U-STATISTICS IN MACHINE LEARNING

LARGE-SCALE MINIMIZATION AND DECENTRALIZED ESTIMATION

Aurélien Bellet
MAGNET Team, INRIA Lille

Joint work with:
Stéphane Clémençon, Igor Colin, Guillaume Papa and Joseph Salmon (Télécom ParisTech)
1. Introduction: U-Statistics

2. Large-Scale Empirical Risk Minimization

3. Decentralized Estimation

4. Conclusion & Perspectives
INTRODUCTION: U-STATISTICS
• Let μ some (unknown) distribution on space \mathcal{X}

• Let X_1, \ldots, X_n drawn i.i.d. from μ

• **Univariate statistic**: estimate $\mathbb{E}_{X \sim \mu}[H(X)]$ with $\frac{1}{n} \sum_{i=1}^{n} H(X_i)$
 - $H : \mathcal{X} \to \mathbb{R}$
 - Example (sample mean): $\frac{1}{n} \sum_{i=1}^{n} X_i$

• **Pairwise statistic**: estimate $\mathbb{E}_{X_1, X_2 \sim \mu}[H(X_1, X_2)]$ with

 \[
 \frac{2}{n(n-1)} \sum_{1 \leq i < j \leq n} H(X_i, X_j)
 \]

 - $H : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ symmetric
 - Example 1 (sample variance): $H(X, X') = (X - X')^2 / 2$
 - Example 2 (average distance): $H(X, X') = \|X - X'\|$
• **U-statistic of degree** d with kernel H [Hoeffding, 1948]:

$$U_n(H) = \frac{1}{\binom{n}{d}} \sum_{1 \leq i_1 < \ldots < i_d \leq n} H(X_{i_1}, \ldots, X_{i_d})$$

• $H : \mathcal{X}^d \to \mathbb{R}$ symmetric
• Note: can be generalized to multi-sample setting

• U_n has **minimum variance** among all unbiased estimators of

$$U(H) = \mathbb{E}_{X_1, \ldots, X_d \sim \mu} [H(X_1, \ldots, X_d)]$$

• But for $d \geq 2$, not a sum of independent terms!

• Need specific tools to bound $|U_n(H) - U(H)|$
 • Decoupling: see for instance [de la Peña and Giné, 1999]
LARGE-SCALE MINIMIZATION

NIPS ’15 + JMLR ’16
A standard paradigm in machine learning

- \(\mathcal{G} \): class of learning rules (e.g., linear classifiers)
- \(H_g : \mathcal{X}^d \rightarrow \mathbb{R} \): loss function associated with \(g \in \mathcal{G} \)
- True risk of rule \(g \in \mathcal{G} \): \(U(H_g) = \mathbb{E}_{X_1, \ldots, X_d \sim \mu} [H_g(X_1, \ldots, X_d)] \)
- Empirical risk of \(g \in \mathcal{G} \): \(U_n(H_g) = \frac{1}{n^d} \sum_{1 \leq i_1 < \ldots < i_d \leq n} H_g(X_{i_1}, \ldots, X_{i_d}) \)
- Empirical Risk Minimization (ERM): choose rule \(\hat{g} \in \arg \min_{g \in \mathcal{G}} U_n(H_g) \)
• Find a partition \mathcal{P} of space \mathcal{X}

• Within-cluster point scatter [Clémençon, 2011]

$$W_n(\mathcal{P}) = \frac{2}{n(n-1)} \sum_{i<j} D(X_i, X_j) \cdot \mathbb{1}\{\exists C \in \mathcal{P} \text{ s.t. } X_i, X_j \in C^2\}$$
• Labeled data: \((X_i, Y_i) \in \mathcal{X} \times \{1, \ldots, C\}\)

• Learn distance measure adapted to the task [Bellet et al., 2015]

• Distance function \(D : \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}_+\)

• Triplet-based criterion

\[
T_n(D) = \frac{6}{n(n-1)(n-2)} \sum_{i<j<k} \mathbb{I} \{D(X_i, X_j) > D(X_i, X_k), \ Y_i = Y_j \neq Y_k\}
\]
EXAMPLE: LEARNING TO RANK

- Labeled data: \((X_i, Y_i) \in \mathcal{X} \times \{-1, 1\}\)
- Learn to rank items (e.g., relevant vs irrelevant)
- Scoring function \(s : \mathcal{X} \to \mathbb{R}\)
- Area Under the ROC Curve (AUC) [Zhao et al., 2011]

\[
AUC_n(s) = \frac{1}{|X^+||X^-|} \sum_{X_i^+ \in X^+} \sum_{X_j^- \in X^-} \mathbb{I} \left\{ s(X_j^-) < s(X_i^+) \right\}
\]

where \(X^+ = \{X_i : Y_i = 1\}\) and \(X^- = \{X_i : Y_i = -1\}\)
- Generalizes to multi-partite ranking [Clémençon et al., 2013]
• Let \(\hat{g} \in \arg\min_{g \in G} U_n(H_g) \) the empirical risk minimizer

• Under suitable assumptions [Clémençon et al., 2008]

\[
U(H_{\hat{g}}) - \inf_{g \in G} U(H_g) = O_{\mathbb{P}}(1/\sqrt{n})
\]

• How to find \(\hat{g} \) efficiently? \(U_n(H_g) \) has \(O(n^d) \) terms!
 • Big data problem even for relatively small datasets

• We will exploit the dependence structure of \(U_n \)
Main idea: approximate U_n by an incomplete U-statistic

$$\tilde{U}_B(H_g) = \frac{1}{B} \sum_{I \in \mathcal{D}_B} H_g(X_{I_1}, \ldots, X_{I_d})$$

where \mathcal{D}_B is a set of cardinality B drawn by sampling with replacement from the set of d-tuples

This is different from a U-statistic based on a subsample

Naive sampling (complete U-statistic)
Pair sampling (incomplete U-statistic)
Theorem ([Clémençon et al., 2016])

Let $\mathcal{H} = \{\mathcal{H}_g : g \in \mathcal{G}\}$ be a VC major class of functions with VC dimension $V < +\infty$ and uniformly bounded by $M_\mathcal{H} < +\infty$. For all $\eta > 0$, we have $\forall n, \forall B \geq 1$,

$$\Pr\left\{ \sup_{H \in \mathcal{H}} |\tilde{U}_B(H) - U_n(H)| > \eta \right\} \leq 2 \left(1 + \left(\frac{n}{d} \right)^V \right) \times e^{-B\eta^2/M_\mathcal{H}^2}$$

- Prob. of large deviation decreases exponentially fast with B

- Main ingredients of the proof
 - Write $\tilde{U}_B(H) - U_n(H)$ as an average of B independent variables
 - Sauer’s lemma
 - Union bound and Hoeffding’s inequality
Corollary ([Clémençon et al., 2016])

Let \tilde{g} be an empirical risk minimizer of \tilde{U}_B over \mathcal{H}, and $\delta > 0$. Under the previous assumptions, with probability at least $1 - \delta$, we have:

$$U(H_{\tilde{g}}) - \inf_{g \in G} U(H_g) \leq O\left(\sqrt{\frac{V \log(n) + \log(2/\delta)}{n}} + \sqrt{\frac{V \log\left(\binom{n}{d}\right) + \log(4/\delta)}{B}}\right)$$

- Choosing $B = O(n)$ preserves the $O_P(1/\sqrt{n})$ learning rate!

- In contrast: complete U-statistic with $O(n)$ terms leads to much slower rate of $O_P\left(\sqrt{1/n^{\frac{1}{d}}}\right)$

- Other results (not covered here): fast rates, model selection
• \(\Theta \subset \mathbb{R}^q \) parameter space

• \(H : \mathcal{X}^d \times \Theta \to \mathbb{R} \) strongly convex and smooth in 2nd argument

• Reformulation of true risk

\[
L(\theta) \overset{\text{def}}{=} U(H(\cdot; \theta))
\]

• Reformulation of empirical risk

\[
\hat{L}_n(\theta) \overset{\text{def}}{=} U_n(H(\cdot; \theta))
\]

• Reformulation of ERM problem

\[
\min_{\theta \in \Theta} \hat{L}_n(\theta)
\]
GRADIENT DESCENT

• Initialize $\theta_0 \in \Theta$ and follow the iterations

$$\theta_{t+1} = \theta_t - \eta_t \nabla_{\theta} \hat{L}_n(\theta_t), \quad \eta_t \geq 0$$

• Gradient of $\hat{L}_n(\theta)$ is

$$\nabla_{\theta} \hat{L}_n(\theta) = \frac{1}{n \choose d} \sum_{1 \leq i_1 < \ldots < i_d \leq n} \nabla_{\theta} H(X_{i_1}, \ldots, X_{i_d}; \theta)$$

• Each gradient involves summing over $n \choose d$ terms!

• Stochastic Gradient Descent (SGD): approximate gradient at each step using a random mini-batch of terms
Use incomplete U-statistic with B terms to estimate the gradient

Theorem ([Papa et al., 2015])

Let $\mathcal{H} = \{H(\cdot; \theta) : \theta \in \Theta\}$ be a VC major class of functions with VC dimension $V < +\infty$ and uniformly bounded by $M_{\mathcal{H}} < +\infty$. Let $\theta^* = \arg \min_{\theta \in \Theta} L(\theta)$. Under appropriate conditions on the step size, we have for $\forall n$:

$$
\mathbb{E}[|L(\theta_t) - L(\theta^*)|] \leq O \left(\frac{1}{Bt} + M_{\mathcal{H}} \sqrt{\frac{V \log(n)}{n}} \right)
$$

- Decomposition into optimization and generalization errors
- Set $B = \binom{n'}{d}$. Alternative: use complete U-statistic of size n'
 - Both estimates consist of B terms
 - But B is replaced by n' in the bound!
• Pairwise metric learning

\[R_n(M) = \frac{2}{n(n-1)} \sum_{1 \leq i < j \leq n} [y_{ij}(b - (X_i - X_j)^T M(X_i - X_j))]_+ \]

• \(M \): \(q \times q \) PSD matrix
• \(y_{ij} = 1 \) if \(y_i = y_j \), \(-1\) otherwise
• \([u]_+ = \max(0, 1 - u)\): hinge loss

• MNIST dataset
 • \(n = 60,000 \rightarrow 2 \times 10^9 \) pairs
Approximate risk by complete or incomplete U-statistic
SGD: Approximate gradient with complete or incomplete U-statistic

![Graph showing risk estimate on test set for iterations with $B=10$ and $B=55$.]
DECENTRALIZED ESTIMATION IN NETWORKS

- Estimation of statistics from data distributed over network graph
- Want asynchronous algorithm + limited communication/storage
- Applications: telecommunication, sensor networks, IoT
• Data points $X_1, \ldots, X_n \in \mathcal{X}$

• Network represented as a connected graph $G = (V, E)$
 - Nodes $V = \{1, \ldots, n\}$
 - Node i holds point X_i
 - $(i, j) \in E$: i and j can exchange information directly

• **Goal:** estimate pairwise statistic

\[
\hat{U}_n(H) = \frac{1}{n^2} \sum_{i,j=1}^{n} H(X_i, X_j)
\]

• $\hat{U}_n(H)$ is a degree 2 U-statistic (up to normalization factor)
• **Synchronous algorithm**
 - *Global clock* ticking at the times of a rate 1 Poisson process
 - Each time the clock ticks, all nodes activate

• **Asynchronous algorithm**
 - Each node has a *local clock*
 - Each time a node’s clock ticks, it activates
 - For modeling purposes: equivalent to a single Poisson clock ticking at rate n with random selection of node to activate
GOSSIP ALGORITHMS FOR STANDARD AVERAGING

- Gossip algorithms [Shah, 2009]: one edge activated at a time
- Canonical problem: estimate sample mean $\frac{1}{n} \sum_{i=1}^{n} X_i$
- Simple gossip algorithm [Boyd et al., 2006]
 - At each iteration, draw $(i, j) \in E$, i and j average their estimates
 - Geometric convergence
 - Natively asynchronous
- Naive extension to pairwise statistics \rightarrow massive data transfer
GOSTA IN A NUTSHELL

- Each node stores an auxiliary observation and an estimate

\[
\begin{align*}
X_i & \quad Y_i & \quad Z_i \\
\text{original observation} & \quad \text{U-statistic estimator} & \quad \text{auxiliary observation}
\end{align*}
\]

- An iteration combines averaging and data propagation

\[
\begin{align*}
\text{Time } t: & & \quad \text{local memory} & \quad \text{local memory} \\
X_i & \quad Y_i & \quad Z_i & \quad X_j & \quad Y_j & \quad Z_j
\end{align*}
\]

\[
\begin{align*}
\text{mix estimates:} & \quad Z_i & \leftarrow & \frac{Z_i + Z_j}{2} & \quad Z_j & \leftarrow & \frac{Z_i + Z_j}{2}
\end{align*}
\]

\[
\begin{align*}
\text{update:} & \quad Z_i & \leftarrow & (1 - \alpha_t) Z_i + \alpha_t \text{H}(X_i, Y_i) & \quad Z_j & \leftarrow & (1 - \alpha_t) Z_j + \alpha_t \text{H}(X_j, Y_j)
\end{align*}
\]

\[
\begin{align*}
\text{swap auxiliary data:} & \quad Y_i & \leftarrow & Y_j & \quad Y_j & \leftarrow & Y_i
\end{align*}
\]
· Need a global clock

Algorithm 1 GoSta-sync

Require: Each node k holds X_k
Each node k initializes $Y_k = X_k$ and $Z_k = 0$

for $t = 1, 2, \ldots$ do

for $p = 1, \ldots, n$ do

Set $Z_p \leftarrow \frac{t-1}{t} Z_p + \frac{1}{t} H(X_p, Y_p)$

end for

Draw (i, j) uniformly at random from E

Set $Z_i, Z_j \leftarrow \frac{1}{2} (Z_i + Z_j)$
Swap auxiliary observations: $Y_i \leftrightarrow Y_j$

end for
GOSTA: ASYNCHRONOUS VERSION

- No **global clock**: only selected nodes are active
- Each node i stores an **unbiased estimate** m_i of current iteration
 - Probability $p_i = 2d_i/|E|$ that i awakes at a given iteration
 - When i awakes, it updates $m_i \leftarrow m_i + 1/p_i$

Algorithm 2 GoSta-async

Require: Each node k holds X_k and p_k

Each node k initializes $Y_k = X_k$, $Z_k = 0$ and $m_k = 0$

for $t = 1, 2, \ldots$ **do**

1. Draw (i, j) uniformly at random from E
2. Set $m_i \leftarrow m_i + 1/p_i$ and $m_j \leftarrow m_j + 1/p_j$
3. Set $Z_i, Z_j \leftarrow \frac{1}{2}(Z_i + Z_j)$
4. Set $Z_i \leftarrow (1 - \frac{1}{p_im_i})Z_i + \frac{1}{p_im_i}H(X_i, Y_i)$
5. Set $Z_j \leftarrow (1 - \frac{1}{p_jm_j})Z_j + \frac{1}{p_jm_j}H(X_j, Y_j)$

Swap auxiliary observations: $Y_i \leftrightarrow Y_j$

end for
CONVERGENCE ANALYSIS

<table>
<thead>
<tr>
<th>Theorem ([Colin et al., 2015])</th>
</tr>
</thead>
<tbody>
<tr>
<td>If $G = (V, E)$ is connected and non-bipartite, then for any $t > 0$:</td>
</tr>
<tr>
<td>$\left| E[Z(t)] - \hat{U}_n(H)1_n \right| \leq \frac{1}{ct} \left| \bar{h} - \hat{U}_n(H)1_n \right| + \left(\frac{2}{ct} + e^{-ct} \right) \left| H - \bar{h}1_n^T \right|$,</td>
</tr>
<tr>
<td>where $c = c(G) := \beta_{n-1}/</td>
</tr>
</tbody>
</table>

- **Data-dependent** terms: quantify difficulty of estimation problem
 - Dispersion measure between the values to be averaged

- **Network-dependent** terms: quantify how well things propagate
 - Graphs with larger spectral gap \rightarrow better connectivity [Chung, 1997]
• Two estimation problems
 • *Within-cluster point scatter* on Wine quality dataset \((n = 1,599)\)
 • *Area Under the ROC Curve* on SMVguide3 dataset \((n = 1,260)\)

• Three types of graphs

![Diagram of three types of graphs: 2D-grid, Watts-Strogatz, Complete](image-url)
NUMERICAL SIMULATIONS

Comparison to U2-Gossip [Pelckmans and Suykens, 2009]

- U2-Gossip: propagates two observations, no averaging
- Only synchronous, worst theoretical guarantees
Comparison to U2-Gossip [Pelckmans and Suykens, 2009]

- GoSta scales better with n
- GoSta-sync and GoSta-async have similar performance
Comparison to “Master Node” baseline

- Baseline has access to master node connected to all nodes
- Our algorithm compensates well for lack of central node
CONCLUSION & PERSPECTIVES
CONCLUSION & PERSPECTIVES

Wrapping up

• U-statistics involved in many estimation and learning problems
• Sampling / stochastic optimization schemes to scale-up ERM
• Gossip algorithms for decentralized estimation

Looking ahead

• Decentralized ERM (ICML 2016 paper)
• Privacy, robustness to malicious users (under progress)
• Adaptive communication schemes: learn who to talk to
Thank you for your attention! Questions?
Metric Learning.

Randomized gossip algorithms.

Spectral Graph Theory, volume 92.
American Mathematical Society.

to appear.

Ranking data with ordinal labels: Optimality and pairwise aggregation.

On U-processes and clustering performance.
In NIPS, pages 37–45.

