
DIFFERENTIALLY PRIVATE SPEAKER ANONYMIZATION

Aurélien Bellet (Inria)

Joint work with A. Shahin Shamsabadi, B. Srivastava, N. Vauquier, E. Vincent, M. Maouche,
M. Tommasi and N. Papernot

Privaski
March 8, 2022



CONTEXT: VOICES INTERFACES

• Massive collection of speech by service providers and third-party contractors1 to:
• Process user queries (inference)
• Train Automatic Speech Recognition (ASR) systems (training)

1https://www.bbc.com/news/technology-31296188
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SPEECH DATA IS VERY SENSITIVE

Speech data contains a wealth of personal information:

• Linguistic content (what is being said)

• Speaker information (who is saying it)
• Identity: voice is a biometric modality. In [Srivastava et al., 2021] we show that a standard
speaker recognition system reaches top-1 precision above 50% in a crowd of 10k speakers

• Other paralinguistic and extra-linguistic speaker information [Schuller and Batliner, 2013]
such as age, gender, accent, emotional state, personality traits, health status...
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PRIVACY IN SPEECH: A PRESSING ISSUE

• Recent guidelines on voice assistants emphasize importance of privacy and security
• 2020: CNIL white paper on ethical, technical and legal issues of voice assistants
• 2021: EDPB guidelines on virtual voice assistants

• Several initiatives in the speech processing community in the last 2 years:
• Special interest group of the International Speech Communication Association2

• VoicePrivacy initiative [Tomashenko et al., 2020]
• Ongoing efforts to understand the requirements of effective privacy preservation for
speech [Nautsch et al., 2019b] in light of recent regulation [Nautsch et al., 2019a]

2https://www.spsc-sig.org
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TODAY’S FOCUS: SPEAKER ANONYMIZATION

Speaker anonymization3 aims to transform speech so as to
conceal the speaker’s identity while

preserving the linguistic and prosodic content and diversity of speech

• This was the focus of the recent VoicePrivacy Challenge [Tomashenko et al., 2022]

• A successful speaker anonymization scheme enables people to freely share their
speech data for both inference and training purposes, while concealing their identity

• It does not address the complementary objective of protecting personally
identifiable information in the linguistic content (see e.g., [Ahmed et al., 2020])

3Note: the term “anonymization” refers to the ideal objective
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PROBLEM STATEMENT

A speaker anonymization scheme

• outputs an intelligible speech waveform (so it can be annotated by humans)

• preserves as well as possible phonetic and prosodic content (utility)

• conceals as well as possible the identity of the speaker (privacy)

Threat model [Srivastava et al., 2020b]

• The adversary wants to know if a given speaker spoke a target anonymized utterance

• The adversary has access to raw speech utterances from the hypothesized speaker
as well as to a large public speech corpus with speaker labels

• The speaker anonymization scheme is public (but not its internal randomness)
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STATE-OF-THE-ART ARCHITECTURE [FANG ET AL., 2019, SRIVASTAVA ET AL., 2020A]
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1. Extract prosodic (pitch) and linguistic (BN) feature sequences from input utterance

2. Re-synthesize speech from pitch, BN and a public speaker embedding (x-vector)

→ best method in the VoicePrivacy Challenge
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LIMITATIONS OF STATE-OF-THE-ART SCHEME

1. There is still a lot of room for improvement in protecting against concrete attacks
[Maouche et al., 2021]

2. Disentanglement is not perfect: pitch and BN features contain speaker information
• We design a re-identification attack to predict speaker identity from these features
• The accuracy of this attack is 37% with pitch and 97% with BN (among 900+ speakers)!

3. No formal privacy guarantees
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PROPOSED APPROACH [SHAHIN SHAMSABADI ET AL., 2022]
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• Use Differential Privacy (DP) to bound the risk of the speaker identity leaking through
pitch and BN features

• Choose target x-vector independently of input utterance

• Then the complete pipeline satisfies DP (by composition + post-processing) 8



DIFFERENTIAL PRIVACY

Definition (Differential Privacy)
Let A be a randomized algorithm taking as input a data point in some space X , and let
ε > 0. A is ε-differentially private (ε-DP) if for any x, x′ ∈ X and any S ⊆ range(A):

Pr[A(x) ∈ S] ≤ eε Pr[A(x′) ∈ S],

where the probabilities are taken over the randomness of A.

• Key properties of DP:
• Robustness to postprocessing: if A is ϵ-DP, then any g ◦ A is also ϵ-DP
• Composition: if A1 is ϵ1-DP and A2 is ϵ2-DP, then A = (A1,A2) is (ϵ1 + ϵ2)-DP

• In our setting, x will be a speech utterance and A will be the speaker anonymization
scheme that produces an anonymized utterance

• Note that DP is stronger than what we need: it entails hiding the speaker identity but
may also suppress other information that we wish to preserve
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LAPLACE MECHANISM

Definition (Laplace mechanism)
Let f : X → Rd and let the ℓ1-sensitivity of f be defined as

∆1(f) = maxx,x′∈X ∥f(x)− f(x′)∥1.

Let η = [η1, . . . , ηd] ∈ Rd be a vector where each ηi ∼ Lap(∆1(f)/ε) is drawn from the
centered Laplace distribution with scale ∆1(f)/ε. Then, A(·) = f(·) + η is ε-DP.

• The sensitivity ∆1(f) measures how much changing the input can affect the value of f

• To satisfy ϵ-DP, the Laplace noise is calibrated to ∆1(f) and ϵ
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PITCH SEQUENCE

• Global dynamics are related to sentence prosody
• Local variations are known to be more speaker-specific (see e.g.,
[Dehak et al., 2007, Mary and Yegnanarayana, 2008])
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DP PITCH EXTRACTOR

• Our fully convolutional autoencoder A = D ◦ Np ◦ E takes input pitch p ∈ RK and:
1. Maps it to a latent representation h = E(p) ∈ [0, 1]C×K using convolutional layers
2. Generates a perturbed hDP = Np(h) = h+ Lap(CK/ε)
3. Decodes it into a perturbed pitch sequence pDP = D(hDP) ∈ RK using convolutional layers 12



DP PITCH EXTRACTOR

• Training phase on public speech: train autoencoder to maximize correlation between
input and reconstructed pitch

• Deployment phase: generate perturbed pitch and normalize it to target speaker 13



RECONSTRUCTED PITCH SEQUENCE

• By maximizing correlation, the autoencoder learns to preserve global dynamics as
much as possible while sacrificing local variations, as desired

• By the Laplace mechanism, Np ◦ E satisfies ε-DP, and so does the autoencoder
A = D ◦ Np ◦ E by the post-processing property of DP
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DP BN EXTRACTOR

• BN features are typically obtained as an intermediate layer of an ASR acoustic model

• We add a noise layer and train on public speech to maximize ASR performance

• We used the same architecture and training objective as in VPC baseline
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EXPERIMENTAL SETUP

• Librispeech dataset, essentially follow VPC setup

• X-vector selection: utterance-level, variant of dense strategy [Srivastava et al., 2020a]

• Informed attackers
• Re-identification attacks: follows standard ASI system but trained on BN and pitch
instead of MFCCs

• Speaker linkage attacks: follows standard ASV system, but trained on utterance-level
assignment which gives a stronger attack (see also [Maouche et al., 2021])
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RESULTS — PRIVACY AND UTILITY OF PITCH AND BN

• Our DP extractors largely improve the protection against re-identification attacks
from pitch and BN features (PASI : error of attack)

• Our DP extractors preserve utility (UASR: ASR performance), unlike naive DP baselines
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RESULTS — PRIVACY AND UTILITY OF ANONYMIZED SPEECH

Method
Privacy Utility

Analytical (ε) Empirical Empirical
BN Pitch Equal Error Rate Unlinkability UASR (%)

Anon (state-of-the-art) ∞ ∞ 14.62± .25 .35± .01 94.64± .06

Anon+DP (ours) 100 100 24.22± .44 .57± .01 94.00± .10
Anon+DP (ours) 10 10 27.68± .25 .65± .01 93.01± .07
Anon+DP (ours) 1 1 29.98± .76 .70± .01 92.16± .05

• Empirical privacy is evaluated by the performance of a speaker verification attack
trained on anonymized speech

• Utility is evaluated by the performance of ASR system trained and tested on
anonymized speech

• Our approach provides twice better empirical privacy at a negligible cost in utility
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RESULTS — ABLATION STUDY
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• Left: Anon+DP_Pitch vs. Anon+PC; Right: Anon+DP_BN vs. Anon

• Reducing speaker information in both pitch and BN features provides a large gain
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DISCUSSION

• Large gap between analytical and empirical privacy guarantees
• Reported ε is frame-level for BN features → weak sequence-level guarantee
• This gap is expected and in line with other findings on learning with DP [Nasr et al., 2021]
• Could bound the analytical privacy more tightly
• Design appropriate relaxations of DP for speaker anonymization?

• Better utility measures
• Human intelligibility, naturalness and diversity of anonymized utterances
• Correlation is merely a proxy for the utility of pitch → prediction of prosodic attributes?

• Concealing other speaker information with DP
• Gender, age, emotions, etc...
• Tools that let the user choose what to protect depending on the context?
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