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DECENTRALIZED MACHINE LEARNING



(SUPERVISED) MACHINE LEARNING
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A SHIFT OF PARADIGM: FROM CENTRALIZED TO DECENTRALIZED DATA

• The standard setting in Machine Learning (ML) considers a centralized dataset
processed in a tightly integrated system

• But in the real world data is often decentralized across many parties

data center

≠

3



WHY CAN’T WE JUST CENTRALIZE THE DATA?

1. Sending the data may be too costly

• Self-driving cars are expected to generate several TBs of data a day

• Some wireless devices have limited bandwidth/power

2. Data may be considered too sensitive

• We see a growing public awareness and regulations on data privacy
(we could try to anonymize the data, but it is generally difficult to prevent all possible
re-identification attacks without destroying utility)

• Keeping control of data can give a competitive advantage in business and research
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HOW ABOUT EACH PARTY LEARNING ON ITS OWN?

1. The local dataset may be too small
• Sub-par predictive performance (e.g., due to overfitting)
• Non-statistically significant results (e.g., medical studies)

2. The local dataset may be biased
• Not representative of the target distribution
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A BROAD DEFINITION OF DECENTRALIZED MACHINE LEARNING

• Decentralized Machine Learning (DML), also called Federated Learning, aims to
collaboratively train a ML model while keeping the data decentralized

• We would like the final model to be as good as the centralized solution (ideally), or
at least better than what each party can learn on its own
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A BROAD DEFINITION OF DECENTRALIZED MACHINE LEARNING

• Decentralized Machine Learning (DML), also called Federated Learning, aims to
collaboratively train a ML model while keeping the data decentralized

initialize model

• We would like the final model to be as good as the centralized solution (ideally), or
at least better than what each party can learn on its own
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A BROAD DEFINITION OF DECENTRALIZED MACHINE LEARNING

• Decentralized Machine Learning (DML), also called Federated Learning, aims to
collaboratively train a ML model while keeping the data decentralized

each party makes an update
using its local dataset

• We would like the final model to be as good as the centralized solution (ideally), or
at least better than what each party can learn on its own
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A BROAD DEFINITION OF DECENTRALIZED MACHINE LEARNING

• Decentralized Machine Learning (DML), also called Federated Learning, aims to
collaboratively train a ML model while keeping the data decentralized

parties share local
updates for aggregation

• We would like the final model to be as good as the centralized solution (ideally), or
at least better than what each party can learn on its own

6



A BROAD DEFINITION OF DECENTRALIZED MACHINE LEARNING

• Decentralized Machine Learning (DML), also called Federated Learning, aims to
collaboratively train a ML model while keeping the data decentralized

server aggregates updates
and sends back to parties

• We would like the final model to be as good as the centralized solution (ideally), or
at least better than what each party can learn on its own
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A BROAD DEFINITION OF DECENTRALIZED MACHINE LEARNING

• Decentralized Machine Learning (DML), also called Federated Learning, aims to
collaboratively train a ML model while keeping the data decentralized

parties update their copy
of the model and iterate

• We would like the final model to be as good as the centralized solution (ideally), or
at least better than what each party can learn on its own 6



KEY DIFFERENCES WITH DISTRIBUTED LEARNING

Data distribution

• In distributed learning, data is centrally stored (e.g., in a data center)
• The main goal is just to train faster
• We control how data is distributed across workers: usually, it is distributed uniformly at
random across workers

• In DML, data is naturally distributed and generated locally
• Data is not independent and identically distributed (non-i.i.d.), and it is imbalanced

Additional challenges that arise in DML

• Enforcing privacy constraints
• Dealing with the possibly limited reliability/availability of participants
• Achieving robustness against malicious parties
• ...
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CROSS-DEVICE VS. CROSS-SILO DML

Cross-device DML

• Massive number of parties (up to 1010)

• Small dataset per party (could be size 1)

• Limited availability and reliability

• Some parties may be malicious

Cross-silo DML

• 2-100 parties

• Medium to large dataset per party

• Reliable parties, almost always available

• Parties are typically honest
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SERVER ORCHESTRATED VS. FULLY DECENTRALIZED DML

Server-orchestrated DML

• Server-client communication

• Global coordination, global aggregation

• Server is a single point of failure and
may become a bottleneck

Fully decentralized DML

• Direct communication between parties

• No global coordination, local aggregation

• Naturally scales to a large number of
participants
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CLASSIC DML FORMULATION

• We consider a set of K parties (clients)

• Each party k holds a dataset Dk of nk points, so there is n =
∑

k nk points in total

• We denote by θ the model parameters (e.g., weights of a neural network)

• We want to find the parameters that minimize the overall prediction error:

min
θ

K∑
k=1

nk
n Loss(θ;Dk)
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A STANDARD DML ALGORITHM: FEDAVG [MCMAHAN ET AL., 2017]

• Main idea: clients update model with gradient descent to make it better on local
data, server performs a weighted average of client updates

Algorithm FedAvg (server-side)
initialize θ

for each round t = 0, 1, . . . do
for each client k in parallel do
θk ← ClientUpdate(k, θ)

θ ←
∑K

k=1
nk
n θk

Algorithm ClientUpdate(k, θ)
Parameters: number of local steps L

learning rate η

for each local step 1, . . . , L do
θ ← θ − η∇Loss(θ;Dk)

send θ to server

• L > 1 allows to reduce the number of communication rounds

• Can be extended to the fully decentralized case [Lian et al., 2017, Koloskova et al., 2020]
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A KEY CHALLENGE: DEALING WITH HETEROGENEOUS DATA

(Figure taken from [Karimireddy et al., 2020])

• When local datasets are non-i.i.d., FedAvg suffers from client drift

• Recent work on correcting updates [Karimireddy et al., 2020, Li et al., 2020]

• Can also learn personalized models [Smith et al., 2017, Zantedeschi et al., 2020]
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PRIVACY IN DECENTRALIZED
MACHINE LEARNING



PRIVACY ISSUES IN (DECENTRALIZED) ML

• ML models are susceptible to various attacks on data privacy

• Membership inference attacks try to infer the presence of a known individual in the
training set, e.g., by exploiting the confidence in model predictions [Shokri et al., 2017]

• Reconstruction attacks try to infer some of the points used to train the model, e.g.,
by differencing attacks [Paige et al., 2020]

• Decentralized ML offers an additional attack surface because the server and/or other
clients see intermediate model updates (not only the final model) [Nasr et al., 2019]
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DIFFERENTIAL PRIVACY IN A NUTSHELL

Randomized
algorithm
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random coins
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distribution of A(D)
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Definition ([Dwork et al., 2006], informal)
A is (ε, δ)-differentially private (DP) if for all neighboring
datasets D = {x1, x2, . . . , xn} and D′ = {x1, x′2, x3, . . . , xn} and all
possible sets of outputs S:

Pr[A(D) ∈ S] ≤ eε Pr[A(D′) ∈ S] + δ.
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KEY PROPERTIES OF DIFFERENTIAL PRIVACY

• DP is immune to post-processing: it is impossible to compute a function of the
output of the private algorithm and make it less differentially private

• DP is robust to arbitrary auxiliary knowledge (worst-case model): the guarantee is
just as strong if the adversary knows all but one record and regardless of the
adversary strategy and computational power

• DP is robust under composition: if multiple analyses are performed on the same
data, as long as each one satisfies DP, all the information released taken together
will still satisfy DP (albeit with a degradation in the parameters)
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TWO SETTINGS: CENTRALIZED VS DECENTRALIZED

Centralized setting (also called global
setting or trusted curator setting): A is
differentially private wrt dataset D

Individuals
(or organizations)

... A

Trusted
curator

A(D)

x1

x2

xn

Decentralized/federated setting (also
called local setting or untrusted cura-
tor setting): each Rk is DP wrt record
xk (or local dataset Dk)

Individuals
(or organizations)

... A

Untrusted
curator

A(Y)

x1

x2

xn

R1

R2
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y1

y2

yn
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A KEY FUNCTIONALITY: AGGREGATION

• Most server-orchestrated DML algorithms follow the same high-level strategy:

for t = 1 to T do
At each party k: compute θk ← LOCALUPDATE(θ, θk), send θk to server
At server: compute θ ← 1

K
∑

k θk, send θ back to the participants

• Therefore:

DP aggregation + Composition property of DP =⇒ DP-DML

• Differentially private aggregation: given a private value xk ∈ R for each party k, we
want to accurately estimate xavg = 1

K
∑

k xk under an (ε, δ)-DP constraint
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EXISTING APPROACHES TO DP AGGREGATION

• Centralized setting: trusted curator adds (Gaussian) noise to the average xavg

• Decentralized setting: each party k adds noise to xk before sharing it

• For a fixed DP guarantee, the error is O(
√
K) larger in the decentralized case!

• Cryptographic primitives such as secure aggregation [Bonawitz et al., 2017] and secure
shuffling [Balle et al., 2019] can be used to close this gap but pose practical
implementation challenges
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A SIMPLE PROTOCOL FOR DP AGGREGATION: GOPA [SABATER ET AL., 2020]

Algorithm GOPA protocol
Parameters: graph G, variances σ2

∆, σ
2
η ∈ R+

for all neighboring parties {k, l} in G do
k and l draw y ∼ N (0, σ2

∆)

set ∆k,l ← y, ∆l,k ← −y
for each party k do
k draws ηk ∼ N (0, σ2

η)

k reveals x̂k ← xk +
∑

l∼k ∆k,l + ηk

1. Neighbors {k, l} in G securely exchange
pairwise-canceling Gaussian noise

2. Each party k generates personal
Gaussian noise

3. Party k reveals the sum of private value,
pairwise and personal noise terms

• Accurate: the result x̂avg = 1
K
∑

k x̂k can match the accuracy of the centralized setting

• Scalable: it is sufficient for each party to communicate with O(log K) others

• Robust: it can handle some collusions, dropouts and malicious behavior
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PRIVACY BENEFITS OF FULL DECENTRALIZATION [CYFFERS AND BELLET, 2020]

• In the fully decentralized case, each party has a limited view of the system

• Can this be used to prove stronger differential privacy guarantees?
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PRIVACY BENEFITS OF FULL DECENTRALIZATION [CYFFERS AND BELLET, 2020]

• Consider algorithms that sequentially update the estimate (e.g., ML model) by
following a walk over the network graph [Ram et al., 2009, Mao et al., 2020]

• We have shown that for some topologies (directed ring, complete graph), such
algorithms can match the privacy-utility trade-off of the centralized setting

• Analysis relies on recent privacy amplification results [Balle et al., 2018]
[Erlingsson et al., 2019, Feldman et al., 2018]
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APPLICATIONS TO THE MEDICAL
DOMAIN



MULTI-CENTRIC MEDICAL STUDIES

Classic multi-centric study Decentralized multi-centric study

• Multi-centric studies augment the statistical power of studies

• Decentralized studies could be easier to set up, could minimize privacy risks, and
their results could be updated more regularly
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ONGOING COLLABORATION WITH LILLE UNIVERSITY HOSPITAL

• Development of a decentralized machine learning library

• Proof of concept across hospitals of the G4 alliance as short term objective

• Identification of end-users needs and appropriate workflow with clinicians

• Understanding the regulatory requirements, in relation with CNIL
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WRAPPING UP



CONCLUDING REMARKS

• Strong interest in ML community for decentralized/federated approaches, see recent
survey [Kairouz et al., 2019]

• Can have differential privacy guarantees for these algorithms with the same utility as
in the centralized setting:

• via private aggregation, with a reasonable computational and communication overhead
• via certain fully decentralized algorithms

• Compared to sharing “anonymized” data, DML restricts the usage to a specific ML
analysis but can offer more robust privacy guarantees and/or better utility

• Clear applications to the medical domain
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THANK YOU FOR YOUR ATTENTION!
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GOPA: PRIVACY GUARANTEES

• Adversary: proportion 1− ρ of colluding malicious parties who observe all
communications they take part in

• Denote by H the set of honest-but-curious parties, and by GH the honest subgraph

• GOPA can achieve (ε, δ)-DP for any ε, δ > 0 for connected GH and large enough σ2
η, σ

2
∆

• We show that σ2
η can be as small as in the centralized setting (matching its utility)

• We show that the required σ2
∆ depends on the topology of GH
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GOPA: PRIVACY GUARANTEES

Theorem (Case of random m-out graph)
Let ε, δ′ ∈ (0, 1) and let:

• G be obtained by letting all parties randomly choose m = O(log(ρn)/ρ) neighbors
• σ2

η so as to satisfy (ε, δ)-DP in the centralized (trusted curator) setting
• σ2

∆ = O(σ2
η|H|/m)

Then GOPA is (ε, δ)-differentially private for δ = O(δ′).

• Trusted curator utility with logarithmic number of messages per party

• Our theoretical results give practical values for m and σ2
∆
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GOPA: ENSURING CORRECTNESS

• Utility can be compromised by malicious parties tampering with the protocol (e.g.,
sending incorrect values to bias the outcome)

• It is impossible to force a party to give the “right” input (this also holds in the trusted
curator setting)

• We enable each party u to prove the following properties:

xk ∈ [0, 1], ∀k ∈ {1, . . . , K}
∆k,l = −∆l,k, ∀{k, l} neighbors in G

ηk ∼ N (0, σ2
η), ∀k ∈ {1, . . . , K}

x̂k = xk +
∑
l∼k

∆k,l + ηk, ∀k ∈ {1, . . . , K}
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GOPA: ENSURING CORRECTNESS

• Parties publish an encrypted log of the computation using Pedersen commitments
[Blum, 1983, Pedersen, 1991], which are additively homomorphic

• Based on these commitments, parties prove that the computation was done
correctly using zero knowledge proofs

Theorem (Informal)
A party k that passes the verification proves that x̂k was computed correctly.
Additionally, by doing so, k does not reveal any additional information about xk.

• Costs per party remain linear in the number of neighbors

• Can prove consistency across multiple runs on same/similar data

• Can handle drop out
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A VARIANT OF DIFFERENTIAL PRIVACY FOR FULLY DECENTRALIZED ALGORITHMS

• Each party k holds a local dataset Dk, joint dataset D = D1 ∪ · · · ∪ DK

• D ∼k D′ means that datasets D and D′ differ only on party k’s data

• Ok(A(D): view of party k (local memory and messages received)

Definition (Network differential Privacy)
An algorithm A is (ε, δ)-network differentially private if for all pairs of parties (k, l) and
for all datasets D ∼k D′:

Pr(Ol(A(D))) ≤ eε Pr(Ol(A(D′)) + δ.
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SIMPLE EXAMPLE: REAL SUMMATION ON A RING

• Each party k has M values x1k, . . . , xMk and we want to estimate x̄ =
∑K

k=1
∑M

m=1 xmk
• Let Perturb(;σ) satisfy (ε, δ)-local DP

Algorithm Private real summation on a ring
τ ← 0; a← 0
for m = 1 to M do
for k = 1 to K do
if a = 0 then
τ ← τ + Perturb(xmk ;σ)
a = K− 2

else
τ ← τ + xmk
a← a− 1

return τ

1
2

3

K

k

k+1

k−1
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SIMPLE EXAMPLE: REAL SUMMATION ON A RING

Theorem (Privacy-utility guarantee)
Let ε, δ > 0. The previously introduced algorithm

• outputs an unbiased estimate of x̄ with standard deviation
√
⌊MK/(K− 1)⌋σ,

• satisfies (
√

2M ln(1/δ′)ε+Mε(eε − 1),Mδ + δ′)-network DP for any δ′ > 0.

• Same privacy-utility trade-off as a trusted aggregator

• Gain of O(1/
√
K) compared to local DP
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