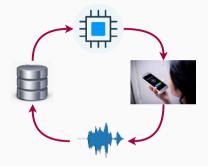
DIFFERENTIALLY PRIVATE SPEAKER ANONYMIZATION

Aurélien Bellet (Inria)

Joint work with A. Shahin Shamsabadi, B. Srivastava, N. Vauquier, E. Vincent, M. Maouche, M. Tommasi and N. Papernot

Privaski March 8, 2022

CONTEXT: VOICES INTERFACES



- Massive collection of speech by service providers and third-party contractors¹ to:
 - Process user queries (inference)
 - Train Automatic Speech Recognition (ASR) systems (training)

¹https://www.bbc.com/news/technology-31296188

Speech data contains a wealth of personal information:

- Linguistic content (what is being said)
- Speaker information (who is saying it)
 - Identity: voice is a biometric modality. In [Srivastava et al., 2021] we show that a standard speaker recognition system reaches top-1 precision above 50% in a crowd of 10k speakers
 - Other paralinguistic and extra-linguistic speaker information [Schuller and Batliner, 2013] such as age, gender, accent, emotional state, personality traits, health status...

- Recent guidelines on voice assistants emphasize importance of privacy and security
 - 2020: CNIL white paper on ethical, technical and legal issues of voice assistants
 - 2021: EDPB guidelines on virtual voice assistants
- Several initiatives in the speech processing community in the last 2 years:
 - Special interest group of the International Speech Communication Association²
 - VoicePrivacy initiative [Tomashenko et al., 2020]
 - Ongoing efforts to understand the requirements of effective privacy preservation for speech [Nautsch et al., 2019b] in light of recent regulation [Nautsch et al., 2019a]

²https://www.spsc-sig.org

Speaker anonymization³ aims to transform speech so as to conceal the speaker's identity while preserving the linguistic and prosodic content and diversity of speech

- This was the focus of the recent VoicePrivacy Challenge [Tomashenko et al., 2022]
- A successful speaker anonymization scheme enables people to freely share their speech data for both inference and training purposes, while concealing their identity
- It does **not** address the complementary objective of protecting personally identifiable information in the linguistic content (see e.g., [Ahmed et al., 2020])

³Note: the term "anonymization" refers to the ideal objective

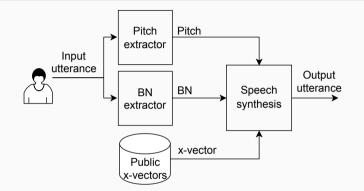
A speaker anonymization scheme

- outputs an intelligible speech waveform (so it can be annotated by humans)
- preserves as well as possible phonetic and prosodic content (utility)
- conceals as well as possible the identity of the speaker (privacy)

Threat model [Srivastava et al., 2020b]

- The adversary wants to know if a given speaker spoke a target anonymized utterance
- The adversary has access to raw speech utterances from the hypothesized speaker as well as to a large public speech corpus with speaker labels
- The speaker anonymization scheme is public (but not its internal randomness)

STATE-OF-THE-ART ARCHITECTURE [Fang et al., 2019, Srivastava et al., 2020A]

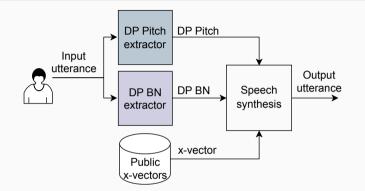


- 1. Extract prosodic (pitch) and linguistic (BN) feature sequences from input utterance
- 2. Re-synthesize speech from pitch, BN and a public speaker embedding (x-vector)

 \rightarrow best method in the VoicePrivacy Challenge

- 1. There is still a lot of room for improvement in protecting against concrete attacks [Maouche et al., 2021]
- 2. Disentanglement is not perfect: pitch and BN features contain speaker information
 - We design a re-identification attack to predict speaker identity from these features
 - The accuracy of this attack is 37% with pitch and 97% with BN (among 900+ speakers)!
- 3. No formal privacy guarantees

PROPOSED APPROACH [Shahin Shamsabadi et al., 2022]



- Use Differential Privacy (DP) to bound the risk of the speaker identity leaking through pitch and BN features
- Choose target x-vector independently of input utterance
- Then the complete pipeline satisfies DP (by composition + post-processing)

Definition (Differential Privacy)

Let \mathcal{A} be a randomized algorithm taking as input a data point in some space \mathcal{X} , and let $\varepsilon > 0$. \mathcal{A} is ε -differentially private (ε -DP) if for any $\mathbf{x}, \mathbf{x}' \in \mathcal{X}$ and any $S \subseteq \text{range}(\mathcal{A})$:

 $\Pr[\mathcal{A}(\mathbf{x}) \in S] \leq e^{\varepsilon} \Pr[\mathcal{A}(\mathbf{x}') \in S],$

where the probabilities are taken over the randomness of \mathcal{A} .

- Key properties of DP:
 - Robustness to postprocessing: if A is ϵ -DP, then any $g \circ A$ is also ϵ -DP
 - Composition: if A_1 is ϵ_1 -DP and A_2 is ϵ_2 -DP, then $A = (A_1, A_2)$ is $(\epsilon_1 + \epsilon_2)$ -DP
- In our setting, **x** will be a speech utterance and A will be the speaker anonymization scheme that produces an anonymized utterance
- Note that DP is stronger than what we need: it entails hiding the speaker identity but may also suppress other information that we wish to preserve

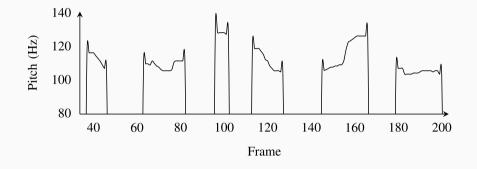
Definition (Laplace mechanism)

Let $f: \mathcal{X} \to \mathbb{R}^d$ and let the ℓ_1 -sensitivity of f be defined as

$$\Delta_1(f) = \max_{\mathbf{x}, \mathbf{x}' \in \mathcal{X}} \|f(\mathbf{x}) - f(\mathbf{x}')\|_1.$$

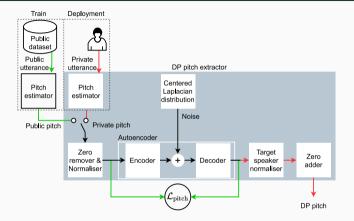
Let $\eta = [\eta_1, \ldots, \eta_d] \in \mathbb{R}^d$ be a vector where each $\eta_i \sim \text{Lap}(\Delta_1(f)/\varepsilon)$ is drawn from the centered Laplace distribution with scale $\Delta_1(f)/\varepsilon$. Then, $\mathcal{A}(\cdot) = f(\cdot) + \eta$ is ε -DP.

- The sensitivity $\Delta_1(f)$ measures how much changing the input can affect the value of f
- To satisfy ϵ -DP, the Laplace noise is calibrated to $\Delta_1(f)$ and ϵ



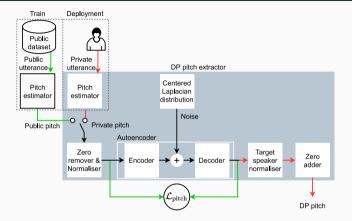
- Global dynamics are related to sentence prosody
- Local variations are known to be more speaker-specific (see e.g., [Dehak et al., 2007, Mary and Yegnanarayana, 2008])

DP PITCH EXTRACTOR



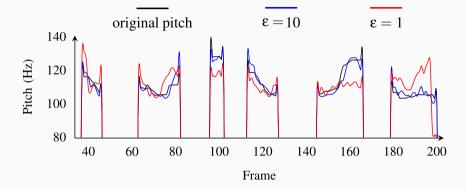
- Our fully convolutional autoencoder $\mathcal{A} = \mathcal{D} \circ \mathcal{N}_p \circ \mathcal{E}$ takes input pitch $\mathbf{p} \in \mathbb{R}^{K}$ and:
 - 1. Maps it to a latent representation $\mathbf{h} = \mathcal{E}(\mathbf{p}) \in [0, 1]^{C \times K}$ using convolutional layers
 - 2. Generates a perturbed $\mathbf{h}^{\text{DP}} = \mathcal{N}_p(\mathbf{h}) = \mathbf{h} + \text{Lap}(CK/\varepsilon)$
 - 3. Decodes it into a perturbed pitch sequence $p^{DP} = D(h^{DP}) \in \mathbb{R}^{K}$ using convolutional layers 12

DP PITCH EXTRACTOR



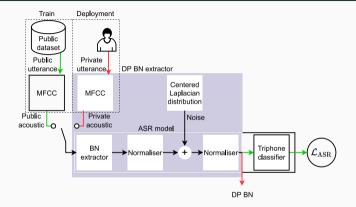
- Training phase on public speech: train autoencoder to maximize correlation between input and reconstructed pitch
- · Deployment phase: generate perturbed pitch and normalize it to target speaker

RECONSTRUCTED PITCH SEQUENCE



- By maximizing correlation, the autoencoder learns to preserve global dynamics as much as possible while sacrificing local variations, as desired
- By the Laplace mechanism, $N_p \circ \mathcal{E}$ satisfies ε -DP, and so does the autoencoder $\mathcal{A} = \mathcal{D} \circ \mathcal{N}_p \circ \mathcal{E}$ by the post-processing property of DP

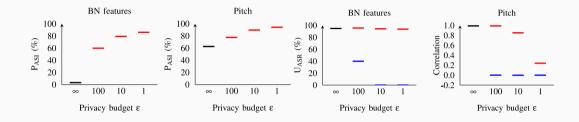
DP BN EXTRACTOR



- BN features are typically obtained as an intermediate layer of an ASR acoustic model
- We add a noise layer and train on public speech to maximize ASR performance
- We used the same architecture and training objective as in VPC baseline

- Librispeech dataset, essentially follow VPC setup
- X-vector selection: utterance-level, variant of dense strategy [Srivastava et al., 2020a]
- Informed attackers
 - Re-identification attacks: follows standard ASI system but trained on BN and pitch instead of MFCCs
 - Speaker linkage attacks: follows standard ASV system, but trained on utterance-level assignment which gives a stronger attack (see also [Maouche et al., 2021])

RESULTS — PRIVACY AND UTILITY OF PITCH AND BN



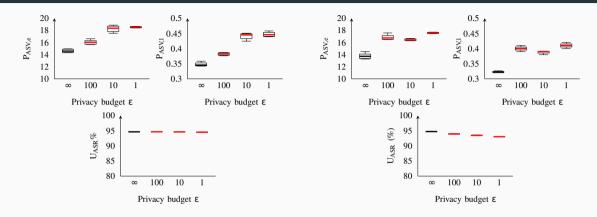
- Our DP extractors largely improve the protection against re-identification attacks from pitch and BN features (P_{ASI} : error of attack)
- Our DP extractors preserve utility (U_{ASR}: ASR performance), unlike naive DP baselines

RESULTS — PRIVACY AND UTILITY OF ANONYMIZED SPEECH

	Privacy				Utility
Method	Analytical (ε)		Empirical		Empirical
	BN	Pitch	Equal Error Rate	Unlinkability	U _{ASR} (%)
Anon (state-of-the-art)	∞	∞	$14.62 \pm .25$	$.35\pm.01$	$94.64 \pm .06$
Anon+DP (ours)	100	100	$24.22 \pm .44$	$.57 \pm .01$	94.00 ± .10
Anon+DP (ours)	10	10	$27.68 \pm .25$	$.65 \pm .01$	$93.01 \pm .07$
Anon+DP (ours)	1	1	$29.98 \pm .76$	$.70 \pm .01$	$92.16\pm.05$

- Empirical privacy is evaluated by the performance of a speaker verification attack trained on anonymized speech
- Utility is evaluated by the performance of ASR system trained and tested on anonymized speech
- Our approach provides twice better empirical privacy at a negligible cost in utility

RESULTS — ABLATION STUDY



- Left: Anon+DP_Pitch vs. Anon+PC; Right: Anon+DP_BN vs. Anon
- Reducing speaker information in both pitch and BN features provides a large gain

DISCUSSION

- Large gap between analytical and empirical privacy guarantees
 - + Reported ε is frame-level for BN features \rightarrow weak sequence-level guarantee
 - This gap is expected and in line with other findings on learning with DP [Nasr et al., 2021]
 - Could bound the analytical privacy more tightly
 - Design appropriate relaxations of DP for speaker anonymization?
- Better utility measures
 - · Human intelligibility, naturalness and diversity of anonymized utterances
 - $\cdot\,$ Correlation is merely a proxy for the utility of pitch \rightarrow prediction of prosodic attributes?
- Concealing other speaker information with DP
 - Gender, age, emotions, etc...
 - Tools that let the user choose what to protect depending on the context?

REFERENCES I

[Ahmed et al., 2020] Ahmed, S., Chowdhury, A. R., Fawaz, K., and Ramanathan, P. (2020). **Preech: A system for privacy-preserving speech transcription.** In *Proceedings of the USENIX Security Symposium*, Virtual Event.

[Dehak et al., 2007] Dehak, N., Dumouchel, P., and Kenny, P. (2007). Modeling prosodic features with joint factor analysis for speaker verification. IEEE Transactions on Audio, Speech, and Language Processing, 15(7):2095–2103.

[Fang et al., 2019] Fang, F., Wang, X., Yamagishi, J., Echizen, I., Todisco, M., Evans, N., and Bonastre, J.-F. (2019). Speaker anonymization using x-vector and neural waveform models. In Proceedings of the ISCA Speech Synthesis Workshop, Vienna, Austria.

[Maouche et al., 2021] Maouche, M., Srivastava, B. M. L., Vauquier, N., Bellet, A., Tommasi, M., and Vincent, E. (2021). Enhancing Speech Privacy with Slicing.

[Mary and Yegnanarayana, 2008] Mary, L. and Yegnanarayana, B. (2008). Extraction and representation of prosodic features for language and speaker recognition. Speech Communication, 50(10):782–796. [Nasr et al., 2021] Nasr, M., Song, S., Thakurta, A., Papernot, N., and Carlini, N. (2021). Adversary instantiation: Lower bounds for differentially private machine learning.

In Proceedings of the IEEE Symposium on Security and Privacy (S&P), San Francisco, CA, USA.

[Nautsch et al., 2019a] Nautsch, A., Jasserand, C., Kindt, E., Todisco, M., Trancoso, I., and Evans, N. W. D. (2019a). The GDPR & speech data: Reflections of legal and technology communities, first steps towards a common understanding. In Proceedings of the conference of the International Speech Communication Association (Interspeech), Graz, Austria.

[Nautsch et al., 2019b] Nautsch, A., Jiménez, A., Treiber, A., Kolberg, J., Jasserand, C., Kindt, E., Delgado, H., Todisco, M., Hmani, M. A., Mtibaa, A., Abdelraheem, M. A., Abad, A., Teixeira, F., Matrouf, D., Gomez-Barrero, M., Petrovska-Delacrétaz, D., Chollet, G., Evans, N. W. D., and Busch, C. (2019b).

Preserving privacy in speaker and speech characterisation.

Computer Speech and Language, 58:441–480.

[Schuller and Batliner, 2013] Schuller, B. and Batliner, A. (2013).

Computational Paralinguistics: Emotion, Affect and Personality in Speech and Language Processing.

Wiley.

[Shahin Shamsabadi et al., 2022] Shahin Shamsabadi, A., Mohan Lal Srivastava, B., Bellet, A., Vauquier, N., Vincent, E., Maouche, M., Tommasi, M., and Papernot, N. (2022).

Differentially Private Speaker Anonymization.

Technical report, arXiv:2202.11823.

[Srivastava et al., 2021] Srivastava, B. M. L., Maouche, M., Sahidullah, M., Vincent, E., Bellet, A., Tommasi, M., Tomashenko, N., Wang, X., and Yamagishi, J. (2021). Privacy and utility of x-vector based speaker anonymization. preprint.

[Srivastava et al., 2020a] Srivastava, B. M. L., Tomashenko, N. A., Wang, X., Vincent, E., Yamagishi, J., Maouche, M., Bellet, A., and Tommasi, M. (2020a).

Design choices for x-vector based speaker anonymization.

In Proceedings of the conference of the International Speech Communication Association (Interspeech), Virtual Event.

[Srivastava et al., 2020b] Srivastava, B. M. L., Vauquier, N., Sahidullah, M., Bellet, A., Tommasi, M., and Vincent, E. (2020b). Evaluating voice conversion-based privacy protection against informed attackers.

In Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Barcelona, Spain.

[Tomashenko et al., 2020] Tomashenko, N. A., Srivastava, B. M. L., Wang, X., Vincent, E., Nautsch, A., Yamagishi, J., Evans, N. W. D., Patino, J., Bonastre, J., Noé, P., and Todisco, M. (2020).

Introducing the VoicePrivacy initiative.

In Proceedings of the conference of the International Speech Communication Association (Interspeech), Virtual Event.

[Tomashenko et al., 2022] Tomashenko, N. A., Wang, X., Vincent, E., Patino, J., Srivastava, B. M. L., Noé, P., Nautsch, A., Evans, N. W. D., Yamagishi, J., O'Brien, B., Chanclu, A., Bonastre, J., Todisco, M., and Maouche, M. (2022).
The VoicePrivacy 2020 Challenge: Results and findings.

Computer Speech & Language.