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DECENTRALIZED ALGORITHMS: GOOD FOR PRIVACY?

• Decentralized learning, where users communicate along the edges of a graph, is
increasingly popular for its scalability

• Folklore: “Decentralized learning algorithms are good for privacy”

• Question: is this claim really true? can we formalize and quantify these gains?

Yes! but decentralization alone is not sufficient
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PRIVACY ATTACK ON
DECENTRALIZED SGD
[EL MRINI ET AL., 2024]



GOSSIP AVERAGING

• Consider a connected graph G = (V, E) on a set of |V| = n users (nodes), where each
user v ∈ V holds a local dataset Dv (assume Dv = {xv} for now)

• A gossip matrix over G is a symmetric stochastic matrix W ∈ [0, 1]n×n for which
Wv,w > 0 implies {v,w} ∈ E or v = w

Algorithm GOSSIP_AVERAGING
(
{xv}v∈V ,W, K

)
[Boyd et al., 2006]

for all nodes v in parallel do
x0v ← xv

for k = 0 to K− 1 do
for all nodes v in parallel do
xk+1
v ←

∑
w∈Nv

Wv,wxkw, where Nv = {w : Wv,w > 0}

• Convergence to the average value at a rate of order e−tλW where λW is the spectral
gap of W (note: improved rate of e−t

√
λW with accelerated gossip [Berthier et al., 2020])
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DECENTRALIZED SGD

• Consider now that each user v has a local objective Fv(θ;Dv) =
1

|DV|
∑

xv∈Dv
ℓ(θ; xv)

and we wish to minimize F(θ;D) = 1
n
∑n

v=1 Fv(θ;Dv)

Algorithm Decentralized SGD [Lian et al., 2017, Koloskova et al., 2020]

Initialize θ
(0)
1 , . . . , θ

(0)
n ∈ Rp

for t = 0 to T− 1 do
for all nodes v in parallel do
θ̂tv ← θtv − γ∇θℓ(θ

t
v; xtv) where xtv ∼ Dv

θt+1
v ← GOSSIP_AVERAGING

(
{θ̂tv}v∈V ,W, K

)
return θT1 , . . . , θ

T
n

• Various convergence results exist for convex and nonconvex objectives, which again
exhibit a dependence in the spectral gap λW
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RECONSTRUCTION ATTACKS AGAINST MACHINE LEARNING MODELS

• ML models are susceptible to various attacks on data privacy

• We focus on reconstruction attacks, which aim to extract training data points from
the model, for instance sensitive text from large language models [Nasr et al., 2023]

• Of particular interest to us are gradient inversion attacks, which reconstruct data
points from their gradients [Geiping et al., 2020, Hatamizadeh et al., 2022]
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THREAT MODEL AND ATTACK GOAL

• Attackers are a subset of nodes A ⊂ V : they share the knowledge among them but
are assumed to be honest-but-curious

• The attackers know their own data, the graph G and the gossip matrix W, and observe
the messages they receive

• Attack goal: reconstruct the private data of other nodes

• Note: it is easy to attack neighbors N (A) as they leak their value/gradient directly to
the attackers [Pasquini et al., 2023]; the question is whether it is possible to reconstruct
the data of more distant nodes
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ATTACK ON GOSSIP AVERAGING

• Key idea: the messages received form a system of linear equations where the
unknowns are private values X = (x1, . . . , xn) and the coefficients depend on W

• For T iterations of gossip, we can denote this system as KTX = YT:
• YT: observation vector with the |A| values of the attackers and the T|N (A)| messages
• KT: knowledge matrix where each row encodes the linear combination of private values
corresponding to each entry of YT

• We then factorize KT = L−1U where U is the RREF of KT and L is such that UX = LYT
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EXAMPLE ON A GEOMETRIC RANDOM GRAPH

After 1 iteration After 4 iterations After 8 iterations

Figure 1: Reconstruction after a different number of steps of gossip averaging. Attackers are in red,
reconstructed nodes in purple, and non-reconstructed ones in green. The graph is a random
geometric graph of 50 nodes uniformly drawn from the unit square and a radius of 0.2.
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RESULTS ON SYNTHETIC GRAPHS

Figure 2: Average fraction of reconstructed nodes in Erdös-Rényi graphs with a different number of
nodes n and edge probability p, for 1, 2 or 3 attacker nodes. Error bars give the standard deviations,
computed over 20 random graphs.
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RESULTS ON REAL GRAPHS

Figure 3: Reconstruction attack on the Facebook Ego Graph 414. Left: each node is colored by the
number of nodes it can reconstruct among the 147 other nodes. Right: detailed view of the case
where the node circled in red is the attacker, with reconstructed nodes shown in purple and
non-reconstructed ones in yellow. 10



ATTACK ON DECENTRALIZED SGD

• For simplicity, we focus on the case where each node holds a single data point and a
single gossip averaging step is performed between each gradient update (i.e., K = 1)

• Our attack proceeds in two steps: first reconstruct the gradients of nodes, then
reconstruct the data points from the gradients (using known attacks)

• To reconstruct gradients, we build upon the attack on gossip averaging but need to
address several challenges:

1. Gradients change at each iteration → too many unknowns!
2. Users share model parameters (not the gradients), and attackers know their own

contributions → KT and YT need to be adapted
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ATTACK ON DECENTRALIZED SGD

• We model the gradients of a node as the combination of a fixed and random
components:

gtv = −γ∇θL(θtv, xtv) = gv + Nt
v where E(Nt

v) = 0 and V(Nt
v) = σ2

(this is not the case in practice but our attack generally works well when gradients
change sufficiently slowly)

• We adapt the construction of KT and YT by deriving a closed-form update for θ̂tv which
separates the contribution of attacker nodes from those of target nodes

• Finally, reconstructing the gradients reduces to solving a generalized least square
problem KTg+ ϵT = YT where ϵT is a noise term with non-diagonal covariance
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RESULTS ON LINE GRAPHS

Cifar10, logistic regression, learning rate 10−4

MNIST, convnet, learning rate 10−6, gradient inversion from [Geiping et al., 2020]

Figure 4: Reconstruction attack on D-GD for a line graph with 31 nodes where the attacker lies at an
extremity. The first (resp. second) row shows the true (resp. reconstructed) inputs of the 30 other
nodes ordered by their distance to the attacker.
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RESULTS ON THE FLORENTINE GRAPH

Figure 5: Reconstruction attacks on D-GD for the Florentine graph (Cifar10, logistic regression
model, learning rate 10−5). Left: the color of each node represents the success rate when that node
is the attacker. The success rate is the fraction of nodes where PSNR ≥ 10 (averaged over 10
experiments). Right: example where the attacker is node 5 (in blue). Nodes with green borders are
accurately reconstructed, the ones with red borders are not.
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DIFFERENTIAL PRIVACY FOR
DECENTRALIZED ALGORITHMS
[CYFFERS AND BELLET, 2022]



DIFFERENTIAL PRIVACY
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RÉNYI DIFFERENTIAL PRIVACY

Definition (Rényi Differential Privacy [Mironov, 2017])
An algorithm A satisfies (α, ε)-Rényi Differential Privacy (RDP) for α > 1 and ε > 0 if for
all pairs of neighboring datasets D ∼ D′:

Dα (A(D)||A(D′)) ≤ ε , (1)

where for two r.v. X, Y with densities µX, µY, Dα

(
X || Y

)
is the Rényi divergence of order α:

Dα

(
X || Y

)
=

1
α− 1 ln

∫ (µX(z)
µY(z)

)α
µY(z)dz .

• Conversion to standard (ε, δ)-DP: (α, ε)-RDP implies (ε+ ln(1/δ)
α−1 , δ)-DP for any δ ∈ (0, 1)
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PROPERTIES OF RDP

• RDP is robust to auxiliary knowledge, as seen by its Bayesian interpretation:
• Consider an adversary who seeks to infer whether the dataset is D or D′

• The adversary has prior knowledge p and observes X ∼ A(D)

• Let the r.v. Rprior =
p(D′)
p(D)

and Rpost =
p(D′|X)
p(D|X) = p(X|D′)p(D′)

p(X|D)p(D)
for X ∼ A(D)

• RDP bounds the α-th moment of Rpost
Rprior

(for α → ∞, we recover “pure” ε-DP)
• “The adversary does not know much more after observing the output of the algorithm”

• Immunity to post-processing: for any g, if A(·) is (α, ε)-RDP, then so is g(A(·))

• Composition: if A1 is (α, ε1)-RDP and A2 is (α, ε2)-RDP, then A = (A1,A2) is
(α, ε1 + ε2)-RDP→ simpler and tighter than composition for (ε, δ)-DP
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ENFORCING RDP WITH THE GAUSSIAN MECHANISM

• Consider f taking as input a dataset and returning a p-dimensional real vector

• Denote its sensitivity by ∆ = maxD∼D′ ∥f(D)− f(D′)∥2

Theorem (Gaussian mechanism)
Let σ > 0. The algorithm A(·) = f(·) +N (0, σ2∆2) satisfies (α, α

2σ2 )-RDP for any α > 1.

• DP induces a privacy-utility trade-off, here in terms of the variance of the estimate
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CENTRAL VERSUS LOCAL DP

• The classic trust model of central DP model considers a trusted curator to collect
and process raw data→ the output A(D) is only the final result

• Central DP is good for utility but is an unrealistic trust model in applications where
many users contribute sensitive data, as in decentralized learning

• A common alternative is local DP, where each user locally randomizes its
contributions→ the output of A(D) consists of all messages sent by all users

• Unfortunately local DP induces a large cost in utility: for averaging n private
p-dimensional values in ball of radius ∆ under (α, ε)-RDP, we have

E[∥xout−x̄∥2] = Θ
(αp∆2

nε

)
for local DP , and E[∥xout−x̄∥2] = Θ

(αp∆2

n2ε

)
for central DP

→ we propose a trust model suitable for decentralized algorithms allowing better utility
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NETWORK DIFFERENTIAL PRIVACY

• Let Ov be the set of messages sent and received by party v

• Denote by D ∼u D′ two datasets D = (D1, . . . ,Du, . . . ,Dn) and
D′ = (D1, . . . ,D′

u, . . . ,Dn) that differ only in the local dataset of user u

Definition (Network DP [Cyffers and Bellet, 2022])
An algorithm A satisfies (α, ε)-Network DP (NDP) if
for all pairs of distinct users u, v ∈ V and
neighboring datasets D ∼u D′:

Dα

(
Ov(A(D)) || Ov(A(D′))

)
≤ ε .

view of user

• This is a relaxation of local DP: if Ov contains the full transcript of messages, then
network DP boils down to local DP
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NETWORK PAIRWISE DIFFERENTIAL PRIVACY

• We will also consider privacy guarantees that are specific to each pair of nodes,
rather than uniform over all pairs

Definition (Pairwise Network DP [Cyffers et al., 2022])
For f : V × V → R+, an algorithm A satisfies (α, f)-Pairwise Network DP (PNDP) if for all
pairs of distinct users u, v ∈ V and neighboring datasets D ∼u D′:

Dα

(
Ov(A(D)) || Ov(A(D′))

)
≤ f(u, v) . (2)

• For comparison with central and local DP baselines, we will report the mean privacy
loss εv = 1

n
∑

u∈V\{v} f(u, v) under the constraint ε = maxv∈V εv ≤ ε

• Note: εv is not a proper privacy guarantee (we simply use it to summarize our gains)

21



PRIVATE DECENTRALIZED SGD
[CYFFERS ET AL., 2022, CYFFERS ET AL., 2024]



PRIVATE DECENTRALIZED SGD

• To make the algorithm private, we simply add Gaussian noise before gossiping

Algorithm PRIVATE_GOSSIP_AVERAGING
(
{xv}v∈V ,W, K, σ2)

for all nodes v in parallel do
x̃0v ← xv + ηv where ηv ∼ N (0, σ2)

xK1 , . . . , xKn ← GOSSIP_AVERAGING
(
{x̃0v}v∈V ,W, K

)
return xK1 , . . . , xKn

Algorithm Private Decentralized SGD [Cyffers et al., 2022]

Initialize θ
(0)
1 , . . . , θ

(0)
n ∈ Rp

for t = 0 to T− 1 do
for all nodes v in parallel do
θ̂tv ← θtv − γ∇θℓ(θ

t
v; xtv) where xtv ∼ Dv

θt+1
v ← PRIVATE_GOSSIP_AVERAGING

(
{θ̂tv}v∈V ,W, K, γ2σ2∆2)

return θT1 , . . . , θ
T
n 22



PRIVACY OF PRIVATE GOSSIP AVERAGING

Theorem ([Cyffers et al., 2022])
After K iterations, Private Gossip Averaging is (α, f)-PNDP with

f(u, v) = α∆2

2σ2

K−1∑
k=0

∑
w:{v,w}∈E

(Wk)2u,w
∥(Wk)w,:∥2

≤ α∆2n
2σ2 max

{v,w}∈E
W−2

v,w

K∑
k=1

P(Xk = v|X0 = u)2,

where (Xk)k is the random walk on graph G, with transitions W.

• As desired, this exhibits the fact that, for two nodes u and v, privacy guarantees
improve with their “distance” in the graph
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PRIVACY-UTILITY TRADE-OFF OF PRIVATE GOSSIP AVERAGING

• Recall central DP achieves O
(
αp∆2

n2ε

)
and local DP achieves O

(
αp∆2

nε
)

• Setting the mean privacy loss εv = 1
n
∑

u∈V\{v} f(u, v) to satisfy ε = maxv∈V εv ≤ ε, for
private gossip averaging we get (ignoring log terms):

Graph Arbitrary Complete Ring Expander

Utility (MSE) αp∆2d
n2ε

√
λW

αp∆2

nε
αp∆2

nε
αp∆2

n2ε

• We match the utility of central DP up to an additional d/
√
λW factor, where d is the

max degree and λW of the spectral gap of W

• Some graphs (e.g., expanders) make this constant: we get privacy and efficiency!

• Note: we also have extensions to time-varying graphs and randomized gossip

24



BACK TO PRIVATE DECENTRALIZED SGD

Theorem ([Cyffers et al., 2022])
Let F be µ-strongly convex, Fv be L-smooth and E[∥∇ℓ(θ⋆; xv)−∇F(θ⋆)∥2] ≤ ρ2v. Let
ρ̄2 = 1

n
∑

v∈V ρ2v. For any ε > 0, and appropriate choices of T and K, there exists f such
that the algorithm is (α, f)-PNDP, with:

∀v ∈ V , εv =
1
n

∑
u∈V\{v}

f(u, v) ≤ ε and E[F(θ̄1:T)− F(θ⋆)] ≤ Õ
(

αp∆2dL
n2µ2ε

√
λW

+
ρ̄2

nL

)
.

• The term ρ̄2

nL is privacy-independent and dominated by the first term

• The first term has the same form as before, so same conclusions apply!

• In particular, with an expander graph, we nearly match the privacy-utility trade-off of
centralized SGD with a trusted curator (up to a factor L/µ)
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EMPIRICAL ILLUSTRATION
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• Users get local DP guarantees w.r.t. their direct neighbors but stronger privacy w.r.t.
to other users depending on their distance and the mixing properties of the graph

• This fits the privacy expectations of users in many use-cases (e.g., social networks)

• For learning, we can randomize the graph after each local computation step to make
the privacy loss concentrate! 26



BONUS: PRIVATE RANDOM WALK-BASED DECENTRALIZED SGD

• An alternative to gossip is to consider a decentralized SGD algorithm where the
model is updated sequentially by following a random walk [Johansson et al., 2009]

Algorithm Private random walk-based SGD [Cyffers et al., 2024]
Initialize θ0 ∈ Rp and starting user v0
for t = 0 to T− 1 do

θt+1 ← θt − γ(∇θℓ(θ
t; xt) + η) where xt ∼ Dvt and η ∼ N (0, σ2∆2)

Draw u ∼ Wvt and send θt+1 to user u
vt+1 ← u

return θT

• No redundant communication and no need for users to be always available

• Privacy analysis relies on privacy amplification by iteration [Feldman et al., 2018]

27



BONUS: PRIVATE RANDOM WALK-BASED DECENTRALIZED SGD

• An alternative to gossip is to consider a decentralized SGD algorithm where the
model is updated sequentially by following a random walk [Johansson et al., 2009]

Algorithm Private random walk-based SGD [Cyffers et al., 2024]
Initialize θ0 ∈ Rp and starting user v0
for t = 0 to T− 1 do

θt+1 ← θt − γ(∇θℓ(θ
t; xt) + η) where xt ∼ Dvt and η ∼ N (0, σ2∆2)

Draw u ∼ Wvt and send θt+1 to user u
vt+1 ← u

return θT

• No redundant communication and no need for users to be always available

• Privacy analysis relies on privacy amplification by iteration [Feldman et al., 2018]

27



BONUS: PRIVATE RANDOM WALK-BASED DECENTRALIZED SGD

• An alternative to gossip is to consider a decentralized SGD algorithm where the
model is updated sequentially by following a random walk [Johansson et al., 2009]

Algorithm Private random walk-based SGD [Cyffers et al., 2024]
Initialize θ0 ∈ Rp and starting user v0
for t = 0 to T− 1 do

θt+1 ← θt − γ(∇θℓ(θ
t; xt) + η) where xt ∼ Dvt and η ∼ N (0, σ2∆2)

Draw u ∼ Wvt and send θt+1 to user u
vt+1 ← u

return θT

• No redundant communication and no need for users to be always available

• Privacy analysis relies on privacy amplification by iteration [Feldman et al., 2018]

27



BONUS: PRIVATE RANDOM WALK-BASED DECENTRALIZED SGD

• For averaging, at same level of utility, random-walk incurs a smaller privacy loss for
close enough nodes than gossip

• For SGD, the advantage is even more pronounced (better progress with many noisy
steps than a small number of less noisy steps)
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CONCLUSION & PERSPECTIVES



CONCLUSION & PERSPECTIVES

Take-home messages

• Vanilla Decentralized SGD does not protect the privacy of nodes: we show for the
first time that attackers can reconstruct data from distant nodes

• Decentralized learning can amplify differential privacy guarantees, providing a new
incentive for using such approaches beyond the usual motivation of scalability

Perspectives

• Tighter privacy accounting for decentralized algorithms

• Complete characterization of reconstructible nodes using explicit graph quantities

• More general attacks, e.g. able to handle randomness in communications and/or a
partially unknown graph
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KNOWLEDGE MATRIX AND OBSERVATION VECTOR FOR DECENTRALIZED GD

For W =

(
WA,A WA,T

WT ,A WT ,T

)
, we have θt+

1
2 =


θ
t+ 1

2
A(∑t

i=0 Wi
T ,T

)
gT +

∑t
i=0 Wi

T ,T N
t−i
T

+
∑t−1

i=0 W
t−1−i
T ,T WT ,Aθ

i+ 1
2

A



Algorithm Building the knowledge matrix
for D-GD
Input: graph G, attackers A, targets
T = V \ A, iterations T
i← 0
for t from 0 to T− 1 do
for each v ∈ N (A) do
KT[i, :]← (

∑t
j=0 W

j
T ,T )[v−|A|, :]

i← i+ 1
return KT

Algorithm Removing the attackers’ contributions
Input: gossip matrix W of G, attackers A, tar-
gets T = V \ A, iterations T, dimension d,
updates YT, concatenated updates θA
Initialize ŶT ∈ RT×|N (A)|×d

Initialize B ∈ R|T |×d with zeros
for t ∈ 0, 1, . . . , T− 1 do
ŶT[t, :]← YT[t, :]− B[N (A), :]
B← WT ,T B+WT ,Aθ

t+ 1
2

A
return ŶT

30



PRIVACY OF RANDOM WALK-BASED DECENTRALIZED SGD

Theorem ([Cyffers et al., 2024])
After T iterations, for a level of noise σ2 ≥ 2α(α− 1), the privacy loss from node u to v is
bounded by:

εu→v ≤ O
(
αT ln(T)
σ2n2 − αT

σ2n ln
(
I−W+

1
n11

⊤
)
uv

)
.
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