PRIVACY-PRESERVING ALGORITHMS FOR DECENTRALIZED COLLABORATIVE MACHINE LEARNING

Aurélien Bellet (Inria MAGNET)

Joint work with R. Guerraoui, M. Taziki, M. Tommasi and P. Vanhaesebrouck

Seminar at the Alan Turing Institute
February 26, 2018
1. Broad context
2. Problem setting
3. Decentralized algorithms
4. Privacy in decentralized learning
5. Illustrative experiments
6. Future work
BROAD CONTEXT
I want my device to recognize my voice, can you help me?

Other examples of applications:
- Recommend content based on user activity logs
- Learn personalized treatment from wearable device data
LEARNING FROM CONNECTED DEVICES DATA

- Other examples of applications
 - Recommend content based on user activity logs
 - Learn personalized treatment from wearable device data
Best for utility: efficient access and processing

Lack of user control over its personal data
 - What is collected? Who can access it? How is it used and what for?

Vulnerability to attacks / subpoenas
 - Yahoo data breach (3B users!), Twitter / Wikileaks court orders

Costly infrastructure for service provider
EXTREME APPROACH 2: PURELY LOCAL LEARNING

- Best for privacy: no information exchanged between devices
- Bad for utility (especially for users without much data)
OUR APPROACH: FULLY DECENTRALIZED LEARNING

- Personal data stays on user’s device
- Peer-to-peer and asynchronous communications
- No single point of failure/entry as in server-client architectures
- Scalability-by-design to many devices through local updates (see e.g., [Lian et al., 2017])
Some scientific challenges

1. How to efficiently learn in a decentralized way under these communication constraints?

2. How to prevent malicious users from inferring sensitive data or manipulating the outcome to their advantage?
• Users wake up independently and in parallel, select a random neighbor and exchange information
 • Equivalent view: an iteration is a random edge activation
• Simple and asynchronous → well suited to large networks
• Users wake up independently and in parallel, select a random neighbor and exchange information
 • Equivalent view: an iteration is a random edge activation
• Simple and asynchronous → well suited to large networks
• Users wake up independently and in parallel, select a random neighbor and exchange information
 • Equivalent view: an iteration is a random edge activation

• Simple and asynchronous → well suited to large networks
• Users wake up independently and in parallel, select a random neighbor and exchange information
 • Equivalent view: an iteration is a random edge activation

• Simple and asynchronous → well suited to large networks
• Users wake up independently and in parallel, select a random neighbor and exchange information
 • Equivalent view: an iteration is a random edge activation

• Simple and asynchronous → well suited to large networks
• Users wake up independently and in parallel, select a random neighbor and exchange information
 • Equivalent view: an iteration is a random edge activation
• Simple and asynchronous → well suited to large networks
• Users wake up independently and in parallel, select a random neighbor and exchange information
 • Equivalent view: an iteration is a random edge activation

• Simple and asynchronous → well suited to large networks
• Users wake up independently and in parallel, select a random neighbor and exchange information
 • Equivalent view: an iteration is a random edge activation
• Simple and asynchronous → well suited to large networks
Users wake up independently and in parallel, select a random neighbor and exchange information
 - Equivalent view: an iteration is a random edge activation

- Simple and asynchronous → well suited to large networks
• Users wake up independently and in parallel, select a random neighbor and exchange information
 • Equivalent view: an iteration is a random edge activation

• Simple and asynchronous → well suited to large networks
EXISTING WORK: CONSENSUS LEARNING

- Gossip algorithms to optimize a loss function over the union of personal datasets [Nedic and Ozdaglar, 2009, Duchi et al., 2012, Wei and Ozdaglar, 2012, Colin et al., 2016, Scaman et al., 2017]

- General idea: at each step
 1. perform a local model update based on personal data
 2. average with neighbor
• Gossip algorithms to optimize a loss function over the union of personal datasets [Nedic and Ozdaglar, 2009, Duchi et al., 2012, Wei and Ozdaglar, 2012, Colin et al., 2016, Scaman et al., 2017]

• General idea: at each step
 1. perform a local model update based on personal data
 2. average with neighbor
• Gossip algorithms to optimize a loss function over the union of personal datasets [Nedic and Ozdaglar, 2009, Duchi et al., 2012, Wei and Ozdaglar, 2012, Colin et al., 2016, Scaman et al., 2017]

• General idea: at each step
 1. perform a local model update based on personal data
 2. average with neighbor
• Gossip algorithms to optimize a loss function over the union of personal datasets [Nedic and Ozdaglar, 2009, Duchi et al., 2012, Wei and Ozdaglar, 2012, Colin et al., 2016, Scaman et al., 2017]

• General idea: at each step
 1. perform a local model update based on personal data
 2. average with neighbor
• Gossip algorithms to optimize a loss function over the union of personal datasets [Nedic and Ozdaglar, 2009, Duchi et al., 2012, Wei and Ozdaglar, 2012, Colin et al., 2016, Scaman et al., 2017]

• General idea: at each step
 1. perform a local model update based on personal data
 2. average with neighbor
• Gossip algorithms to optimize a loss function over the union of personal datasets [Nedic and Ozdaglar, 2009, Duchi et al., 2012, Wei and Ozdaglar, 2012, Colin et al., 2016, Scaman et al., 2017]

• General idea: at each step
 1. perform a local model update based on personal data
 2. average with neighbor
EXISTING WORK: CONSENSUS LEARNING

- Gossip algorithms to optimize a loss function over the union of personal datasets [Nedic and Ozdaglar, 2009, Duchi et al., 2012, Wei and Ozdaglar, 2012, Colin et al., 2016, Scaman et al., 2017]

- General idea: at each step
 1. perform a local model update based on personal data
 2. average with neighbor
• Gossip algorithms to optimize a loss function over the union of personal datasets [Nedic and Ozdaglar, 2009, Duchi et al., 2012, Wei and Ozdaglar, 2012, Colin et al., 2016, Scaman et al., 2017]

• General idea: at each step
 1. perform a local model update based on personal data
 2. average with neighbor
EXISTING WORK: CONSENSUS LEARNING

- Gossip algorithms to optimize a loss function over the union of personal datasets [Nedic and Ozdaglar, 2009, Duchi et al., 2012, Wei and Ozdaglar, 2012, Colin et al., 2016, Scaman et al., 2017]

- General idea: at each step
 1. perform a local model update based on personal data
 2. average with neighbor
EXISTING WORK: CONSENSUS LEARNING

- Gossip algorithms to optimize a loss function over the union of personal datasets [Nedic and Ozdaglar, 2009, Duchi et al., 2012, Wei and Ozdaglar, 2012, Colin et al., 2016, Scaman et al., 2017]

- General idea: at each step
 1. perform a local model update based on personal data
 2. average with neighbor
EXISTING WORK: CONSENSUS LEARNING

- Gossip algorithms to optimize a loss function over the union of personal datasets [Nedic and Ozdaglar, 2009, Duchi et al., 2012, Wei and Ozdaglar, 2012, Colin et al., 2016, Scaman et al., 2017]

- General idea: at each step
 1. perform a local model update based on personal data
 2. average with neighbor
Existing work: Consensus Learning

- Gossip algorithms to optimize a loss function over the union of personal datasets [Nedic and Ozdaglar, 2009, Duchi et al., 2012, Wei and Ozdaglar, 2012, Colin et al., 2016, Scaman et al., 2017]

- General idea: at each step
 1. perform a local model update based on personal data
 2. average with neighbor
• Gossip algorithms to optimize a loss function over the union of personal datasets [Nedic and Ozdaglar, 2009, Duchi et al., 2012, Wei and Ozdaglar, 2012, Colin et al., 2016, Scaman et al., 2017]

• General idea: at each step
 1. perform a local model update based on personal data
 2. average with neighbor
• Gossip algorithms to optimize a loss function over the union of personal datasets [Nedic and Ozdaglar, 2009, Duchi et al., 2012, Wei and Ozdaglar, 2012, Colin et al., 2016, Scaman et al., 2017]

• General idea: at each step
 1. perform a local model update based on personal data
 2. average with neighbor
- Gossip algorithms to learn a *personalized model for each user according to its own learning objective*

- General idea: trade-off between model accuracy on local data and smoothness with respect to similar users
PROBLEM SETTING
• We work in the **supervised learning setting**: predict label $y \in \mathcal{Y}$ from observation $x \in \mathcal{X}$

• The set of possible **prediction models** will be indexed by parameters $\theta \in \mathbb{R}^p$

• We use a **convex loss function** $\ell : \mathbb{R}^p \times \mathcal{X} \times \mathcal{Y}$ to measure the error of a model on a labeled observation

• We have a set $V = [n] = \{1, \ldots, n\}$ of n learning agents

• Agent i has dataset $\mathcal{S}_i = \{(x_i^j, y_i^j)\}_{j=1}^{m_i}$ of size $m_i \geq 0$ drawn i.i.d. from its own distribution μ_i over $\mathcal{X} \times \mathcal{Y}$
• Goal of agent i: learn a model $\theta_i \in \mathbb{R}^p$ with small expected loss

$$\mathbb{E}_{(x_i, y_i) \sim \mu_i} \ell(\theta_i; x_i, y_i)$$

• In isolation, agent i can learn a “solitary” model

$$\theta_i^{sol} \in \arg \min_{\theta \in \mathbb{R}^p} \mathcal{L}_i(\theta) = \frac{1}{m_i} \sum_{j=1}^{m_i} \ell(\theta; x_j^i, y_j^i) + \lambda_i \|\theta\|^2, \text{ with } \lambda_i \geq 0$$

• How to improve upon θ_i^{sol} with the help of other users?
• Network: weighted connected graph $G = (V, E)$

• $E \subseteq V \times V$ set of undirected edges

• Weight matrix $W \in \mathbb{R}^{n \times n}$: symmetric, nonnegative, with $W_{ij} = 0$ if $(i, j) \notin E$ or $i = j$

• **Assumption**: network weights are given and represent the underlying similarity between agents

 • Ex: movie recommendation task where the network is set up when users go to the same movie
• Agents have only a **local view** of the network

• They only know their neighborhood $\mathcal{N}_i = \{j \neq i : W_{ij} > 0\}$ and the associated weights
DECENTRALIZED ALGORITHMS
Main idea: smooth the solitary models over the network

- $c_i \in (0, 1]$: confidence in initial model θ_i^{sol}
 - Proportional to the number of training points m_i

- Find new set of models $\Theta \in \mathbb{R}^{n \times p}$ by solving

$$
\min_{\Theta \in \mathbb{R}^{n \times p}} Q_{MP}(\Theta) = \frac{1}{2} \left(\sum_{i<j} W_{ij} \| \theta_i - \theta_j \|^2 + \mu \sum_{i=1}^{n} D_{ii} c_i \| \theta_i - \theta_i^{sol} \|^2 \right)
$$

- Trade-off between smoothing models within neighborhoods and not diverging too much from confident models
- Term $D_{ii} = \sum_j W_{ij}$ is just for normalization

- Cannot use closed-form solution (requires global knowledge)
• Each agent has a **local Poisson clock** and wakes up when it ticks

• Equivalently: single clock (with counter t) ticking when one of the local clocks ticks

• **Idea of our algorithm**: each agent i maintains a (possibly outdated) knowledge $\tilde{\Theta}_i(t) \in \mathbb{R}^{n \times p}$ of its neighbors’ models

 • $\tilde{\Theta}_i(t) \in \mathbb{R}^p$: agent i’s model at time t
 • for $j \neq i$, $\tilde{\Theta}_i(t) \in \mathbb{R}^p$: agent i’s last knowledge of the model of j
 • For $j \notin \mathcal{N}_i \cup \{i\}$ and any $t > 0$, we maintain $\tilde{\Theta}_i(t) = 0$
• At step t, some agent i wakes up and two actions are performed

1. **Communication step**: agent i selects a random neighbor $j \in \mathcal{N}_i$ w.p. π^j_i and both agents update their knowledge of each other:

 $$\tilde{\Theta}^i_j(t + 1) = \tilde{\Theta}^j_i(t) \quad \text{and} \quad \tilde{\Theta}^j_i(t + 1) = \tilde{\Theta}^i_j(t),$$

2. **Update step**: agents i and j update their own models based on current knowledge. For $l \in \{i, j\}$:

 $$\tilde{\Theta}^l_i(t + 1) = (\alpha + \tilde{\alpha}c_i)^{-1}\left(\alpha \sum_{k \in \mathcal{N}_l} \frac{W_{lk}}{D_{ll}} \tilde{\Theta}^k_l(t + 1) + \tilde{\alpha}c_l \theta^l_{sol}\right).$$

• All other variables in the network remain unchanged

• For any $i \in [n]$, $\pi_i \in [0, 1]^n$ must satisfy $\sum_{j=1}^n \pi^j_i = 1$ and $\pi^j_i > 0$ if and only if $j \in \mathcal{N}_i$
Theorem ([Vanhaesebrouck et al., 2017])

Let $\tilde{\Theta}(0) \in \mathbb{R}^{n^2 \times p}$ be some initial value and $(\tilde{\Theta}(t))_{t \in \mathbb{N}}$ be the sequence generated by our algorithm. Let $\Theta^* = \arg \min_{\Theta \in \mathbb{R}^{n \times p}} Q_{MP}(\Theta)$ be the optimal solution to model propagation. For any $i \in [n]$,

$$\lim_{t \to \infty} \mathbb{E} \left[\tilde{\Theta}^i_j(t) \right] = \Theta^*_j \text{ for } j \in \mathcal{N}_i \cup \{i\}.$$

Sketch of proof

- Rewrite algorithm as a random iterative process over $\tilde{\Theta} \in \mathbb{R}^{n^2 \times p}$:

$$\tilde{\Theta}(t + 1) = A(t)\tilde{\Theta}(t) + b(t)$$

- Show that spectral radius of $\mathbb{E}[A(t)]$ is smaller than 1
- Exhibit convergence to desired quantity
• Model propagation is very simple but **forgets data**

• Alternative: learn / propagate models simultaneously by solving

\[
\min_{\Theta \in \mathbb{R}^{n \times p}} Q_{CL}(\Theta) = \sum_{i<j}^n W_{ij} \| \theta_i - \theta_j \|^2 + \mu \sum_{i=1}^n \sum D_{ii} c_i \mathcal{L}_i(\theta_i)
\]

• Trade-off between **smoothing models within neighborhoods** and good accuracy on local datasets

• More flexibility than model propagation in settings where different parameter values may lead to similar predictions

• Can recover the two extreme cases of learning purely local models ($\mu \to \infty$) and learning a single global model ($\mu \to 0$)
• For simplicity, consider the broadcast communication model
 • The agent which wakes up sends a message to all its neighbors
 • No reply from neighbors

• Assume that local loss \mathcal{L}_i has L_i^{loc}-Lipschitz continuous gradient

• Then ∇Q_{CL} is L_i-Lipschitz w.r.t. block Θ_i with $L_i = D_{ii}(1 + \mu c_i L_i^{loc})$

• Can also assume that \mathcal{L}_i is σ_i^{loc}-strongly convex where $\sigma_i^{loc} > 0$

• Then Q_{CL} is σ-strongly convex with $\sigma \geq \mu \min_{1 \leq i \leq n}[D_{ii}c_i \sigma_i^{loc}] > 0$
• Randomized block coordinate descent algorithm: assume agent i wakes up at step t:

1. Agent i updates its model based on information from neighbors:

$$
\Theta_i(t + 1) = \Theta_i(t) - \frac{1}{L_i}[\nabla Q_{CL}(\Theta(t))]_i
$$

$$
= (1 - \alpha)\Theta_i(t) + \alpha \left(\sum_{j \in \mathcal{N}_i} \frac{W_{ij}}{D_{ii}} \Theta_j(t) - \mu c_i \nabla L_i(\Theta_i(t); S_i) \right),
$$

where $\alpha = 1/(1 + \mu c_i L_i^{loc}) \in (0, 1]$

2. Agent i sends its updated model $\Theta_i(t + 1)$ to its neighborhood \mathcal{N}_i
Proposition ([Bellet et al., 2018])

For any $T > 0$, let $(\Theta(t))_{t=1}^T$ be the sequence of iterates generated by the algorithm running for T iterations from an initial point $\Theta(0)$. When Q_{CL} is σ-strongly convex, we have:

$$
\mathbb{E} [Q_{CL}(\Theta(T)) - Q_{CL}^*] \leq \left(1 - \frac{\sigma}{nL_{\max}}\right)^T (Q_{CL}(\Theta(0)) - Q_{CL}^*),
$$

where $L_{\max} = \max_i L_i$.

- Follows from randomized CD analysis [Wright, 2015]
- Can obtain convergence in $O(1/T)$ in convex case
PRIVACY IN DECENTRALIZED LEARNING
• In some applications, **data may be sensitive** and agents may not want to reveal it to anyone else

• In our algorithms, the agents never communicate their local data but **exchange sequences of models computed from data**

• Consider an adversary observing **all the information sent over the network** (but not the internal memory of agents)

• **Goal:** how can we guarantee that no/little information about the local dataset is leaked by the algorithm?
(ε, δ)-Differential Privacy

Let \(\mathcal{M} \) be a randomized mechanism taking a dataset as input, and let \(\epsilon > 0, \delta \geq 0 \). We say that \(\mathcal{M} \) is \((\epsilon, \delta)\)-differentially private if for all datasets \(S, S' \) differing in a single data point and for all sets of possible outputs \(O \subseteq \text{range}(\mathcal{M}) \), we have:

\[
\Pr(\mathcal{M}(S) \in O) \leq e^\epsilon \Pr(\mathcal{M}(S') \in O) + \delta.
\]

- Guarantees that the output of \(\mathcal{M} \) is almost the same regardless of whether a particular data point was used
- Information-theoretic (no computational assumptions)
1. Replace the update of the algorithm in broadcast setting by

\[
\tilde{\Theta}_i(t+1) = (1-\alpha)\tilde{\Theta}_i(t) + \alpha \left(\sum_{j \in \mathcal{N}_i} \frac{W_{ij}}{D_{ii}} \tilde{\Theta}_j(t) - \mu c_i (\nabla L_i(\tilde{\Theta}_i(t); S_i) + \eta_i(t)) \right),
\]

where \(\eta_i(t) \sim \text{Laplace}(0, s_i(t))^p \in \mathbb{R}^p \)

2. Agent \(i \) then broadcasts noisy iterate \(\tilde{\Theta}_i(t+1) \) to its neighbors.
Theorem ([Bellet et al., 2018])

Let $i \in [n]$ and assume

- $\ell(\cdot; x, y)$ L_0-Lipschitz w.r.t. the L_1-norm for all $(x, y) \in X \times Y$
- Agent i wakes up on iterations $t_{i}^{1}, \ldots, t_{i}^{T_{i}}$
- For some $\epsilon_{i}(t_{i}^{k}) > 0$, the noise scale is $s_{i}(t_{i}^{k}) = \frac{2L_0}{\epsilon_{i}(t_{i}^{k})m_{i}}$

Then for any initial point $\tilde{\Theta}(0)$ independent of S_{i}, the mechanism $M_{i}(S_{i})$ is $(\bar{\epsilon}_{i}, 0)$-DP with $\bar{\epsilon}_{i} = \sum_{k=1}^{T_{i}} \epsilon_{i}(t_{i}^{k})$.

- Follows from sensitivity analysis of the update
- **Sweet spot in collaborative learning**: the less data, the more noise added by the agent, but the least influence in the network
- Can be improved by applying strong composition theorems
Theorem ([Bellet et al., 2018])

For any $T > 0$, let $(\tilde{\Theta}(t))_{t=1}^T$ be the sequence of iterates generated by T iterations. For σ-strongly convex Q_{CL}, we have:

$$
\mathbb{E} \left[Q_{CL}(\tilde{\Theta}(T)) - Q_{CL}^* \right] \leq \left(1 - \frac{\sigma}{nL_{max}}\right)^T \left(Q_{CL}(\tilde{\Theta}(0)) - Q_{CL}^* \right) \\
+ \frac{1}{nL_{min}} \sum_{t=0}^{T-1} \sum_{i=1}^{n} \left(1 - \frac{\sigma}{nL_{max}}\right)^t (\mu D_{ii} c_i S_i(t))^2,
$$

where $L_{min} = \min_{1 \leq i \leq n} L_i$.

- Second term gives additive error due to noise
- When noise scale of each agent constant across iterations, this additive error converges to a finite number as $T \to \infty$
- More results on how to scale noise in the paper
ILLUSTRATIVE EXPERIMENTS
• We consider a set of \(n = 100 \) agents and a linear classification task in \(\mathbb{R}^p \) (with hinge loss)

• Target models lie in a 2D subspace, network weights based on the angle between true models

• Each agent \(i \) receives a random number \(m_i \) of samples with label given by the prediction of target model (plus noise)
• Both CL and MP provide great improvements over local models
• CL consistently outperforms MP by significant margin
• The private variant outperforms the purely local models for “reasonable” values of ϵ.
• All agents benefit even in private setting

• Agents with small local datasets get a stronger boost
• **MovieLens-100K**: 100,000 ratings given by \(n = 943 \) users over 1,682 movies

• Each user has access only to its own ratings (80% train, 20% test)

• For simplicity, assume known features \(\phi_j \in \mathbb{R}^p \) for each movie \(j \)

• Quadratic loss: \(\ell(\theta; \phi, r) = (\theta^T \phi - r)^2 \)

• Network: 10-NN graph with cosine similarity on training ratings

• Error: RMSE averaged over users

<table>
<thead>
<tr>
<th></th>
<th>Purely local</th>
<th>Non-priv. CD</th>
<th>Priv. (\bar{\epsilon} = 1)</th>
<th>Priv. (\bar{\epsilon} = 0.5)</th>
<th>Priv. (\bar{\epsilon} = 0.1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test error</td>
<td>1.2834</td>
<td>0.9502</td>
<td>0.9527</td>
<td>0.9545</td>
<td>0.9855</td>
</tr>
</tbody>
</table>
FUTURE WORK
FUTURE WORK

Theory

- Statistical generalization bounds
- Generic methods to estimate/learn graph weights
- Online learning: data arrive sequentially, agents may join/leave

Applications and practical use

- More real-world experiments (e.g., activity recognition)
- Extend to nonconvex case (e.g., deep nets)
- Decentralized discovery of similar peers
- Cryptographic tools to achieve better accuracy (at the cost of more computation)
Thank you for your attention!
Questions?

