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FEDERATED LEARNING (FL)



A SHIFT OF PARADIGM: FROM CENTRALIZED TO DECENTRALIZED DATA

• The standard setting in Machine Learning (ML) considers a centralized dataset

• But in the real world data is often decentralized across different parties

data center

≠
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WHY DON’T WE ALWAYS CENTRALIZE DATA?

1. Sending the data may be too costly

• Self-driving cars are expected to generate several TBs of data a day
• Some wireless devices have limited bandwidth/power

2. Data may be considered too sensitive

• Growing public awareness and regulations on data privacy

• Keeping control of data can give a competitive advantage in business and research
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HOW ABOUT EACH PARTY LEARNING ON ITS OWN?

1. The local dataset may be too small
• Sub-par predictive performance (e.g., due to overfitting)
• Non-statistically significant results (e.g., medical studies)

2. The local dataset may be biased
• Not representative of the target distribution
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FEDERATED LEARNING

Federated Learning (FL) aims to
collaboratively train ML models

while keeping the data decentralized

• FL is a booming topic
• Term first coined in 2016; more than 1,000 papers in first half of 2020 alone1

• First real-world deployments by companies and researchers

• FL is multidisciplinary: involves ML, optimization, statistics, privacy & security,
networks, systems...

1https://www.forbes.com/sites/robtoews/2020/10/12/the-next-generation-of-artificial-intelligence/
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KEY DIFFERENCES WITH DISTRIBUTED LEARNING

Distributed learning

• Data is centrally stored (e.g., in a data center)

• The goal is to train faster→ distribute data uniformly at random across workers

Federated Learning

• Data is naturally distributed→ local datasets are heterogeneous (not iid, imbalance)

• Data may be sensitive→ need to enforce privacy constraints

• Participants may be unreliable, unavailable (with possible time/space correlations)

• Participants may be malicious

• ...
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CLASSIC FL PROBLEM FORMULATION

• We consider a set of K parties (also called users or clients)

• Each party k holds a dataset Dk

• We denote by θ the model parameters (e.g., weights of a neural network)

• We want to find the parameters that minimize the overall prediction loss:

min
θ

1
K

K∑
k=1

F(θ;Dk), where F is differentiable in θ

• This covers a broad class of ML problems formulated as empirical risk minimization
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A BASELINE FL ALGORITHM: FEDAVG [MCMAHAN ET AL., 2017]

Algorithm FedAvg (server-side)
initialize θ

for each round t = 0, 1, . . . do
for each party k in parallel do

θk ← ClientUpdate(k, θ)
θ ← 1

K
∑K

k=1 θk

Algorithm ClientUpdate(k, θ)
Parameters: # steps L, step size η

for 1, . . . , L do
θ ← θ − η∇F(θ;Dk)

send θ to server

• Numerous extensions / improvements: fully decentralized (no server), dealing with
highly heterogeneous data, compression, fairness, and much more [Kairouz et al., 2021]
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A BASELINE FL ALGORITHM: FEDAVG [MCMAHAN ET AL., 2017]
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A BASELINE FL ALGORITHM: FEDAVG [MCMAHAN ET AL., 2017]
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A BASELINE FL ALGORITHM: FEDAVG [MCMAHAN ET AL., 2017]
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A BASELINE FL ALGORITHM: FEDAVG [MCMAHAN ET AL., 2017]

parties update their copy
of the model and iterate
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PRIVACY ISSUES IN (FEDERATED) ML

• ML models are susceptible to various attacks on data privacy

• Membership inference attacks try to infer the presence of a known individual in the
training set, e.g., by exploiting the confidence in model predictions [Shokri et al., 2017]

• Reconstruction attacks try to infer some of the points used to train the model, e.g.,
by differencing attacks [Paige et al., 2020]

• Federated Learning offers an additional attack surface as the server and other parties
observe model updates (not only the final model) [Nasr et al., 2019, Geiping et al., 2020]
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DIFFERENTIAL PRIVACY

Randomized
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DIFFERENTIAL PRIVACY

Definition ([Dwork et al., 2006], informal)
A randomized algorithm A is (ε, δ)-differentially private (DP) if for all neighboring
datasets D = {x1, x2, . . . , xn} and D′ = {x1, x′2, x3, . . . , xn} and all sets S:

Pr[A(D) ∈ S] ≤ eε Pr[A(D′) ∈ S] + δ.

• For meaningful privacy guarantees, think of ε ≤ 1 and δ ≪ 1/n

• Key principle: privacy is a property of the analysis, not of a particular output (in
contrast to e.g., k-anonymity)

• Dwork, McSherry, Nissim & Smith won the Gödel prize for this in 2017
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KEY PROPERTIES OF DIFFERENTIAL PRIVACY

• DP is immune to post-processing: it is impossible to compute a function of the
output of the private algorithm and make it less differentially private

• DP is robust to arbitrary auxiliary knowledge: the guarantee is just as strong if the
adversary knows all but one record

• DP is robust under composition: if multiple analyses are performed on the same
data, as long as each one satisfies DP, all the information released taken together
will still satisfy DP (albeit with a degradation in the parameters)
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ENFORCING DP WITH THE GAUSSIAN MECHANISM

• Consider f taking as input a dataset and returning a p-dimensional real vector

Gaussian mechanism AGauss(D, f, ε, δ)

1. Compute sensitivity ∆ = max(D,D′) are neighboring ∥f(D)− f(D′)∥2

2. For i = 1, . . . ,p: draw Yi ∼ N (0, σ2) independently for each i, where σ =

√
2 ln(1.25/δ)∆

ε

3. Output f(D) + Y, where Y = (Y1, . . . , Yp) ∈ Rp

Theorem
Let ε, δ > 0. The Gaussian mechanism AGauss(·, f, ε, δ) is (ε, δ)-DP.

• Noise calibrated using sensitivity of f and privacy budget (ε and δ)

• Induces a clear privacy-utility trade-off
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TRUST MODELS: CENTRAL DP VERSUS LOCAL DP

• Central DP: a trusted curator collects raw data and runs a DP algorithm A on it→ the
output A(D) is only the final result

• Local DP: there is no trusted curator so each party must locally randomize its
contributions→ the output of A(D) consists of all messages sent by all parties

• Local DP is a suitable model for FL without trusted parties but, for a fixed (ϵ, δ)-DP
guarantee, its utility cost is typically

√
K larger

→ study intermediate models allowing better utility without relying on trusted parties
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PRIVACY-PRESERVING FL WITH AN
UNTRUSTED SERVER



A KEY FUNCTIONALITY: DP AGGREGATION

• In FL algorithms with a server, interaction is needed only to aggregate local updates

• In other words: DP aggregation + Composition property of DP =⇒ DP-FL

• Differentially private aggregation: given a private value θk ∈ [0, 1] for each party k,
we want to accurately estimate θavg = 1

K
∑

k θk under a DP constraint

• Central DP: trusted server computes θavg and adds Gaussian noise

• Local DP: each party k adds (more) Gaussian noise to θk before sharing it
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GOPA PROTOCOL FOR DP AGGREGATION

• Assume that pairs of parties are able to exchange encrypted messages (the server
may act as relay): this can be achieved e.g. through a public key infrastructure

Algorithm GOPA protocol [Sabater et al., 2020]
Each party k generates independent Gaussian noise ηk
Each party k selects a random set of m other parties
for all selected pairs of parties k ∼ l do

Parties k and l securely exchange pairwise-canceling Gaussian noise ∆k,l = −∆l,k
Each party k sends θ̂k = θk +

∑
k∼l ∆k,l + ηk to the server

• Estimate of the average: θ̂avg = 1
K
∑

k θ̂k = θavg + 1
K
∑

k ηk
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PRIVACY GUARANTEES FOR GOPA

• Adversary: coalition of the server with a proportion 1− τ of the parties

Theorem (Privacy of GOPA [Sabater et al., 2020], informal)
• Let each party select m = O(log(τK)/τ) other parties
• Set the independent noise variance so as to satisfy (ϵ, δ′)-DP in the central model
• For large enough pairwise noise variance, GOPA is (ϵ, δ)-DP with δ = O(δ′).

• Same utility as central DP with only logarithmic number of messages per party

• Our theoretical results give practical values for the quantities above

• Our general result quantifies the effect of an arbitrary topology G on DP guarantees

• We also provide correctness guarantees against malicious parties [Sabater et al., 2020]
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GOPA: EMPIRICAL ILLUSTRATION

• For reasonable proportions ρ of honest parties, the variance of the estimated
average produced by GOPA is similar to the trusted curator setting

• As expected, the resulting FL model also has similar accuracy
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FULLY DECENTRALIZED
PRIVACY-PRESERVING FL



PRIVACY & FULL DECENTRALIZATION

• In fully decentralized FL, there is no global aggregation step

• But there is no server observing all messages, and each party k has a limited view

• Can this be used to prove stronger differential privacy guarantees?
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NETWORK DIFFERENTIAL PRIVACY

• Let Ok be the set of messages sent and received by party k

Definition (Network DP [Cyffers and Bellet, 2022])
An algorithm A satisfies (ϵ, δ)-network DP if for all
pairs of distinct parties k, l ∈ {1, . . . ,n} and all pairs
of datasets D,D′ that differ only in the local dataset
of party l, we have:

Pr[Ok(A(D))] ≤ eϵ Pr[Ok(A(D′))] + δ.

• This is a relaxation of local DP: if Ok contains the full transcript of messages, then
network DP boils down to local DP
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WALK-BASED DECENTRALIZED SGD

• Consider the standard objective F(θ;D) = 1
K
∑K

k=1 Fk(θ;Dk) and a complete graph

• We consider a fully decentralized algorithm where the model is updated sequentially
by following a random walk

Algorithm Private decentralized SGD on a complete graph
Initialize model θ
for t = 1 to T do

Current party updates θ by a gradient update with Gaussian noise
Current party sends θ to a random party

return θ
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PRIVACY AMPLIFICATION BY DECENTRALIZATION FOR SGD

Theorem ([Cyffers and Bellet, 2022], informal)
To achieve a fixed (ϵ, δ)-DP guarantee with the previous algorithm, the standard
deviation of the noise is O(

√
K/ ln K) smaller under network DP than under local DP.

• Accounting for the limited view in fully decentralized algorithms amplifies privacy
guarantees by a factor of O(ln K/

√
K), nearly recovering the utility of central DP

• The proof leverages recent results on privacy amplification by iteration
[Feldman et al., 2018] and exploits the randomness of the path taken by the model

• We show some robustness to collusion (albeit with smaller privacy amplification)
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FULL DECENTRALIZATION: EMPIRICAL ILLUSTRATION
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• Results are consistent with our theory: network DP-SGD significantly amplifies
privacy guarantees compared to local DP-SGD
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PRIVACY AMPLIFICATION FOR GOSSIP DECENTRALIZED SGD

• In a recent work [Cyffers et al., 2022] we refine network DP to capture the privacy loss
across each pair of nodes and prove amplification guarantees for gossip-based
algorithms on arbitrary graphs
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WRAPPING UP



TAKE-HOME MESSAGES

• FL allows to train machine learning models from decentralized datasets

• Not sharing data is not enough to ensure privacy: we need formal guarantees

• Differential privacy induces a privacy-utility trade-off which depends on the trust
model (e.g., central versus local)

• In FL with a server, recent protocols for DP aggregation allow to achieve the same
utility as the central model with reasonable computational and communication costs

• Full decentralization can amplify privacy guarantees, providing a new incentive for
using such approaches beyond the usual motivation of scalability
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THANK YOU FOR YOUR ATTENTION!
QUESTIONS?
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GOPA: DETAILS ON THE PROTOCOL [SABATER ET AL., 2020]

• Assume that pairs of parties are able exchange encrypted messages (the server may
act as relay): this can be achieved for instance through a public key infrastructure

• Consider an arbitrary graph G over the set of parties

Algorithm GOPA protocol
Parameters: graph G, variances σ2

∆, σ
2
η ∈ R+

for all neighboring parties {k, l} in G do
k and l draw y ∼ N (0, σ2

∆)

set ∆k,l ← y, ∆l,k ← −y
for each party k do
k draws ηk ∼ N (0, σ2

η)

k reveals θ̂k ← θk +
∑

l∼k ∆k,l + ηk

1. Neighbors {k, l} in G securely exchange
pairwise-canceling Gaussian noise

2. Each party k generate independent
Gaussian noise

3. Party k reveals the sum of private value,
pairwise and independent noise terms

• Unbiased estimate of the average: θ̂avg = 1
K
∑

k θ̂k, with variance σ2
η/K
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GOPA: DETAILS ON PRIVACY GUARANTEES

• Adversary: coalition of the server with a proportion 1− ρ of the parties

Theorem (Privacy of GOPA with random k-out graph [Sabater et al., 2020])
Let ε, δ′ ∈ (0, 1) and let:

• G be obtained by letting all parties randomly choose m = O(log(ρK)/ρ) neighbors
• σ2

η so as to satisfy (ε, δ′)-DP in the central model
• σ2

∆ = O(σ2
ηρK/m)

Then GOPA is (ε, δ)-differentially private for δ = O(δ′).

• Same utility as central DP with only logarithmic number of messages per party

• Our theoretical results give practical values for m and σ2
∆

• Our general result quantifies the effect of an arbitrary topology G on DP guarantees

• We also provide correctness guarantees against malicious parties [Sabater et al., 2020]
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GOPA: ENSURING CORRECTNESS

• Utility can be compromised by malicious parties tampering with the protocol (e.g.,
sending incorrect values to bias the outcome)

• It is impossible to force a party k to give the “right” input θk (this also holds in the
trusted curator setting)

• We enable each party k to prove the following properties:

θk ∈ [0, 1], ∀k ∈ {1, . . . , K}
∆k,l = −∆l,k, ∀{k, l} neighbors in G

ηk ∼ N (0, σ2
η), ∀k ∈ {1, . . . , K}

θ̂k = θk +
∑
l∼k

∆k,l + ηk, ∀k ∈ {1, . . . , K}
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GOPA: ENSURING CORRECTNESS

• Parties publish an encrypted log of the computation using Pedersen commitments
[Blum, 1983, Pedersen, 1991], which are additively homomorphic

• Based on these commitments, parties prove that the computation was done
correctly using zero knowledge proofs

Theorem (Informal)
A party k that passes the verification proves that θ̂k was computed correctly.
Additionally, by doing so, k does not reveal any additional information about θk.

• Costs per party remain linear in the number of neighbors

• Can prove consistency across multiple runs on same/similar data

• Can handle drop out
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FULL DECENTRALIZATION: DETAILS ON PRIVATE SGD ON A COMPLETE GRAPH

• Recall that we aim to minimize the objective of the form F(θ;D) = 1
K
∑K

k=1 Fk(θ;Dk)

• Consider the complete graph

Algorithm Private decentralized SGD on a complete graph
Parameters: variance σ2, # of steps T, step sizes (γ(t))Tt=1

Initialize θ ∈ Rp

for t = 1 to T do
Draw random party k ∼ U(1, . . . , K)
η = [η1, . . . , ηp], with ηi ∼ N (0, σ2)

θ ← θ − γ(t)[∇θFk(θ;Dk) + η]

return θ
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FULL DECENTRALIZATION: DETAILS ON PRIVACY AMPLIFICATION FOR SGD

Theorem ([Cyffers and Bellet, 2022], informal)
Let F1(·;D1), . . . , FK(·;DK) be convex, Lipschitz and smooth. Given ε, δ > 0, let T = Ω̃(K2)
and σ2 be such that private decentralized SGD satisfies (ε, δ)-local DP. Then the
algorithm also satisfies ( ln K√

K ε, δ)-network DP.

• Under network DP (i.e., full decentralization), privacy is amplified by a factor of
O(ln K/

√
K) compared to local DP, recovering the utility of central DP

• The proof leverages recent results on privacy amplification by iteration
[Feldman et al., 2018] and exploits the randomness of the path taken by the model

• Note: for T = o(K2), the amplification effect is still strong and can be computed
numerically, see [Cyffers and Bellet, 2022]
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