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GENERAL OUTLINE

1. Overview of metric learning (Aurélien, 2 hours)
2. Applications to computer vision (Matthieu, 1 hour)

3. Wrap-up and questions (15 minutes)



PART 1: OVERVIEW OF METRIC LEARNING



OUTLINE FOR THE FIRST PART

1. Introduction

2. Linear metric learning

3. Nonlinear extensions

4. Large-scale metric learning
5. Metric learning for structured data

6. Generalization guarantees



INTRODUCTION




MOTIVATION

- Similarity / distance judgments are essential components of
many human cognitive processes (see e.g., [Tversky, 1977])

- Compare perceptual or conceptual representations
- Perform recognition, categorization...

- Underlie most machine learning and data mining techniques



MOTIVATION

Nearest neighbor classification



MOTIVATION

Clustering



MOTIVATION

Information retrieval

Query document




MOTIVATION

Data visualization
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(image taken from [van der Maaten and Hinton, 2008])



MOTIVATION

- Choice of similarity is crucial to the performance

- Humans weight features differently depending on context
[Nosofsky, 1986, Goldstone et al., 1997]

- Facial recognition vs. determining facial expression

- Fundamental question: how to appropriately measure similarity
or distance for a given task?

- Metric learning — infer this automatically from data

- Note: we will refer to distance or similarity indistinctly as metric

1



METRIC LEARNING IN A NUTSHELL




METRIC LEARNING IN A NUTSHELL

Basic recipe

1. Pick a parametric distance or similarity function
- Say, a distance Du(x,x") function parameterized by M

2. Collect similarity judgments on data pairs/triplets
- S ={(x;,x) : x; and x; are similar}
- D = {(x,x) : x; and x; are dissimilar}
© R = {(xi, X, X) : X; is more similar to x; than to x;}
3. Estimate parameters s.t. metric best agrees with judgments
- Solve an optimization problem of the form

M = argminy |¢M,S,D,R)+ Areg(M)
—_———— —

loss function regularization



SCOPE OF THE TUTORIAL

- Related topics (not covered)

- Kernel learning: nonparametric, limited to transductive setting
- Multiple kernel learning: combine predefined kernels
- Dimensionality reduction: manifold learning, etc

- Prerequisites

- None, really
- Exposure to convex optimization will help

14



LINEAR METRIC LEARNING




MAHALANOBIS DISTANCE LEARNING

- Mahalanobis (pseudo) distance:

Du(x,x") = \/(x —x)TM(x — x")
where M € S¢ is a symmetric PSD d x d matrix

- Equivalent to Euclidean distance after linear projection:

Du(x,x") = \/(x —xTLTL(x — x*) = \/(Lx — Lx*)T(Lx — Lx’)
- If M has rank k < d, L € R**? reduces data dimension

- For convenience, work with the squared distance

16



MAHALANOBIS DISTANCE LEARNING

A first approach [Xing et al., 2002]

- Targeted task: clustering with side information

Formulation

max Z Dm(x;, X;)

Mesd* (xi,x))€ED
S.t. Z D%,,(X,’,Xl') <1
(X,,X,)GS

- Convex in M and always feasible (take M = 0)
- Solved with projected gradient descent
- Time complexity of projection on S¢ is O(d®)

- Only look at sums of distances 17



MAHALANOBIS DISTANCE LEARNING

A first approach [Xing et al., 2002]
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MAHALANOBIS DISTANCE LEARNING

Large Margin Nearest Neighbor [Weinberger et al., 2005]

- Targeted task: R-NN classification

- Constraints derived from labeled data
S = {(xi,x;) : vi = y;, X; belongs to k-neighborhood of x;}

R = {(xi, X}, %) = (Xi,X;) € S, Vi # Vi}
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MAHALANOBIS DISTANCE LEARNING

Large Margin Nearest Neighbor [Weinberger et al., 2005]

Formulation

min (1—p) Z Di(xi, %)  + #Zfiﬂ?

IR (xix)ES ik
st Du(Xi, Xk) — Dm(Xi, X)) = 1= & V(Xi, X}, Xe) € R
w € [0,1] trade-off parameter
- Convex formulation, unlike NCA [Goldberger et al.,, 2004]

- Number of constraints in the order of kn?

- Solver based on projected gradient descent with working set
- Simple alternative: only consider closest “impostors”

- Chicken and egg situation: which metric to build constraints?

- Possible overfitting in high dimensions 20



MAHALANOBIS DISTANCE LEARNING

Large Margin Nearest Neighbor [Weinberger et al., 2005]
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MAHALANOBIS DISTANCE LEARNING

Algorithms for other tasks

- Learning to rank [McFee and Lanckriet, 2010, Lim and Lanckriet, 2014]
- Multi-task learning [Parameswaran and Weinberger, 2010]

- Transfer learning [Zhang and Yeung, 2010]

- Semi-supervised learning [Hoi et al., 2008]

- Domain adaptation [Kulis et al., 2011, Geng et al., 2011]

22



MAHALANOBIS DISTANCE LEARNING

Interesting regularizers

- Add regularization term to prevent overfitting
- Simple choice: |M||% = Z?Jﬁ M7 (Frobenius norm)
- Used in [Schultz and Joachims, 2003] and many others
- LogDet divergence (used in ITML [Davis et al., 2007])
Dig(M, My) tr(MM; ") — logdet(MM; ") — d

= Y ZHvuy = log (‘;) —d
) i !

Bj

where M = VxV' and My = UBU' is PD
- Remain close to good prior metric My (e.g., identity)
- Implicitly ensure that M is PD
- Convex in M (determinant of PD matrix is log-concave)
- Efficient Bregman projections in O(d?) 23



MAHALANOBIS DISTANCE LEARNING

Interesting regularizers

- Mixed Ly norm: M0 = 20, M),
- Tends to zero-out entire columns — feature selection
- Used in [Ying et al., 2009]
- Convex but nonsmooth
- Efficient proximal gradient algorithms (see e.g,, [Bach et al., 2012])

- Trace (or nuclear) norm: M|, = 3.2, oi(M)

- Favors low-rank matrices — dimensionality reduction
- Used in [McFee and Lanckriet, 2010]

- Convex but nonsmooth

- Efficient Frank-Wolfe algorithms [Jaggi, 2013]
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MAHALANOBIS DISTANCE LEARNING

L, norm illustration

Iris-Average Error Rate (%) Bal-Average Error Rate (%)

20.11
18.62
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Bal-Average Dim 4 4
3.7

Iris-Average Dim 4 4 4

3.3

SMLsm SMLgd SMLIp ITML LMNN EUC SMLsm SMLgd SMLIp ITML LMNN EUC

(image taken from [Ying et al,, 2009])
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25



LINEAR SIMILARITY LEARNING

- Mahalanobis distance satisfies the
- Nonnegativity, symmetry, triangle inequality
- Natural regularization, required by some applications

- In practice, these axioms may be violated
- By human similarity judgments (see e.g., [Tversky and Gati, 1982])

- By some good visual recognition systems [Scheirer et al,, 2014]

- Alternative: learn bilinear similarity function Sw(x,x’) = x"Mx’
- See [Chechik et al, 2010, Bellet et al., 2012b, Cheng, 2013]
- No PSD constraint on M — computational benefits
- Theory of learning with arbitrary similarity functions

[Balcan and Blum, 2006]
26



NONLINEAR EXTENSIONS




BEYOND LINEARITY

- So far, we have essentially been learning a linear projection

- Advantages
- Convex formulations
- Robustness to overfitting

- Drawback
- Inability to capture nonlinear structure

Linear metric Kernelized metric Multiple local metrics

28



KERNELIZATION OF LINEAR METHODS

Definition (Kernel function)

A symmetric function K is a kernel if there exists a mapping function
¢ : X — H from the instance space X to a Hilbert space H such
that K can be written as an inner product in H:

K(x,x) = (8(x), o(x')) -

Equivalently, K is a kernel if it is positive semi-definite (PSD), i.e,,

n n
Z Z C,'CjK(X,'7Xj) >0

=1 j=1

for all finite sequences of x4,...,x, € X and ¢y,...,c, € R.

29



KERNELIZATION OF LINEAR METHODS

Kernel trick for metric learning
- Notations

- Kernel K(x,x") = {¢(x), ¢(x)), training data {x;}_,

- 2 ox) R, @ L [gn,..., po] € RO

- Mahalanobis distance in kernel space
Du(i: dy) = (1 — &) M(; — ¢)) = (& — &) L'L(; — ¢)
- Setting L" = ®U", where U € R?*", we get
Din(6(x), 6(x)) = (k — k)" M(k — k)
c M=UUER™" k=& ¢(x) = [K(x1,X), ..., K(Xn,x)]"

- Justified by a representer theorem [Chatpatanasiri et al., 2010]

30



KERNELIZATION OF LINEAR METHODS

Kernel trick for metric learning

- Similar trick as kernel SVYM

- Use a nonlinear kernel (e.g.,, Gaussian RBF)
- Inexpensive computations through the kernel
- Nonlinear metric learning while retaining convexity

- Need to learn O(n?) parameters

- Linear metric learning algorithm must be kernelized

- Interface to data limited to inner products only
- Several algorithms shown to be kernelizable

- General approach [Chatpatanasiri et al., 2010]:

1. Kernel PCA: nonlinear projection to low-dimensional space
2. Apply linear metric learning algorithm to projected data

31



LEARNING A NONLINEAR METRIC
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- More flexible approach: learn nonlinear mapping ¢ to optimize

Dy(X,X') = [|o(x) — ¢(x")l2

- Possible parameterizations for ¢:
- Regression trees [Kedem et al,, 2012]
- Deep neural nets [Chopra et al, 2005, Hu et al., 2014]
— covered in second part of the tutorial

- Nonconvex formulations
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LEARNING MULTIPLE LOCAL METRICS

- Simple linear metrics perform well locally

- |dea: different metrics for different parts of the space

- Various issues
- How to split the space?
- How to avoid blowing up the number of parameters to learn?
- How to make local metrics “mutually comparable”?

33



LEARNING MULTIPLE LOCAL METRICS

Multiple Metric LMNN [Weinberger and Saul, 2009]
- Group data into C clusters

- Learn a metric for each cluster in a coupled fashion

Formulation

min - (1—p) Y Dh, (X)) + u> &

£>0 (xj,x))€ES i,k

s.t. D} (X,‘,X;?) —D? (X,‘,Xj) >1— fijk V(X,’,Xj,Xk) ER
- Remains convex

- Computationally more expensive than standard LMNN

- Subject to overfitting

- Many parameters
- Lack of smoothness in metric change 3



LEARNING MULTIPLE LOCAL METRICS

Multiple Metric LMNN [Weinberger and Saul, 2009]
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LEARNING MULTIPLE LOCAL METRICS

Sparse Compositional Metric Learning [Shi et al., 2014]
- Learn a metric for each point in feature space

- Use the following parameterization
D2,(x,x') = (x = x')" (Z W,,(x)b,b,v) (x —x'),
k=1

- bybl: rank-1 basis (generated from training data)
- we(x) = (ajx + cx)* weight of basis k
- A e R and ¢ € R*: parameters to learn

36



LEARNING MULTIPLE LOCAL METRICS

Sparse Compositional Metric Learning [Shi et al., 2014]

Formulation

i 20y .\ — D2 (x. A
Wm0 X [ OR k)~ D3 x], + AL
(X,,X/,Xk)ER

- A: stacking A and ¢
- [] = max(0,-): hinge loss

- Nonconvex problem
- Adapts to geometry of data

- More robust to overfitting
- Limited number of parameters
- Basis selection

- Metric varies smoothly over feature space .
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LARGE-SCALE METRIC LEARNING




MAIN CHALLENGES

- How to deal with large datasets?
- Number of similarity judgments can grow as O(n?) or O(n?)

- How to deal with high-dimensional data?

- Cannot store d x d matrix
- Cannot afford computational complexity in O(d?) or O(d?)

40



CASE OF LARGE n

Online learning

- Online algorithm

- Receive one similarity judgment
- Suffer loss based on current metric
- Update metric and iterate

- Goal: minimize regret
T T
Z&(Mt) - th(M*) <f(7),
t=1 t=1

- Y loss suffered at time t
+ M metric learned at time t
- M*: best metric in hindsight

41



CASE OF LARGE n

Online learning

OASIS [Chechik et al., 2010]

- Set M =1
- At step t, receive (x;,X;,X,) € R and update by solving

. 1
M'= argminy . E||M—MH||5T+C§
st 1 —Sm(xi,X;) + Sm(xi, X)) < &

£>0

- Su(x,x") = x"Mx’, C trade-off parameter

- Closed-form solution at each iteration

- Trained with 160M triplets in 3 days on 1 CPU
42



CASE OF LARGE n

Stochastic and distributed optimization

- Assume metric learning problem of the form

. 1

min  — M, X;, X;, X

M |R‘ Z f( 3 NjgNjy k’)
(XX, Xp) ER

- Can use Stochastic Gradient Descent

- Use a random sample (mini-batch) to estimate gradient
- Better than full gradient descent when n is large

- Can be combined with distributed optimization
- Distribute triplets on workers

- Each worker use a mini-batch to estimate gradient
- Coordinator averages estimates and updates

- See [Xie and Xing, 2014, Clémencon et al,, 2015]

43



CASE OF LARGE d

Simple workarounds

- Learn a diagonal matrix

- Used in [Xing et al., 2002, Schultz and Joachims, 2003]
- Learn d parameters
- Only a weighting of features...

- Learn metric after dimensionality reduction (e.g., PCA)

- Used in many papers
- Potential loss of information
- Learned metric difficult to interpret

44



CASE OF LARGE d

Matrix decompositions

- Low-rank decomposition M = L"L with L € R™¢

- Used in [Goldberger et al., 2004]
- Learn r x d parameters
- Generally nonconvex, must tune r

- Rank-1 decomposition M = S5 wy.by.bj,
- Used in SCML [Shi et al., 2014]
- Learn K parameters
- Hard to generate good bases in high dimensions

- Special case: sparse data [Liu et al,, 2015]

- Decomposition as rank-1 4-sparse matrices
- Greedy algorithm incorporating a single basis at each iteration
- Computational cost independent of d

45



METRIC LEARNING
FOR STRUCTURED DATA




MOTIVATION

- Each data instance is a structured object

- Strings: words, DNA sequences
- Trees: XML documents
- Graphs: social network, molecules

ACGGCTT

- Metrics on structured data are convenient

- Act as proxy to manipulate complex objects
- Can use any metric-based algorithm

47



MOTIVATION

- Could represent each object by a feature vector

- Idea behind many kernels for structured data
- Could then apply standard metric learning techniques
- Potential loss of structural information

- Instead, focus on edit distances

- Directly operate on structured object
- Variants for strings, trees, graphs
- Natural parameterization by cost matrix

48



STRING EDIT DISTANCE

- Notations

- Alphabet X: finite set of symbols

- String x: finite sequence of symbols from -
- |x]: length of string x

- S empty string / symbol

Definition (Levenshtein distance)

The Levenshtein string edit distance between x and x’ is the length
of the shortest sequence of operations (called an edit script) turn-
ing x into X’. Possible operations are insertion, deletion and sub-
stitution of symbols.

- Computed in O(|x| - |x'|) time by Dynamic Programming (DP)

49



STRING EDIT DISTANCE

Parameterized version

- Use a nonnegative (|| 4+ 1) x (|| 4+ 1) matrix C
- Cjj: cost of substituting symbol i with symbol j

Example 1: Levenshtein distance

(s alo]
S 1
NESE

— edit distance between abb and aa
is 2 (needs at least two operations)

Example 2: specific costs

(el % [alb]
$ 0 2 | 10
a 2 0| 4
b |l 10 | 4| O

— edit distance between abb and aa
is10(a—9$, b—a, b—a)

50



EDIT PROBABILITY LEARNING

- Interdependence issue
- The optimal edit script depends on the costs
- Updating the costs may change the optimal edit script

- Consider edit probability p(x’|x) [Oncina and Sebban, 2006]
- Cost matrix: probability distribution over operations
- Corresponds to summing over all possible scripts

- Represent process by a stochastic memoryless transducer

- Maximize expected log-likelihood of positive pairs

b|$

bla

51



EDIT PROBABILITY LEARNING

Iterative Expectation-Maximization algorithm [Oncina and Sebban, 2006]

- Expectation step

- Given edit probabilities, compute frequency of each operation
- Probabilistic version of the DP algorithm

- Maximization step

- Given frequencies, update edit probabilities
- Done by likelihood maximization under constraints

Yu ez, Z Cv|u +ZCV‘$ =1, with ZCV‘$+ c(#) =1,

——
> X pX
v '€ € exit prob.

52



EDIT PROBABILITY LEARNING

Application to handwritten digit recognition [Oncina and Sebban, 2006]

Primitives
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EDIT PROBABILITY LEARNING

Some remarks

- Advantages

- Elegant probabilistic framework
- Enables data generation
- Generalization to trees [Bernard et al,, 2008]

- Drawbacks

- Convergence to local minimum
- Costly: DP algorithm for each pair at each iteration
- Cannot use negative pairs

54



LARGE-MARGIN EDIT DISTANCE LEARNING

GESL [Bellet et al., 2012a]

- Inspired from successful algorithms for non-structured data

- Large-margin constraints
- Convex optimization

- Requires key simplification: fix the edit script

ec(x, X/) = Z Cuv - #uv(xv X/)

u,veTU{$}

- #w(x,X'): nb of times u — v appears in Levenshtein script

- ec is a linear function of the costs

55



LARGE-MARGIN EDIT DISTANCE LEARNING

GESL [Bellet et al., 2012a]

Formulation

min S &+ AclF
i

€>0,£>0,81>0,8,>0
st oec(xx)>B1—¢&  V(x,x)eD
ec(xX)<By+&  V(x,%) €S
Bi—By =7
~ margin parameter
- Convex, less costly and use of negative pairs

- Straightforward adaptation to trees and graphs

- Less general than proper edit distance

- Chicken and egg situation similar to LMNN
56



LARGE-MARGIN EDIT DISTANCE LEARNING

Application to word classification [Bellet et al., 2012a]

78
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0 200 400 600 800 1000 1200 1400 1600 1800 2000
Size of cost training set
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GENERALIZATION GUARANTEES




STATISTICAL VIEW OF SUPERVISED METRIC LEARNING

- Training data Ty = {z; = (x;,¥;)}1,
cZieZ=Xx)Y
- Y discrete label set
- independent draws from unknown distribution p over Z

- Minimize the regularized empirical risk
2 n
RolM) = S > UM.z.z) + Areg(M)
1<i<j<n
- Hope to achieve small expected risk

RM)= E [¢(M,z,2")]

2,2~

- Note: this can be adapted to triplets

59



STATISTICAL VIEW OF SUPERVISED METRIC LEARNING

- Standard statistical learning theory: sum of i.i.d. terms

- Here Ry(M) is a sum of dependent terms!

- Each training point involved in several pairs
- Corresponds to practical situation

- Need specific tools to go around this problem

- Uniform stability
- Algorithmic robustness

60



UNIFORM STABILITY

Definition ([Jin et al., 2009])

A metric learning algorithm has a uniform stability in k/n, where x
is a positive constant, if

Y(Tn,2),Vi, sup|(Mr,,z1,25) — K(MT,,z,z1,zz)| <

21,22

S|=

- My : metric learned from T,

- Th2. set obtained by replacing z; € T, by z

- If reg(M) = ||M||%, under mild conditions on ¢, algorithm has
uniform stability [Jin et al., 2009]

- Applies for instance to GESL [Bellet et al,, 2012a]

- Does not apply to other (sparse) regularizers

61



UNIFORM STABILITY

Generalization bound

Theorem ([Jin et al., 2009])

For any metric learning algorithm with uniform stability x/n, with
probability 1 — 6 over the random sample T,, we have:

2 In(2/0
R(Mr) < Ro(Mr) + 22 + (26 + B)y | %)
n 2n
B problem-dependent constant

- Standard bound in O(1/+/n)

62



ALGORITHMIC ROBUSTNESS

Definition ([Bellet and Habrard, 2015])

A metric learning algorithm is (K,e(-)) robust for K € N and € :
(2 x 2)" = R if Z can be partitioned into K disjoints sets, denoted
by {C,-}f.;, such that the following holds for all T,:

Y(z1,2)) € T3,Vz,2' € Z,Vi,j € [K], ifz1,2 € G, 25,2 €

M(MTnaz%ZZ) - Z(IV'Tmzaz/)| < 6(Tﬁ)

S X0

Classic robustness Robustness for metric learning

63



ALGORITHMIC ROBUSTNESS

Generalization bound

Theorem ([Bellet and Habrard, 2015])

If a metric learning algorithm is (K, ¢(+))-robust, then for any 6 > 0,
with probability at least 1 — § we have:

2Kn2+21In(1/6)
n

R(Mr,) < Ry(M7,) + €(T2) + 25\/

- Wide applicability
- Mild assumptions on £
- Any norm regularizer: Frobenius, L,.1, trace...

- Bounds are loose

- ¢(T3) can be as small as needed by increasing K
- But K potentially very large and hard to estimate
64



ADDITIONAL WORK

- [Cao et al,, 2012]

- Relies on Rademacher complexity
- Tight bounds for several matrix norms

- [Clémencon et al,, 2015]
- Approximation of empirical risk by sampling O(n) pairs
- Minimization of this incomplete risk preserves O(1/+/n) rate

- [Bellet et al., 2012b]

- Similarity learning for linear classification
- Generalization bounds for classifier based on learned similarity
- Builds upon theory developed in [Balcan and Blum, 2006]

65



QUICK ADVERTISEMENT

- Short book published in 2015

A. Bellet, A. Habrard and M. Sebban
Metric Learning
Morgan & Claypool Publishers

- Also see arXiv survey (last update in 2014, new update soon)

A. Bellet, A. Habrard and M. Sebban
A Survey on Metric Learning for Feature Vectors and Structured Data
Technical report, arXiv:1306.6709
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SUMMARY OF THE FIRST PART

- Good level of maturity
- Various types of metrics
- Many learning scenarios
- Scalability
- Theory
- Code available for many methods

- Structured data not explored much

- Lagging behind in many respects
- Hardness of combinatorial problems
- Taking structure into account is key

67



QUESTIONS?
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Introduction: Visual learning

* Alot of recent successful
applications of Machine Learning
to Visual Understanding

* Supervised classification on large
dataset ImageNet [winner 2012]

o 1M images
o 1000 classes

g
tiger cat
tabby
boxer table lamp
Saint Bernard hamper

reflex camera
dial telephone radio telescope
iPod steel arch bridge

2




Introduction: Visual learning

Feature Feature

eXtraction codin: Pooling Classification

i ' Local Visual Image Class
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Introduction: Visual learning

* Data for training

/ 15-Scenes

—

/" Caltech-101
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Introduction: Visual learning

* Beyond classification image+label
* Data for training : image pairs, triplets, ...
o Pairst+label YES/NO (LFW)

o Class information

Least smiling < ? ? < Most smiling

AT




Introduction: Metric learning for CV

Metrics in Machine Learning and Computer Vision
* Image dataset Clustering

* Information/Image retrieval

¢ kNN classification, Kernel methods

Commonly used metrics: Euclidean distance, chi2 for histograms, ...



Outline of part II
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2. Metric Learning in CV

o Data and Metric models

o Learning schemes

o Results
3. Computer Vision Applications
o Relative attribute learning CVPR 2014

o Web page comparison




Metric Learning in CV

* Key ingredients of metric/similarity learning in CV:

o Data representation including both:

» Feature space
» Bag of visual word representation (BoW)
» Deep features, Gist ...

IMAGE REPRESENTATION < VECTOR

» Similarity function / Metric =

o Learning framework
» training data, type of labels and relations,
» Optimization formulation
» Solvers

representation
A

handcrafted
features

handcrafted
features

e o [—
embedding

handcrafted
features

kernel metric
embedding [™  learning

deep learning »|

Credit: A. Vedaldi

L

L

L

0 o o o

learned

predictor

predictor

predictor

predictor



Metric Learning in CV

» Similarity function / Metric:
Vector representations x € R? (visual BoWs, deep, ...)

Widely used approach: Mahalanobis-like Distance Metric Learning
XZ',X]' S Rd7M S Si, D%\A(Xi,Xj) = (Xi — Xj)TM(XZ‘ — Xj) (1)

Since for all M € S% with rank(M) = e < d, there exists L € R®*? such
that M = L' L:

x;,%x; € REM € S%, DYp(xi,x;) = (x; — x;) 'L L(x; — x;)

= |[Lx; — Lx; 3

(2)

» All M (or L) coefficients to be learned



Metric Learning in CV

Non-linear extension: kernel vs deep [credit: Hu CVPR14]

[ Distance Metric: df (X;,Xz) = Hh(lz) *hf)“j ]

10



Metric Learning in CV

» One step further: heterogeneous object deep embedding and metric learning

Traditional Deep Visual Semantic Skip-gram
Visual Model Embedding Model Language Model

similarity mefric
transformation

label

softmax layer

nearby word

embedding embedding
vector e vector

parameter lookup table parameter lookup table
. I . T I I Wl repties °
image image label source word I virds insects [l food

musical instruments [ clothing [l dogs
M quatic e animais transportation

DeVISE system [google, NIPS 2013]

11



Outline

1. Introduction
2. Metric Learning in CV
o Data and Metric models

o Learning schemes:
4 Constraints: Pairs, triplets ...
»  Objective function: regularization, optimization ...

o Results
3. Computer Vision Applications
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Metric Learning in CV

» PairWise Constraints for learning

Similar pairs

13



Metric Learning in CV

* Learning scheme for pairwise constraints:
Xing et al: Distance metric learning, ..., NIPS 2002 (cf. Part I)

i D2, (x;,x;) s.t. D2 (x;,%;) > 1
min Y Dig(xixg) st >, \/DRalxixg) 2

Aan

AG

2
e
wol T
2
5T _
O T 0
y ®

14



Metric Learning in CV

* What are the pairs in S and D ? All consistent ?

=> Important trick: getting training pairs using neighbor selection s



Metric Learning in CV

* Triplet constraints for learning:
* The most used scheme: [ Weinberger LMNN] (cf. Part I)

Enclidean Mahalanobis
BEFORE Mot

Metric

fetric
e 2 local acighborhood |
_~“margin~~~_local né Jocal acighbork
/A AVAN o
/ le M £d)
o =}
O Similarly labeled
(O simitarty
[ Differently labeled B Diferens
- Differently labeled B Differcat

. 2 +
min E Dis(xi,x;")
MeSg T

(xi7x7; )Es

s.t. V(xi,xj,xi_) eT, D12\/[(Xi,XZ-_) > 5—|—D12v1(xi,x2')
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Metric Learning in CV

Quadruplet-Wise constraints: [Law, Thome, Cord ICCV 2013]
o Generalizing pairs-wise (and triplets), more flexible and expressive
o Margin-based strategy, not always selecting all constraints

Vg = (xi, %7, %Xk, %1) €N, D(xi,%;) + 8, < D(xp, ;)

A L L
® D L Ike___f)———‘
K I W
1
IQ&FI IG&@I L e
i | i |
4 wiheeled vehicle
it seli-propelied vehicle
vessol aioraft motor vehicle
()D/‘ In I1 ship Ioa( foar A bicycle  {ocomotive [ar me
J 4 4 % 4 4 5 %
1& ala o,)%s%‘% @%,o %o,'* r@% %, ,, s .,% "’s o o,
A% s % °c ’6 2%,
D, %% \&‘L‘%fa , ® ,‘ *
L& L

° D(E&-)@*‘*H
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Metric Learning in CV

* Application 1: learning relative attributes

o Supervision based on attributes (smile, masculine looking, ...)
= Presence of smile +

Least smiling < ? ? < Most smiling
b | Bd &
BB B

Class (e) | Class (f) | Class (g) | Class (h)

4
Learn dissimilarity D such that:

p(fd . B <o, )
p(id . &) <o &

18



Web page/temporal info for ML

* Application 2:
o Fully unsupervised ML, but temporal information available

o Constraints by comparing screenshots of successive webpage versions

. time

1
Vt42

D(vg, v41) < D(vg—1, Vig2)

19



Outline

1. Introduction
2. Metric Learning in CV
o Data and Metric models

o Learning schemes:
3 Constraints: Pairs, triplets ...
»  Objective function: regularization, optimization ...

o Results

3. Computer Vision Applications
o Relative attribute learning
o Web page comparison
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Metric Learning in CV

To summarize constraints with D3;(x;,x;) = (x; — x;) T M(x; — x;):
e Pairs:

- V(Xi,X]') eS DIZVI(X,“XJ') <1
N=SUP= { V(xi,x;) €D Diyxi,%;) > 1

e Triplets:
N {(X“X'L7 7,)}1 I:V(X“X )EN D (X77 1,)+0<D (X“ 7,)

e Quadruplets:
N ={qg=(xi,xj,%p,%)} = Vg € N, Dlz\,[(xi,Xj) +04 < Dlz\,[(xk.,xl)

Optimization scheme:

min pR(M) + ¢(M, N)
Mesd

With R(M) : regularizer and ¢(IM, ) loss over set of constraints N

21



Metric Learning in CV

(Large margin) optimization:
*  Qwise optimization framework with hinge loss function
min pRM)+ Y&,
MES aeN
s.b. Vg = (x4, %5, X5, %) €N, DIQ\/I(Xk,Xl) > wa(xi,xj) +64 — &4
VgeN,§ =0
e R(M): regularization term
e u : trade-off between fitting and regularization.
» Triplet optim:
: 2 (. Tt )
i 2 Pubexies 2 s
xi,x‘f')es (xqv,x'f',x. YET

st V(xi,x7,%x;) € T, Dyy(x5,%x;) = 1+ DRg(x,x7) — & -



Metric Learning in CV

* How to define/choose the regularization R(M) in the objective
function:

min puR(M) + (M, N)
Mes?

* Regularization term to express prior, to control complexity ...
DR (xi,%x5) = (x; — %;) "M(x; — x;)

* For CV application, looking for Low rank solution:
o Controlling overfitting
o Sparsity of the singular values
o Exploiting correlation between features
o

Fast/efficient solution
23



Metric Learning in CV

Formulation of R(M) D (xi, X;) = (x; — Xj)TM(Xi - X;)
e Frobenius norm R(M) = |[M|% = ZM?]

— does not promote low-rank solutions

— useful when M is a diagonal matrix
e logdet divergence: Dyg(M, Mp) = tr(MM; ') — log det(MM, ') — d
e Sum of distances between similar examples (xing, LMNN)
e Nuclear norm regularization R(M) = |M||, = tr(M):

— rank NP-hard to optimize
— convex envelope of rank(M) on the set {M € R4 |[M|| < 1}
— {1 norm of vector of singular values o(M)
24



Metric Learning in CV

» Fantope regularization [Law, Thome, Cord CVPR 2014]:

o Explicit control of the rank of M
By noting, VM € S%, R(M): sum of the k smallest eigenvalues of M

R(M) =0 <= rank(M) <d —k
o Reformulation

min pR(M) +¢((M,N) = min (W, M) + (M, N)
Mesd Mes?

with W rank-k projector on the eigenvectors of M with k smallest eigenvalues

25



Metric Learning in CV

Construction of W

e M = VyDiag(A(M))Vy, eigendecomposition of M € S, Vi orthogonal
matrix

e We construct w = (wy,...,wq) € R%:

B 0if 1 <¢<d—k (the first d — k elements)
wi= lifd—k+1<1i<d (the last k elements)

W = VDiag(w)Vyy (1)

min pR(M)+((M,N) = min (W, M)+£(M,N) s.t. W = VyDiag(w)Vyy
Mesq Mesd

Algorithm: alternating optimization procedure
26



Metric Learning in CV

* Deep metric learning optimization
o Siamese Architecture [LeCun NIPS 1993]

ETW
IGW (X)) — Gy (X)),
Fo
l |
G,(X) |« W - Gu(X)
4 '

27



Metric Learning in CV

* Deep metric learning optimization

[credit: Y. LeCun 05] Make this small Make this large
D‘V DW
G, (x)=G ()l G, (x) =G (x,)ll
A A A
G (x)) Gw("'z) GW(,\'I)
.\’IT .\’ZT ,\'1? .\'2?
-—— L) >
- —
Similar images (neighbors Dissimilar images
in the neighborhood graph) (non-neighbors in the

neighborhood graph) 28



Metric Learning in CV

* Deep metric learning optimization

[Y. LeCun CVPR 05,06] DrLIM scheme D,
G (x )—G (x

Similar to LMNN procedure: Gy (x,) W)
Y=0 for similar pairs A A
Y=1 for dissimilar pairs
The exact loss function is Gy (xy) Gy (x,)
L(W,Y, X1, X2) = ? ?

\'l .\'l

Ny 5 1 - 2
(1 =Y )s(DH')' + (1 )3{/!1(14'((). m — Dw)}*

29



Metric Learning in CV

» Siamese Network for paiwise comparison: DDML approach
[Credit: Hu CVPR 2014]

———

A ' oDML |

Before After

Intuitive illustration of the proposed DDML method

30



Metric Learning in CV

+ DDML optimization [Hu CVPR 2014]:

(l?(.zt,-,.r.,) <T—1l;;=1 ‘ g % ¢
(li-(.l',’..l'j) >T+ l.l,_l = —1 f ot ; Y 1’ ® i
. K

(,",'(T —d?(x,-,x_,-)) >1

Bafore Atter

Intuitive illustration of the proposed DDML method

DDML as the following optimization problem: where () = 5 log (1+exp(3z)) is the generalized logis
tic loss function [25], which is a smoothed approximation of
argmin J = J;+.J» the hinge loss function (] = max(z,0)
f
1 : s —o(2)
= 52!/(1f/,,(rle',(x..x,))) ) —eL.|
id g —— |
M d
N y12 2 J
j [y (m) |2 (m}||2 |
b3S (W + el 1
“ m=1 s 1

31



Outline

1. Introduction

2. Metric Learning in CV
o Data and Metric models
o Learning schemes:
o Results

3. Computer Vision Applications
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Results on face verification pb

2 images => same o ey > Ra ‘ ?,1 _8 , ‘,.‘% E
face ? * ~ 3
Labeled Faces in the
Wild (LFW)-- 27 SIFT
descriptors concatenated
10-fold Cross Validation
(600 pairs per fold)

Method || Accuracy (in %) ‘ :
ITML 76.2 £ 0.5 fo
LDML 77.5 £0.5 ! |

PCCA 822+ 04
Fantope 83.5 + 0.5

oM
Accuracy (in %)

Classical errors :



Results on face verification pb

Performances of deep DDML on LFW (more features): 90.68%

Recent extensions of deep archi (extra data, diff protocol):

Method Accuracy (%) | No. of points | No. of images Feature dimension
Joint Bayesian [¢] 92.42 (0) 5 99,773 2000 x 4
ConvNet-RBM [ 1] 92.52 (0) 3 87,628 NA
CMD+SLBP [17] 92.58 (u) 3 N/A 2302
Fisher vector faces [29] 93.03 (u) 9 N/A 128 x 2
Tom-vs-Pete classifiers [2] 93.30 (o+r) 95 20,639 5000
High-dim LBP [0] 95.17 (0) 27 99.773 2000

TL Joint Bayesian [©] 96.33 (o+u) 27 99,773 2000
DeepFace [32] 97.25 (o+u) 6+ 67 4,400,000 + 3,000,000 | 4096 x 4
DeepID on CelebFaces 96.05 (0) 5 87,628 150
DeeplD on CelebFaces+ 97.20 (0) 5 202,599 150
DeeplD on CelebFaces+ & TL | 97.45 (o+u) 5 202,599 150

34



Results on face verification pb

DeeplD2:
Extension of classification and metric learning for LFW [Sun NIPS 2014]
Deep learning face representation by joint Identification-Verification
Score on LFW: 99.15%

. Convoluuonal
Convo\unonal

Convolutional Lot ’t
Iaver3 e N
.| -
1 4 | 5 Lo
263 1 T S S (1]
20 ~ -’neeproz
u 80 VPI'

0 e m..nF Ma.;fgtg'"s

Ma); poolmg er 2 COnvo\unonal
yer 1 layer 4

3
Input layer

Figure 1: The ConvNet structure for DeepID2 extraction.

Other appli

y Ay
People verification %&




Results: feature learning

Robotics applis: !
[Carlevaris-Bianco IROS 2014] from DrLIM scheme

"fe(!!)"; 7
iy NN
->f9()->:_+

Metric Learning for Geo-localization:
[LeBarz ICIP 2015] from LMNN scheme

(a) Query images

(b) Images retrieved
with Exabal

(c) Images retrieved
with BOW

=> Many different contexts provide training data

37



Results: Hierarchical Classification

Rich relationships in taxonomies can be described with relative distances
Information richer that “is similar” or “is dissimilar”
Different levels of similarity

Same species

Learn dissimilarity D such that:

D(R. ) < o Fl)
D(ES.B) < o(Ml.EA)

38



Taxonomy ML

e QQwise constraints sampling:

1. Images in the same class more similar than images in sibling classes

2. Images in sibling classes more similar than images in cousin classes

x; € R%: 1,000 dimensional SIFT BoW descriptor

Diagonal PSD matrix framework: w > 0

Convex Optimization Problem:

minplwl3+ Y AW [ U p) — ¥ (pip;)])

(PispjsPr-P1)

with ¥(p;,p;) = (x; — X;) o (x; — x;) Hadamard product

40



Taxonomy ML

Subtree Dataset [Verma 2012] | Qwise

Amphibian 41% 43.5%
Fish 39% 41%

Fruit 23.5% 21.1%

Furniture 46% 48.8%

Geological Formation 52.5% 56.1%

Musical Instrument 32.5% 32.9%

Reptile 22% 23.0%

Tool 29.5% 26.4%

Vehicle 27% 34.7%

[ Global Accuracy | 34.8% [ 36.4% |

Table 1: Standard classification accuracy for the various datasets.

e 9 datasets from ImageNet, for each dataset: from 8 to 40 different classes,
from 8,000 to 54,000 images for training
41



Outline

1. Introduction
2. Metric Learning

3. Computer Vision Applications
o Relative attribute learning
o Web page comparison
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CV app: Scarlett and others

* Best Paper (Marr Prize) at
ICCV 201 1 . Relative Attributes

Devi Parikh
Toyota Technological Instiute Chicago (TTIC)  University of Te

Relative attributes,
D. Parikh (TTI Chicago) and M
K. Grauman (Texas Univ) :

b giraffe ). Wefurthr show o
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CV app: What are attributes?

Mid-level concepts
o Higher than low-level features
o Lower than high-level categories

Shared across categories

Human-understandable
(semantic)

* Machine-detectable (visual) =

Found 1344 results for smiling asian men with glasses in 0.220 secs. Displaying results 1 to 48.

Face Tracer -

Image Search e =
‘ g :

(Kumar 08)
“Smiling Asian )
Men With 5. A

Glasses” Slide credit: Devi Parikh




CV app: Attribute Models

L; — Real value

_
-

Density,
Smiling,

“I am 60% sure this person is smiling”  “This person is smiling 60%”
(Binary Classifier Confidence) (Attribute Strength)

Slide credit: Devi Parikh 45



CV app: Relative Attributes

“Person A is smiling more than Person B”
[Relative Attribute, Parikh and Grauman ICCV 2011]

Tl R |0
-~ | |

46



Binary Relative
OSR TI SHC OMF
S l tt natural 00001111 | T<I~S<H<C~O~M~F
Car e open 00011110 | T~F<I~S<M<H~C~O
perspective 11110000 | O<XC<M~F<H<I<S<T
large-objects 11100000 | FRKO~M<I~S<H~C<T
diagonal-plane 11110000 | FRKO~M=<C<I~S<H<T
L . close-depth 11110001 | C<M<O<T~I~S~H~F
s Tralnlng sets: PubFig ACHIMSVZ
Masculine-looking | 1111001 1 | SKM<Z<V<J<A<H=<C
1 White 01111111 | AKC<H=<Z<J<S<M=<V
Attrlbutes labeled Young 00001101 | VXH<C<I<A<S<Z<M
Smilin, 11101101 | JXV<H<A~C<S~Z<M
at category level Chubby 10000000 | V<I<H<C<Z<M<S<A
- = Visible-forehead 11101110 | JKZ<M<S<A~C~H~V
i ! E Bushy-eyebrows 01010000 | M<S<Z<V<H=<A<C<I]
— Narrow-eyes 01100011 | M<J<S<A<H<C<V<Z
ﬁ m ‘ Pointy-nose 00100001 | A<XC<I~M~V<S<Z<H
3 - Big-lips 10001 100 | H<I<V<Z<C<M=<A<S
L Round-face 10001 100 | HXV<J<C<Z<A<S<M
Table 1. Binary and relative attribute assignments used in our experiments.
o = Note that none of the relative orderings violate the binary memberships.
|L' E The OSR dataset includes images from the following categories: coast
h = (C©), forest (F), highway (H), inside-city (I), mountain (M), open-country
K-’gjj kg E (0), street (S) and tall-building (T). The 8 attributes shown above are listed
= ",\ in [11] as the properties subjects used to organize the images.The PubFig
[ d = dataset includes images of: Alex Rodriguez (A), Clive Owen (C), Hugh

Laurie (H), Jared Leto (J), Miley Cyrus (M), Scarlett Johansson (S), Viggo
Mortensen (V) and Zac Efron (Z). The 11 attributes shown above are a

47



CV app: Attribute Models

» Ranking functions for relative attributes
For each attribute a,,, open

Supervision = all pairs as:

Binary Relative
OSR TI SHC OMF
natural 00001 111 T SHCo O M_F
00011110 | T~F<I~S<M<H~C~O
rmrrooou O=C=MAF=H=T=5=1
] 11100000 | FKO~M=<I~S<H~C<T
diagonal-plane 11110000 | FKO~M=<C<I~S<H<T
close-depth 11110001 C<M=<O<T~I~S~H~F
PubFig ACHI MSVZ

Masculine-looking [ 1111001 1 | S<M<Z<V<J<A<H=<C
White 01111111 | AKC<H<Z<J<S<M=<V
Young 00001101 V<H=<C=<J<A<S<Z<M
Smiling 11101101 | JXV<H<A~C<S~Z<M
Chubby 10000000 | V=I<H<C<Z<M=<S<A
Visible-forehead 11101110 | JXZ<M<S<A~C~H~V
Bushy-eyebrows 01010000 | M<S<Z<V<H=<A=<C=J
Narrow-eyes 01100011 | M<J<S<A<H<C<V=<Z
Pointy-nose 00100001 | A<C=<I~M~V<S<Z~<H
Big-lips 10001100 | H=I<V<Z<C<M~<A<S
Round-face 10001100 | HXV<I<C<Z<A<S<M
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CV app: pairwise ranking

Scarlett Johansson vs Miley Cyrus

* Coarse labeling at ) i3 1 P\
category level => O ‘ .jK %

noisy pair sampling

Relative

Binary
TTSHC OMF
00001 TT1 | T<I~S<H<C~O~M~F
00011110 | T~ o
11110000
11100000
11110000

11110001
ACHI MSVZ
g | TTTT00T 1 | S<M=Z<
[JISERER!

11101101

01010000
01100011
00100001
10001100
10001100 | H<V=<J<C<Z~<A<S<]

s
1

Quadruplet to minimize this artefact
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CV app: Quadruplet-wise ML

Binary

Relative

= Presence of smile -

TISHC OMF

00001 111
00011110
11110000
11100000
11110000
11110001

ACHI MSVZ
[Tiroor 1
[IERRRER!

11101101

J<V<H<A~C<S~Z<M

TTOTo0 oD
11101110
01010000
01100011
00100001
Bi 10001100

Round-face 10001100

A b ey ey

Least smiling < ? ? < Most smiling

m &
3| B

Class (e) | Class (f) | Class (g) | Class (h)

4
Learn dissimilarity D such that:

p(id, ) < (i )
o(fd. &) < o @)

* Relative attributes => (Dis)similarity Learning under Qwise constraints
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Relative attribute learning

e Learning a feature space

D(pisp;) = ®(pi,p;) ME(p;,p;)
= (% —x;) L'L(x; — x;)

e Corresponds to learn a linear transformation parameterized by L € RM*4
such that h; = Lx; where the m-th row of L is W;

e Application to Actor retrieval and classification:

Masculine-looking

Smiling
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Relative attribute learning

ming|w(3+ Y (W [ p) — Y (pi,p))))

(pispj Pk p1)
o(kd. M) <o .0
)< o M)

» x; € R%: GIST (+ co[lor) descriptor
» U(pi,pj) =% — X;

» Relative attributes a,, for m € {1,..., M}: smiling, masculine-looking
young...

» Learning a w,, for each attribute a,, using Qwise optimization

» Resulting in learning a linear transformation parameterized by L € RM x4

T
w11 W1,d Wy

L= = |, w, - m-th row
T
Wp,1 o - WM Wr
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Relative attribute experiments

* Outdoor Scene Recognition * Public Figures Faces PubFig

OSR [Oliva 01] [Kumar 09]
» 8classes, ~2700 images, GIST < 8 classes, ~800 images, GIST
* 6 attributes: open, natural ... +color

* 11 attributes: smiling, shubby ...

8
4 =/,
ZN

s
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Relative attribute experiments

* Baselines
o RA Relative attribute method (Parikh and Grauman)
» annotations on class relationships with pairwise constraints

o LMNN Linear transformation learned

» class membership information used only unlike RA

o RA + LMNN: Combination of the first two baselines
1. Relative attribute annotations to learn attribute space
2. Metric in attribute space with LMNN

* Qwise Method:

o Qwise constraints generated as pairwise

o Qwise output alone or combined Qwise + LMNN
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Relative attribute experiments

OSR Pubfig

Parikh’s code T13+1.9% | 71.3 +2.0%
LMNN-G 70.7 £ 1.9% | 69.9 % 2.0%
LMNN 712 +2.0% | 715+ 1.6%

RA + LMNN 718+ 1.7% | 742+ 1.9%
Qwise 7T41+21% | 745+ 1.3%
Qwise + LMNN-G || 74.6 £ 1.7% | 76.5 £ 1.2%
Qwise + LMNN || 74.3+1.9% | 77.6 £2.0%

Table 1: Test classification accuracies on the OSR and Pubfig datasets for dif-
ferent methods.
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Relative attribute experiments

Top 5

& 5‘1
Learned Distance
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Relative attribute experiments

Query Top 5

;

Euclidean Distance
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Relative attribute experiments

Top 5

=h LearnedD

Euclidean Distance
—— R
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Relative attribute experiments

k. Euclidean Distance
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Outline

1. Introduction
2. Metric Learning

3. Computer Vision Applications
o Relative attribute learning
o  Web page comparison
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Web page

ML

o For Web crawling purpose, useful to understand the change behavior of websites

* Context:
over time
—p
Patterns

<« Pattern
Discovery

; I‘[Hh

th 6h 120 foh 18h 24n

Page -
Page Web Crawler vn Web
Vn Archive
L7
Time series ; —
l f Changes * 9
il H 1 ) Delta Changes
mportance Do
Estimation etection

o Significant changes between successive versions of a same webpage => revisit the

page

*  Web page comparison

o Learning Web page metric and significant webpage regions
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Web page ML

¢ Focus on news websites

o| Advertisementsfor menus not

significant

I o News content significant I

* Find a metric able to properly
identify significant changes
between webpage versions

* Localize changes inside pages:

o semantic spatial structure
o significant to capture

lar in N

ews

usin:

& Radil

Wol

d Service|

IRadiio
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Web page ML

» Temporal info. to get Pair/Triplet/Qwise Constraints:

o Adjacent screenshots in a temporal sequence of a web site are more likely
to be semantically similar than distant frames

o Fully unsupervised ML (just using temporal information available)
o Constraints by comparing screenshots of successive webpage versions:

. time

T
Vt+2

RE=E

ST

D(vg, ve11) < D(v—1, Vig2)

63



Web page ML

o Descriptors: classical image descriptors
over a spatial m-by-m image grid

o ¥ is a m-by-m vector of Euclidean
distance between blocks

o Diagonal PSD matrix: w represents block
weights

o Optimization over w

» Learning of spatial weights of webpage regions
using temporal relationships

» Discovering important change regions

» Ignoring menus and advertisements
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Web page ML

* Evaluation and Comparison [Law PhD 2015]
o Crawling 50 days Several sites CNN, NPR, BBC, ...
o Manual change detection (news updates) for GT on 5 days
o Baselines: Euclidean Dist, LMNN
o GIST on 10x10

o Mean Average Precision on succ. Web page Metric scores

Site CNN NPR New York Times BBC

Eval. APgs | APp | MAP || APg | APp | MAP || APs | APp | MAP || APg | APp | MAP

Eucl. 68.1 | 85.9 | 77.0 96.3 | 89.5 | 92.9 69.8 | 79.5 | 74.6 91.1 | 76.7 | 83.9

Dist. +0.6 | £0.6 | +£0.5 || £0.2 | £0.5 | £0.3 || £0.9 | £0.4 | £0.5 || £0.3 | £0.6 | +0.4
LMNN || 78.8 | 91.7 | 85.2 98.0 | 92.5 | 95.2 83.2 | 89.1 | 86.1 92.5 | 80.1 | 86.3
+1.9 | £1.7 | +£1.8 || £0.6 | £1.1 | £0.9 || £1.4 | £2.7 | £2.0 || £0.4 | £1.0 | +0.6
Qwise || 82.7 | 94.6 | 88.6 || 98.6 | 94.3 | 96.5 || 85.5 | 92.3 | 88.9 || 92.8 | 79.3 | 86.1
+4.1 | £1.8 | +2.9 || £0.2 | £0.6 | +0.4 || £5.4 | +4.1 | +4.6 || £0.4 | £1.3 | +0.8
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Web page ML

Ol 10
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Web page ML

5 i e I R o

* Not connected to the structural layout of the Web page
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Web page ML

* Detect significant changes using the source code of
pages (Segmentation) + Qwise
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Key issues in Metric Learning for CV

* Modeling: Data representation, type of metric (linear,
non lin., local)
o Connection to deep : deep features + metric learn on top
* Learning Paradigm: unsupervised, semi-supervised,
transfer, type of constraints
o Temporal/spatial relationships [LeCun ICCV 2015]

o Class/Structure relationships => rich context to learn metrics or
semantic embedding

* Optimization issues: Global/local solution, Convexity,
Scalability, ...

* Learning joint embedding
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General conclusion of this tutorial

* Ongoing and open topics

o Adapting metrics to changing data
» Lifelong learning, etc

o Unsupervised metric learning
» What is a good metric for clustering?
» Denoising / Robustness to invariance

o Learning richer metrics
» Different degrees of similarity
» Several co-existing notions of similarity

o Relation to representation learning
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