P (‖V ∗ − V πK ‖∞ > ε) ≤ δ.

Similarly, there exists integers N, K that are polynomials of the same quantities
except that C(ν) is replaced by C(ρ, ν) such that P

(
‖V ∗ − V πK ‖ρ > ε

)
≤ δ.

4.1 Bounds on the Error of the Fitting Procedure

We first introduce some auxiliary results required for the proof of the main result
of this section. For simplicity assume that N = 2mNkN for appropriate positive
integers mN , kN . We start with the following lemmata:

3 The VC-subgraph dimension of F is defined as the VC-dimension of the subgraphs
of functions in F .
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Lemma 2. Suppose that Z0, . . . , ZN ∈ Z is a stationary β-mixing process with
mixing coefficients {βm}, Z ′

t ∈ Z (t ∈ H) are the block-independent “ghost” sam-
ples as in [8], and H = {2ikN + j : 0 ≤ i < mN , 0 ≤ j < kN }, and that F is a
permissible class of Z → [−K, K] functions. Then

P

(

sup
f∈F

∣
∣
∣
∣
∣
1
N

N∑

t=1

f(Zt) − E [f(Z0)]

∣
∣
∣
∣
∣
> ε

)

≤ 16E [N1(ε/8, F , (Z ′
t; t ∈ H))] e−

mN ε2

128K2

+2mNβkN .

Note that this lemma is based on the following form of a lemma due to Yu [8]:

Lemma 3 (Yu [8] 4.2 Lemma). Suppose that {Zt}, {Z ′
t}, and H are as in

Lemma 2 and that F is a permissible class of bounded Z → R functions. Then

P

(

sup
f∈F

∣
∣
∣
∣
∣
1
N

N∑

t=1

f(Zt)

∣
∣
∣
∣
∣
> ε

)

≤ 2P

(

sup
f∈F

∣
∣
∣
∣
∣
1
N

mN∑

i=1

∑

t∈Hi

f(Z ′
t)

∣
∣
∣
∣
∣
>

ε

2

)

+ 2mNβkN .

Let Π be a family of partitions of X . Define the cell count m(Π) = maxπ∈Π

|{A ∈ π : A 
= ∅}|. For x1:N ∈ X N , let Δ(x1:N , Π) be the number of distinct
partitions (regardless the order) of x1:N that are induced by the elements of Π .
The partitioning number (generalization of shatter-coefficient) Δ∗

N (Π) equals to
max{Δ(x1:N , Π) : x1:N ∈ X N}.

Given a class G of functions on X and a partition family Π , define

G ◦ Π =

⎧
⎨

⎩
f =

∑

Aj∈π

gjI{Aj} : π = {Aj} ∈ Π, gj ∈ G

⎫
⎬

⎭
.

We quote here a result of Nobel (with any domain X instead of R
s and with min-

imised premise):

Proposition 4 (Nobel [9] Proposition 1). Let Π be any partition family with
m(Π) < ∞, G be a class of functions on X , x1:N ∈ X N . Let φN (·) be such that
for any ε > 0, the empirical ε-covering numbers of G on all subsets of the multiset
[x1, . . . , XN ] are majorized by φN (ε). Then, for any ε > 0,

N1(ε, G ◦ Π, x1:N ) ≤ Δ(x1:N , Π)φN (ε)m(Π) ≤ Δ∗
N (Π)φN (ε)m(Π).

We extend this result to a refined bound in terms of the covering number of the
partition family instead of its partitioning number:

Lemma 5. Let Π, G, x1:N , φN be as in Lemma 4. For π = {Aj}, π′ = {A′
j} ∈ Π,

introduce the metric d(π, π′) = dx1:N (π, π′) = μN (π � π′), where

π � π′ = {x ∈ X : ∃j 
= j′; x ∈ Aj ∩ A′
j′} =

m(Π)⋃

j=1

Aj � A′
j ,
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and μN is the empirical measure corresponding to x1:N defined by μN(A) =
1
N

∑N
i=1 I{xi∈A} (here A is any measurable subset of X ). For every ε > 0, α ∈ (0, 1)

N1(ε, G ◦ Π, x1:N ) ≤ N
( αε

2K
, Π, dx1:N

)
φN ((1 − α)ε)m(Π).

Lemma 5 is used by the following lemma:

Lemma 6. Let F be a class of uniformly bounded functions on X (∀f ∈ F : |f | ≤
K), x1:N ∈ X N , φN be such that the ε-empirical covering numbers of F on all
subsets of the multiset [x1, . . . , xN ] are majorized by φN (ε). Let G1

2 denote the class
of indicator functions I{f1(x)≥f2(x)} : X → {0, 1} for any f1, f2 ∈ F .Then for every
ε > 0,

N (ε, FL × FL, x1:N ) ≤ N1

(
ε

2L(L − 1)K
, G1

2 , x1:N
)L(L−1)

φN (ε/2)L,

where the distance of (f, Q′) and (g, Q̃′) ∈ FL × FL in the left-hand-side covering
number is defined in the unusual way

lx1:N ((f, Q′), (g, Q̃′)) =
1
N

N∑

t=1

|f(xt, π̂(xt; Q′)) − g(xt, π̂(xt; Q̃′))|.

Finally, see Haussler [10] (and Anthony and Bartlett [7, Theorem 18.4]) for

Proposition 7 (Haussler [10] Corollary 3). For any set X , any points x1:N ∈
X N , any class F of functions on X taking values in [0, K] with pseudo-dimension
VF+ < ∞, and any ε > 0, N1(ε, F , x1:N ) ≤ e(VF+ + 1)

(2eK
ε

)VF+ .

The following is the main result of this section:

Lemma 8. Let Assumption 1,2, and 3 hold and let Qmax ≥ R̂max/(1 − γ). Let Q′

be a real-valued random function over X×A, Q′(ω) ∈ FL (possibly not independent
from the sample path). Let π̂ = π̂(·; Q′) be a policy that is greedy w.r.t. to Q′. Let
f ′ be defined by f ′ = argminf∈FL suph∈FL L̂N (f, h; π̂). Fix ε, δ > 0 and assume
that FL ε/2-approximates the fixed point of T π̂(·;Q′):

Ẽ(F) def= sup
Q′∈FL

inf
f∈FL

∥
∥
∥f − T π̂(·;Q′)f

∥
∥
∥

ν
≤ ε/2 (4)

and that FL is ε/2-invariant w.r.t. T :

E(F) def= sup
f,Q′∈FL

inf
h∈FL

∥
∥
∥h − T π̂(·;Q′)f

∥
∥
∥

ν
≤ ε/2. (5)

If N = poly(L, Qmax, 1/b, 1/π0, VF+ , VC2 , 1/ε, log(1/δ)), where the degree of the
polynomial is O(1 + 1/κ), then P

(∥
∥f ′ − T π̂f ′∥∥

ν
> ε

)
≤ δ.
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Proof. (Sketch) We have to show that f ′ is close to the corresponding T π̂(·;Q′)f ′

with high probability, noting that Q′ may not be independent from the sample

path. By (4), it suffices to show that L(f ′; Q′) def=
∥
∥
∥f ′ − T π̂(·;Q′)f ′

∥
∥
∥

2

ν
is close to

inff∈FL L(f ; Q′). Denote the difference of these two quantities by Δ(f ′, Q′). Note
that Δ(f ′, Q′) is increased by taking its supremum over Q′. By (5), L(f ; Q′) and
L̄(f ; Q′) def= suph∈FL L(f, h; π̂(·; Q′)), as functions of f and Q′, are uniformly close
to each other. This reduces the problem to bounding supQ′(L̄(f ′; Q′) −
inff∈FL L̄(f ; Q′)). Since E

[
L̂N(f, h; π̂)

]
= L(f, h; π̂) holds for any f, h ∈ FL

and policy π̂, by defining a suitable error criterion lf,h,Q′(x, a, r, y) in accordance
with (1), the problem can be reduced to a usual uniform deviation problem over
LF = {lf,h,Q′ : f, h, Q′ ∈ FL}. Since the samples are correlated, Pollard’s tail
inequality cannot be used directly. Instead, we use the method of Yu [8]: We split
the samples into mN pairs of blocks {(Hi, Ti)|i = 1, . . . , mN}, each block com-
promised of kN samples (for simplicity we assume N = 2mNkN ) and then use
Lemma 2 with Z = X ×A×R×X , F = LF . The covering numbers of LF can be
bounded by those of FL and FL × FL, where in the latter the distance is defined
as in Lemma 6. Next we apply Lemma 6 and then Proposition 7 to bound the
resulting three covering numbers in terms of VF+ and VC2 (note that the pseudo-
dimension of FL cannot exceed LVF+). Defining kN = N

1
1+κ +1, mN = N/(2kN)

and substituting βm ≤ e−bmκ

, we get the desired polynomial bound on the num-
ber of samples after some tedious calculations. ��

4.2 Propagation of Errors

Let Qk denote the kth iterate of (some) approximate policy iteration algorithm
where the next iterates are computed by means of some Bellman-residual mini-
mization procedure. Let πk be the kth policy. Our aim here is to relate the per-
formance of the policy πK to the magnitude of the Bellman-residuals εk

def= Qk −
T πkQk, 0 ≤ k < K.

Lemma 9. Let p ≥ 1. For any η > 0, there exists K that is linear in log(1/η) and
log Rmax such that, if the Lp,ν norm of the Bellman-residuals are bounded by some
constant ε, i.e. ‖εk‖p,ν ≤ ε for all 0 ≤ k < K, then

‖Q∗ − QπK ‖∞ ≤ 2γ

(1 − γ)2
[C(ν)]1/pε + η (6)

and
‖Q∗ − QπK ‖p,ρ ≤ 2γ

(1 − γ)2
[C(ρ, ν)]1/pε + η. (7)

Proof. We have C(ν) ≥ C(ρ, ν) for any ρ. Thus, if the bound (7) holds for any ρ,
choosing ρ to be a Dirac at each state implies that (6) also holds. Therefore, we
only need to prove (7).

Let Ek = P πk+1(I − γP πk+1)−1 − P π∗
(I − γP πk)−1. Closely following the

proof of [5][Lemma 4], we get Q∗ − Qπk+1 ≤ γP π∗
(Q∗ − Qπk) + γEkεk. Thus, by
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induction, Q∗−QπK ≤ γ
∑K−1

k=0 (γP π∗
)K−k−1Ekεk+ηKwith ηK = (γP π∗

)K(Q∗−
Qπ0). Hence, ‖ηK‖∞ ≤ 2Qmaxγ

K .
Now, let Fk = P πk+1(I − γP πk+1)−1 + P π∗

(I − γP πk)−1. By taking the ab-
solute value pointwise in the above bound on Q∗ − QπK we get Q∗ − QπK ≤
γ
∑K−1

k=0 (γP π∗
)K−k−1Fk|εk|+(γP π∗

)K |Q∗ −Qπ0 |. From this, using the fact that
Q∗ − Qπ0 ≤ 2

1−γ Rmax1, we arrive at

|Q∗ − QπK | ≤ 2γ(1 − γK+1)
(1 − γ)2

[
K−1∑

k=0

αkAk|εk| + αKAKRmax1

]

.

Here we introduced the positive coefficients αk = (1−γ)γK−k−1

1−γK+1 , for 0 ≤ k <

K, and αK = (1−γ)γK

1−γK+1 , and the operators Ak = 1−γ
2 (P π∗

)K−k−1Fk, for 0 ≤ k <

K, AK = (P π∗
)K . Note that

∑K
k=0 αk = 1 and the operators Ak are stochastic

when considered as a right-linear operators: for any (x, a) ∈ X × A, λ
(k)
(x,a)(B) =

(AkχB)(x, a) is a probability measure and (AkQ)(x, a) =
∫

λ
(k)
(x,a)(dy)Q(y, π(y)).

Here χB : B(X × A) → [0, 1] is defined by χB(x, a) = I{x∈B}.

Let λK =
[

2γ(1−γK+1)
(1−γ)2

]p

. Now, by using two times Jensen’s inequality we get

‖Q∗ − QπK ‖p
p,ρ =

1
L

∑

a∈A

∫
ρ(dx)|Q∗(x, a) − QπK (x, a)|p

≤ λKρ

[
K−1∑

k=0

αkAk|εk|p + αKAK(Rmax)p1

]

.

From the definition of the coefficients c(m), ρAk ≤ (1−γ)
∑

m≥0 γmc(m+K−k)ν
and we deduce

‖Q∗−QπK‖p
p,ρ ≤λK

⎡

⎣(1−γ)
K−1∑

k=0

αk

∑

m≥0

γmc(m + K − k) ‖εk‖p
p,ν + αK(Rmax)p

⎤

⎦.

Replace αk by their values, and from the definition of C(ρ, ν), and since ‖εk‖p,ν

≤ ε, we have

‖Q∗ − QπK ‖p
p,ρ ≤ λK

[
1

1 − γK+1 C(ρ, ν)εp +
(1 − γ)γK

1 − γK+1 (Rmax)p

]

.

Thus there is K linear in log(1/η) and log Rmax, e.g. such that γK <
[

(1−γ)2

2γRmax
η
]p

so that the second term is bounded by ηp. Thus, ‖Q∗ − QπK ‖p
p,ρ ≤

[
2γ

(1−γ)2

]p

C(ρ, ν)εp + ηp and hence ‖Q∗ − QπK ‖p,ρ ≤ 2γ
(1−γ)2 [C(ρ, ν)]1/pε+ η, fin-

ishing the proof. ��
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4.3 Proof of the Main Result

Proof. Consider the kth iteration of the algorithm. Let εk = Qk − T πkQk. By
the reasoning used in the proof of Lemma 9, we only need to prove the second
part of the result. Since 0 < γ < 1, there exists K that is linear in log(1/ε) and

log Rmax such that γK <
[

(1−γ)2

2γRmax

ε
2

]p

. Now, from Lemma 8, there exists N that is
poly(L, Qmax, 1/b, 1/π0, VF+ , VC2 , 1/ε, log(1/δ)), such that, for each 0 ≤ k < K,
P

(
‖εk‖p,ν > (1−γ)2

2C1/p
ε
2

)
< δ/K. Thus, P

(
‖εk‖p,ν > (1−γ)2

2C1/p
ε
2 , for all 0 ≤ k < K

)

< δ. Applying Lemma 9 with η = ε/2 ends the proof. ��

5 Discussion and Related Work

The idea of using value function approximation goes back to the early days of
dynamic programming [11, 12]. With the recent growth of interest in reinforce-
ment learning, work on value function approximation methods flourished [13, 14].
Recent theoretical results mostly concern supremum-norm approximation errors
[15, 16], where the main condition on the way intermediate iterates are mapped
(projected) to the function space is that the corresponding operator, Π , must be a
non-expansion. Practical examples when Π satisfies the said property include cer-
tain kernel-based methods, see e.g. [15, 16, 17, 18]. However, the growth-restriction
imposed on Π rules out many popular algorithms, such as regression-based ap-
proaches that were found, however, to behave well in practice (e.g. [19, 20, 1]). The
need for analysing the behaviour of such algorithms provided the basic motivation
for this work.

One of the main novelties of our paper is that we introduced a modified Bellman-
residual that guarantees asymptotic consistency even with a single sample path.

The closest to the present work is the paper of Szepesvári and Munos [21]. How-
ever, as opposed to paper [21], here we dealt with a fitted policy iteration algorithm
and unlike previously, we worked with dependent samples. The technique used to
deal with dependent samples was to introduce (strong) mixing conditions on the
trajectory and extending Pollard’s inequality along the lines of Meir [22].

Also, the bounds developed in Section 4.2 are closely related to those developed
in [5]. However, there only the case C(ν) < ∞ was considered, whilst in this paper
the analysis was extended to the significantly weaker condition C(ν, ρ) < ∞. Al-
though in [21] the authors considered a similar condition, there the propagation
of the approximation errors was considered only in a value iteration context. Note
that approximate value iteration per se is not suitable for learning from a single
trajectory since approximate value iteration requires at least one successor state
sample per action per sampled state.

That we had to work with fitted policy iteration significantly added to the com-
plexity of the analysis, as the policy to be evaluated at stage k became dependent
on the whole set of samples, introducing non-trivial correlations between succes-
sive approximants. In order to show that these correlations do not spoil conver-
gence, we had to introduce problem-specific capacity conditions on the function
class involved. Although these constraints are satisfied by many popular function
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classes (e.g., regression trees, neural networks, etc.), when violated unstable be-
haviour may arise (i.e., increasing the sample size does not improves the perfor-
mance).

Note that the conditions that dictate that F should be rich (namely, that F
should be “almost invariant” under the family of operators T = {T π̂(·;Q) : Q ∈ F}
and that F should be close to the set of fixed points of T ) are non-trivial to guar-
antee. One possibility is to put smoothness constraints on the transition dynamics
and the immediate rewards. It is important to note, however, that both conditions
are defined with respect to weighted L2-norm. This is much less restrictive than if
supremum-norm were used here. This observation suggests that one should prob-
ably look at frequency domain representations of systems in order to guarantee
these properties. However, this is well out of the scope of the present work.

6 Conclusions

We have considered fitted policy iteration with Bellman-residual minimization.
We modified the objective function to allow the procedure to work with a
single (but long) trajectory. Our results show that the number of samples needed
to achieve a small approximation error depend polynomially on the pseudo-
dimension of the function class used in the empirical loss minimization step and
the smoothness of the dynamics of the system. Future work should concern the
evaluation of the proposed procedure in practice. The theoretical results can be
extended in many directions: Continuous actions spaces will require substantial
additional work as the present analysis relies crucially on the finiteness of the ac-
tion set. The exploration of interplay between the MDPs dynamics and the ap-
proximability of the fixed points and the invariance of function sets with respect
to policy evaluation operators also requires substantial further work.
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