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Metric Learning



( , 0)

S = {( , ) : }
D = {( , ) : }
R = {( , , ) : }

ˆ =

2

64`( ,S,D,R)| {z }+ � ( )| {z }

3

75







( , 0) =
q

( � 0) ( � 0)

2 S+ ⇥

( , 0) =
q
( � 0) ( � 0) =

q
( � 0) ( � 0)

 2 R ⇥



2S+

X

( , )2D

( , )

X

( , )2S

( , ) 

=

S+ ( )



Original data

−50
0

50

−50
0

50

−50

0

50

xy

z

−50
0

50

−50
0

50

−50

0

50

xy

z

Projected data

0

0.2

0.4

0.6

0.8

1

ionosphere (N=351, C=2, d=34)

K-Means

K-Means + M
Cons. K-Means

Cons. K-Means + M



S = {( , ) : = , }
R = {( , , ) : ( , ) 2 S, 6= }



2S+,⇠�
( � µ)

X

( , )2S

( , ) + µ
X

, ,

⇠

( , )� ( , ) � � ⇠ 8( , , ) 2 R

µ 2 [ , ]



Test Image:

Nearest neighbor 
before training:

Nearest neighbor 
after training:

MNIST

NEWS

ISOLET

BAL

FACES

IRIS

WINE

2.1

17.6
13.4

12.4

8.6
4.7

3.3

14.4
9.7

7.8

5.9
2.6

19.0

4.3
4.7
4.4

2.6

1.7
1.2

2.2

30.1

kNN LMNN

kNN Euclidean
distance

Multiclass
SVM

testing error rate (%)





k kF =
P

, =

( , ) = ( � )� ( � )�

=
X

,

�

✓
( ) �

X ✓
�

✓

◆
�

= ⌃ = ⇥

( )



, k k , =
P

= k k
!

k k⇤ =
P

= � ( )

!



,

1.3

SMLsm

1.4

SMLgd

2.17

SMLlp

1.74

 ITML

1.74

 LMNN 

3.04

 EUC 

Iris−Average Error Rate (%)

8.19

SMLsm

9.21

SMLgd

18.62

SMLlp

6.81

 ITML

8.09

 LMNN 

20.11

 EUC 

Bal−Average Error Rate (%)

9.06

SMLsm

8.87

SMLgd

10.2

SMLlp

12.45

 ITML

10.19

 LMNN 

15.28

 EUC 

Iono−Average Error Rate (%)

1

SMLsm

1

SMLgd

4

SMLlp

4

ITML

2

LMNN 

4

EUC 

Iris−Average Dim

3.3

SMLsm

3.7

SMLgd

4

SMLlp

4

 ITML

3.3

 LMNN 

4

 EUC 

Bal−Average Dim

4.9

SMLsm

11

SMLgd

15.1

SMLlp

33

 ITML

9.3

 LMNN 

33

 EUC 

Iono−Average Dim



( , 0) = 0

!





Linear metric Kernelized metric Multiple local metrics



� : X ! H X H
H

( , 0) = h�( ),�( 0)i .

X

=

X

=

( , ) �

, . . . , 2 X , . . . , 2 R



( , 0) = h�( ),�( 0)i { } =

� = �( ) 2 R � = [� , . . . ,� ] 2 R ⇥

(� ,� ) = (� � � ) (� � � ) = (� � � ) (� � � )

= � 2 R ⇥

(�( ),�( 0)) = ( � 0) ( � 0)

= 2 R ⇥ = � �( ) = [ ( , ), . . . , ( , )]



( )



�

�( , 0) = k�( )� �( 0)k

�

!





,...,
⇠�

( � µ)
X

( , )2S
( )

( , ) + µ
X

, ,

⇠

( )
( , )�

( )
( , ) � � ⇠ 8( , , ) 2 R





( , 0) = ( � 0)

 
X

=

( )

!
( � 0),

( ) = ( + )

2 R ⇥ 2 R



˜2R( + )⇥

X

( , , )2R

⇥
+ ( , )� ( , )

⇤
+
+ �k˜k ,

˜

[·] = ( , ·)



1
2
3

(a) Classmembership (b) Trainedmetrics (c) Testmetrics





( ) ( )

⇥
( ) ( )



X

=

` ( )�
X

=

` ( ⇤)  ( ),

`

⇤



=

( , , ) 2 R

= ,⇠ k � � kF + ⇠

� ( , ) + ( , )  ⇠

⇠ �
( , 0) = 0



|R|
X

( , , )2R

`( , , , )





= 2 R ⇥

⇥

=
P

=





ACGGCTT





⌃

⌃

| |

0

0

(| | · | 0|)



(|⌃|+ )⇥ (|⌃|+ )

=)

=)
! $, ! , !



( 0| )



8 2 ⌃,
X

2⌃[{$}
| +

X

2⌃

|$ = ,
X

2⌃

|$ + (#)
| {z }

= ,



0

2

3
4

1

6

7

5

Primitives

2222331344444554454434444455666

66770000100007600000011121

2244544544544545445454446670010

00101010010100101

22223434344454445454555555656566

6667707000100101010101012131121

82

84

86

88

90

92

94

96

98

100

0 1000 2000 3000 4000 5000 6000

T
es

tA
cc

ur
ac

y

Learned ED with a Conditional Transducer

Classic ED (using costs 111)
Learned ED with a J oint Transducer

Classic ED (using hand-tuned costs)

Number of Learning Pairs





( , 0) =
X

, 2⌃[{$}

·# ( , 0)

# ( , 0) !



� ,⇠� , � , �

X

,

⇠ + �k kF

( , 0) � � ⇠ 8( , ) 2 D
( , 0)  + ⇠ 8( , ) 2 S
� = �

�



60

62

64

66

68

70

72

74

76

78

0 200 400 600 800 1000 1200 1400 1600 1800 2000

C
la

ss
ifi

ca
tio

n
ac

cu
ra

cy

Size of cost training set

Oncina and Sebban
GESL

Levenshtein distance





= { = ( , )} =

2 Z = X ⇥ Y
Y

µ Z

( ) =
( � )

X

 < 

`( , , ) + � ( )

( ) = E
, 0⇠µ

[`( , , 0)]



( )



/ 

8( , ), 8 ,
,

|`( , , )� `( , , , )|  

, 2

( ) = k kF `



/

� �

( )  ( ) +

+ ( + )

r
( /�)

( /
p

)



( , ✏(·)) 2 N ✏ :

(Z⇥Z) ! R Z
{ } =

8( , ) 2 , 8 , 0 2 Z, 8 , 2 [ ], , 2 , , 0 2

|`( , , )� `( , , 0)|  ✏( )

z
z

z

z′ Ci

′

z1

z2

Ci

Cj

Classic robustness Robustness for metric learning



( , ✏(·)) � >

� �

( )  ( ) + ✏( ) +

r
+ ( /�)

`

,

✏( )



( )

( /
p

)























ECML/PKDD  
Porto, September 7, 2015 

 
Similarity and Distance Metric Learning 
with Applica@ons to Computer Vision 

Part II 

MaEhieu Cord 
 

LIP6 - Computer Science Department  
UPMC PARIS 6 - Sorbonne  University 



Introduction: Visual learning 
•  A lot of recent successful 

applications of Machine Learning 
to Visual Understanding 

•  Supervised classification on large 
dataset ImageNet [winner 2012] 
⚬  1M images 
⚬  1000 classes 
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Introduction: Visual learning 
•  Data for training 
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Introduction: Visual learning 
•  Beyond classification image+label 
•  Data for training : image pairs, triplets, … 

⚬  Pairs+label YES/NO (LFW) 

 
 
 
⚬  Class information 
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Introduction: Metric learning for CV 

Metrics in Machine Learning and Computer Vision 
•  Image dataset Clustering 
•  Information/Image retrieval 
•  kNN classification, Kernel methods 

Commonly used metrics:  Euclidean distance, chi2 for histograms, … 
 

6 

Metric Learning



Outline of part II 
1.  Introduction 
2.   Metric Learning in CV 

⚬  Data and Metric models 
⚬  Learning schemes 
⚬  Results 

3.  Computer Vision Applications 
⚬  Relative attribute learning 
⚬  Web page comparison 
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Quadruplet-wise Image Similarity Learning

Marc T. Law Nicolas Thome Matthieu Cord

LIP6, UPMC - Sorbonne University, Paris, France
{Marc.Law, Nicolas.Thome, Matthieu.Cord}@lip6.fr

Abstract

This paper introduces a novel similarity learning frame-

work. Working with inequality constraints involving

quadruplets of images, our approach aims at efficiently

modeling similarity from rich or complex semantic label

relationships. From these quadruplet-wise constraints, we

propose a similarity learning framework relying on a con-

vex optimization scheme. We then study how our metric

learning scheme can exploit specific class relationships,

such as class ranking (relative attributes), and class tax-

onomy. We show that classification using the learned met-

rics gets improved performance over state-of-the-art meth-

ods on several datasets. We also evaluate our approach

in a new application to learn similarities between webpage

screenshots in a fully unsupervised way.

1. Introduction

Similarity learning is useful in many Computer Vision
applications, such as image classification [6, 10, 17], image
retrieval [6], face verification or person re-identification [12,
18]. The key ingredients of similarity learning framework
are (i) the data representation including both the feature
space and the similarity function, (ii) the learning frame-
work which includes: training data, type of labels and rela-
tions, the optimization formulation and solvers.

The usual way to learn similarities is to consider binary
labels on image pairs [29]. For instance, in the context of
face verification [12], binary labels establish whether two
images should be considered equivalent or not. Metrics are
learned with training data to minimize dissimilarities be-
tween similar pairs while separating dissimilar ones. Many
different metrics have been considered in Euclidean space
or using kernel embedding [18].

Recently, some attempts have been made to go be-
yond learning metrics with pairwise constraints generated
from binary class membership labels. On the one hand,
triplet-wise constraints have been considered to learn met-
rics [6, 15, 28]. Triplet constraints may be generated from

Presence of smile− +

Least smiling≺ ? ∼ ? ≺Most smiling

Class (e) Class (f ) Class (g) Class (h)
︸ ︷︷ ︸

⇓
Learn dissimilarity D such that:

D( , ) < D( , )

D( , ) < D( , )

Figure 1. Quadruplet-wise (Qwise) strategy on 4 face classes

ranked according to the degree of presence of smile. Instead of

working on pairwise relations that present some flaws (see text),

Qwise strategy defines quadruplet-wise constraints to express that

dissimilarities between examples from (f ) and (g) should be

smaller than dissimilarities between examples from (e) and (h).

class labels or they can be inferred from richer relationships.
For example, Verma et al. [26] learn a similarity that de-
pends on a class hierarchy: an image should be closer to
another image from a sibling class than to any image from a
distant class in the hierarchy. Other methods exploit spe-
cific rankings between classes. For instance, relative at-
tributes have been introduced in [20]: different classes (e.g.

”celebrity”) are ranked with respect to different concepts or
attributes (e.g. ”smile”), see Fig. 1 (top). Pairwise relations
are extracted: e.g. face images from class (x) smile more
than (or as much as) face images from class (y). In [20],
it is shown that learning relative features can help signifi-
cantly boost classification performances.

In this paper, we focus on these rich contexts for learning
similarity metrics. Instead of pairwise or triplet-wise tech-
niques, we propose to investigate relations between quadru-
plets of images. We claim that, in many contexts, consider-

1

Fantope Regularization in Metric Learning

Marc T. Law Nicolas Thome Matthieu Cord

Sorbonne Universités, UPMC Univ Paris 06, UMR 7606, LIP6, F-75005, Paris, France

Abstract

This paper introduces a regularization method to ex-

plicitly control the rank of a learned symmetric positive

semidefinite distance matrix in distance metric learning. To

this end, we propose to incorporate in the objective function

a linear regularization term that minimizes the k smallest

eigenvalues of the distance matrix. It is equivalent to min-

imizing the trace of the product of the distance matrix with

a matrix in the convex hull of rank-k projection matrices,

called a Fantope. Based on this new regularization method,

we derive an optimization scheme to efficiently learn the

distance matrix. We demonstrate the effectiveness of the

method on synthetic and challenging real datasets of face

verification and image classification with relative attributes,

on which our method outperforms state-of-the-art metric

learning algorithms.

1. Introduction

Distance metric learning is useful for many Computer
Vision tasks, such as image classification [14, 17, 26], re-
trieval [3, 8] or face verification [10, 18]. It emerges as a
promising learning paradigm, in particular because of its
ability to learn with attributes [20], further offering the ap-
pealing possibility to perform zero-shot learning, or to gen-
eralize to new classes at near zero cost [17].

Metric learning algorithms produce a linear transforma-
tion of data which is optimized to fit semantical relation-
ships between training samples. Different aspects of the
learning procedure have recently been investigated: how
the dataset is annotated and used in the learning process,
e.g. using pairs [18], triplets [21] or quadruplets [13] of
samples; design choices for the distance parameterization;
extensions to large scale context [17], etc. Surprisingly, few
attempts have been made for deriving a proper regulariza-
tion scheme, especially in the Computer Vision literature.
Regularization in metric learning is however a critical is-
sue, as it often limits model complexity, the number of in-
dependent parameters to learn, and thus overfitting. Mod-
els learned with regularization usually better exploit corre-

Query Top 5 Image Retrieval Results

Figure 1. Top 5 similarity search for two queries from the Public

Figure Face and Outdoor Scene Recognition datasets. We show

for each query the 5 most similar images using our metric learning

approach (first row), and the well-known metric learning approach

LMNN (second row). On these examples, our scheme performs

better and succeeds to return semantically relevant images. This

shows the importance of the proposed regularization scheme to

learn a meaningful distance matrix and limit overfitting.

lations between features and often have improved predictive
accuracy [14].

In this paper, we propose a novel regularization approach
for metric learning that explicitly controls the rank of the
learned distance matrix. Figure 1 illustrates the relevance
of our approach. We present retrieval results after metric
learning with the proposed method, and provide an illus-
trative comparison with LMNN [26], which is one of the
most popular non-regularized metric learning algorithms.
The regularization scheme introduced in this paper signif-
icantly improves the performance of the semantical visual
search.

The remainder of the paper is organized as follows. Sec-
tion 2 positions the paper with respect to related works.
Our regularization framework is introduced in Section 3
and the resulting optimization scheme in Section 4. Sec-
tion 5 presents toy experiments to grasp the meaning of the
proposed regularization. Section 6 demonstrates the effec-
tiveness of our metric learning scheme in two challenging
computer vision applications. Finally, Section 7 concludes
the paper and gives directions for future work.

1

ICCV 2013 
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Metric Learning in CV 
•  Key ingredients of  metric/similarity learning in CV: 

⚬  Data representation including both:  
▸  Feature space  

»  Bag of visual word representation (BoW) 
»  Deep features, Gist … 
 
IMAGE REPRESENTATION  VECTOR 
 

▸  Similarity function / Metric 

⚬  Learning framework  
▸  training data, type of labels and relations,  
▸  Optimization formulation  
▸  Solvers  

8 

Credit: A. Vedaldi 



Metric Learning in CV 

9 

Vector representations x ∈ Rd (visual BoWs, deep, ...)

Widely used approach: Mahalanobis-like Distance Metric Learning

xi,xj ∈ R
d,M ∈ S

d
+, D2

M(xi,xj) = (xi − xj)
⊤M(xi − xj) (1)

Since for all M ∈ Sd+ with rank(M) = e ≤ d, there exists L ∈ Re×d such

that M = L⊤L:

xi,xj ∈ R
d,M ∈ S

d
+, D2

M(xi,xj) = (xi − xj)
⊤L⊤L(xi − xj)

= ∥Lxi − Lxj∥
2
2

(2)

▸  Similarity function / Metric: 

▸  All M (or L) coefficients to be learned 



Metric Learning in CV 
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Non-linear extension: kernel vs deep  [credit: Hu CVPR14]  
 



Metric Learning in CV 
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DeVISE system  [google, NIPS 2013] 

•  One step further: heterogeneous object deep embedding and metric learning 



Outline 
1.  Introduction 
2.   Metric Learning in CV 

⚬  Data and Metric models 
⚬  Learning schemes: 

▸  Constraints: Pairs, triplets … 
▸  Objective function: regularization, optimization … 

⚬  Results 

3.  Computer Vision Applications 
 

12 



Metric Learning in CV 

•  PairWise Constraints for learning 

13 



Metric Learning in CV 

•  Learning scheme for pairwise constraints: 
 Xing et al: Distance metric learning, …, NIPS 2002 (cf. Part I)  

14 

min
M∈Sd

+

∑

(xi,xj)∈S

D2
M(xi,xj) s.t.

∑

(xi,xj)∈D

√

D2
M
(xi,xj) ≥ 1



Metric Learning in CV 
•  What are the pairs in S and D ? All consistent ? 
 
 
S:  ok               very far : 

15 

•  Mono-modality as underlying hypothesis 

D: sometimes not far  

=> Important trick: getting training pairs using neighbor selection  



Metric Learning in CV 
•  Triplet constraints for learning: 
•  The most used scheme: [Weinberger LMNN] (cf. Part I)   

16 

min
M∈Sd

+

∑

(xi,x
+
i
)∈S

D2
M(xi,x

+
i )

s.t. ∀(xi,x
+
i ,x

−
i ) ∈ T , D2

M(xi,x
−
i ) ≥ δ +D2

M(xi,x
+
i )



Metric Learning in CV 
•  Quadruplet-Wise constraints: [Law, Thome, Cord ICCV 2013] 

⚬  Generalizing pairs-wise (and triplets), more flexible and expressive  
⚬  Margin-based strategy, not always selecting all constraints 

 

17 

∀q = (xi,xj ,xk,xl) ∈ N , D(xi,xj) + δq ≤ D(xk,xl)
2 2 



Metric Learning in CV 
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•  Application 1: learning relative attributes 
⚬  Supervision based on attributes (smile, masculine looking, …) 



Web page/temporal info for ML 
•  Application 2: 

⚬  Fully unsupervised ML, but temporal information available 
⚬  Constraints by comparing  screenshots of successive webpage versions 

19 



Outline 
1.  Introduction 
2.   Metric Learning in CV 

⚬  Data and Metric models 
⚬  Learning schemes: 

▸  Constraints: Pairs, triplets … 
▸  Objective function: regularization, optimization … 

⚬  Results 

3.  Computer Vision Applications 
⚬  Relative attribute learning 
⚬  Web page comparison 
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Metric Learning in CV 
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To summarize constraints with D2
M
(xi,xj) = (xi − xj)⊤M(xi − xj):

• Pairs:

N = S ∪D =⇒

{

∀(xi,xj) ∈ S D2
M
(xi,xj) < 1

∀(xi,xj) ∈ D D2
M
(xi,xj) > 1

• Triplets:

N = {(xi,x
+
i ,x

−
i )}

N
i=1 =⇒ ∀(xi,x

+
i ,x

−
i ) ∈ N , D2

M
(xi,x

+
i )+δ ≤ D2

M
(xi,x

−
i )

• Quadruplets:

N = {q = (xi,xj ,xk,xl)} =⇒ ∀q ∈ N , D2
M
(xi,xj) + δq ≤ D2

M
(xk,xl)

Optimization scheme:

min
M∈Sd

+

µR(M) + ℓ(M,N )

With R(M) : regularizer and ℓ(M,N ) loss over set of constraints N



Metric Learning in CV 

22 

(Large margin) optimization: 
•  Qwise optimization framework with hinge loss function 

 
 
•  Triplet optim: 

min
M∈Sd

+

µR(M) + CQ

∑

q∈N

ξq

s.t. ∀q = (xi,xj ,xk,xl) ∈ N , D2

M(xk,xl) ≥ D2

M(xi,xj) + δq − ξq

∀q ∈ N , ξq ≥ 0

• R(M): regularization term

• CQ > 0: trade-off between fitting and regularization.

min
M∈Sd

+

∑

(xi,x
+
i
)∈S

D2
M(xi,x

+
i ) + Ct

∑

(xi,x
+
i
,x

−

i
)∈T

ξi

s.t. ∀(xi,x
+
i ,x

−
i ) ∈ T , D2

M(xi,x
−
i ) ≥ 1 +D2

M(xi,x
+
i )− ξi

   µ  

    

     



Metric Learning in CV 

•  How to define/choose the regularization R(M) in the objective 
function: 

 

•  Regularization term to express prior, to control complexity … 

•  For CV application, looking for Low rank solution: 
⚬  Controlling overfitting  
⚬  Sparsity of the singular values 
⚬  Exploiting correlation between features 
⚬  Fast/efficient solution  

23 

min
M∈Sd

+

µR(M) + ℓ(M,N )

S , D2
M(xi,xj) = (xi − xj)

⊤M(xi − xj)

R



Metric Learning in CV 
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S , D2
M(xi,xj) = (xi − xj)

⊤M(xi − xj)

R

Formulation of R(M)

• Frobenius norm R(M) = ∥M∥2F =
∑

M2
ij

– does not promote low-rank solutions

– useful when M is a diagonal matrix

• log det divergence: Dℓd(M,M0) = tr(MM
−1

0 )− log det(MM
−1

0 )− d

• Sum of distances between similar examples (xing, LMNN)

• Nuclear norm regularization R(M) = ∥M∥∗ = tr(M):

– rank NP-hard to optimize

– convex envelope of rank(M) on the set {M ∈ Rd×d : ∥M∥ ≤ 1}

– ℓ1 norm of vector of singular values σ(M)



Metric Learning in CV 
•  Fantope regularization  [Law, Thome, Cord CVPR 2014]: 

⚬  Explicit control of the rank of M 

 
⚬  Reformulation 

25 

By noting, ∀M ∈ Sd+, R(M): sum of the k smallest eigenvalues of M

R(M) = 0 ⇐⇒ rank(M) ≤ d− k

min
M∈Sd

+

µR(M) + ℓ(M,N ) =⇒ min
M∈Sd

+

µ⟨W,M⟩+ ℓ(M,N )

with W rank-k projector on the eigenvectors of M with k smallest eigenvalues



Metric Learning in CV 
Construction of W 

• M = VMDiag(λ(M))V⊤

M eigendecomposition ofM ∈ Sd+, VM orthogonal
matrix

• We construct w = (w1, . . . , wd)⊤ ∈ Rd:

wi =

{

0 if 1 ≤ i ≤ d− k (the first d− k elements)

1 if d− k + 1 ≤ i ≤ d (the last k elements)

W = VMDiag(w)V⊤

M (1)

min
M∈Sd

+

µR(M)+ℓ(M,N ) =⇒ min
M∈Sd

+

µ⟨W,M⟩+ℓ(M,N ) s.t. W = VMDiag(w)V⊤
M

26 

Algorithm: alternating optimization procedure 



Metric Learning in CV 
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•  Deep metric learning optimization 
⚬ Siamese Architecture [LeCun NIPS 1993] 



Metric Learning in CV 
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•  Deep metric learning optimization 
[credit: Y. LeCun 05] 



Metric Learning in CV 
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•  Deep metric learning optimization 
[Y. LeCun CVPR 05,06] DrLIM scheme 
 
Similar to LMNN procedure: 
Y=0 for similar pairs  
Y=1 for dissimilar pairs  
 



Metric Learning in CV 
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•  Siamese Network for paiwise comparison: DDML approach 
 [Credit: Hu CVPR 2014]  



Metric Learning in CV 
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•  DDML optimization [Hu CVPR 2014]:  



Outline 
1.  Introduction 
2.   Metric Learning in CV 

⚬  Data and Metric models 
⚬  Learning schemes: 
⚬  Results 

3.  Computer Vision Applications 
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Results on face verification pb 
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2 images => same 
face ? 
Labeled Faces in the 
Wild (LFW)-- 27 SIFT 
descriptors concatenated 
10-fold Cross Validation 
(600 pairs per fold) 
 
 
 
 
 
 
 
 
Classical errors :  
 

About 15% better with metric learning   

Method Accuracy (in %)
ITML 76.2 ± 0.5
LDML 77.5 ± 0.5
PCCA 82.2 ± 0.4
Fantope 83.5 ± 0.5



Results on face verification pb 
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Performances of deep DDML on LFW (more features): 90.68% 
 
 
 
 
 
Recent extensions of deep archi (extra data, diff protocol): 



Results on face verification pb 
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DeepID2:  
 Extension of classification and metric learning for LFW [Sun NIPS 2014]  
 Deep learning face representation by joint Identification-Verification 
 Score on LFW: 99.15% 

 

Other appli: 
People verification 



Results: feature learning 

37 => Many different contexts provide training data    

Metric Learning for Geo-localization:  
[LeBarz ICIP 2015] from LMNN scheme 

Robotics applis:  
[Carlevaris-Bianco IROS 2014] from DrLIM scheme 



Results: Hierarchical Classification  
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Taxonomy ML 
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• Qwise constraints sampling:

1. Images in the same class more similar than images in sibling classes

2. Images in sibling classes more similar than images in cousin classes

• xi ∈ Rd: 1,000 dimensional SIFT BoW descriptor

• Diagonal PSD matrix framework: w ≥ 0

• Convex Optimization Problem:

min
w

µ∥w∥22 +
∑

(pi,pj ,pk,pl)

ℓ(w⊤ [Ψ(pk, pl)−Ψ(pi, pj)])

with Ψ(pi, pj) = (xi − xj) ◦ (xi − xj) Hadamard product



Taxonomy ML 
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Subtree Dataset [Verma 2012] Qwise
Amphibian 41% 43.5%

Fish 39% 41%
Fruit 23.5% 21.1%

Furniture 46% 48.8%
Geological Formation 52.5% 56.1%
Musical Instrument 32.5% 32.9%

Reptile 22% 23.0%
Tool 29.5% 26.4%

Vehicle 27% 34.7%

Global Accuracy 34.8% 36.4%

Table 1: Standard classification accuracy for the various datasets.

• 9 datasets from ImageNet, for each dataset: from 8 to 40 different classes,
from 8,000 to 54,000 images for training



Outline 
1.  Introduction 
2.  Metric Learning 
3.   Computer Vision Applications 

⚬  Relative attribute learning 
⚬  Web page comparison 
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CV app: Scarlett and others  
•  Best Paper (Marr Prize) at 

ICCV 2011:   
Relative attributes,  

D. Parikh (TTI Chicago) and  
K. Grauman (Texas Univ) 

  

Relative Attributes

Devi Parikh
Toyota Technological Institute Chicago (TTIC)

dparikh@ttic.edu

Kristen Grauman
University of Texas at Austin

grauman@cs.utexas.edu

Abstract

Human-nameable visual “attributes” can benefit vari-

ous recognition tasks. However, existing techniques restrict

these properties to categorical labels (for example, a per-

son is ‘smiling’ or not, a scene is ‘dry’ or not), and thus

fail to capture more general semantic relationships. We

propose to model relative attributes. Given training data

stating how object/scene categories relate according to dif-

ferent attributes, we learn a ranking function per attribute.

The learned ranking functions predict the relative strength

of each property in novel images. We then build a genera-

tive model over the joint space of attribute ranking outputs,

and propose a novel form of zero-shot learning in which the

supervisor relates the unseen object category to previously

seen objects via attributes (for example, ‘bears are furrier

than giraffes’). We further show how the proposed relative

attributes enable richer textual descriptions for new images,

which in practice are more precise for human interpreta-

tion. We demonstrate the approach on datasets of faces and

natural scenes, and show its clear advantages over tradi-

tional binary attribute prediction for these new tasks.

1. Introduction

While traditional visual recognition approaches map
low-level image features directly to object category labels,
recent work proposes models using visual attributes [1–
8]. Attributes are properties observable in images that have
human-designated names (e.g., ‘striped’, ‘four-legged’),
and they are valuable as a new semantic cue in various
problems. For example, researchers have shown their im-
pact for strengthening facial verification [5], object recog-
nition [6, 8, 16], generating descriptions of unfamiliar ob-
jects [1], and to facilitate “zero-shot” transfer learning [2],
where one trains a classifier for an unseen object simply by
specifying which attributes it has.

Problem: Most existing work focuses wholly on at-
tributes as binary predicates indicating the presence (or ab-
sence) of a certain property in an image [1–8, 16]. This may
suffice for part-based attributes (e.g., ‘has a head’) and some

(a) Smiling (b) ? (c) Not smiling

(d) Natural (e) ? (f) Manmade
Figure 1. Binary attributes are an artificially restrictive way to describe
images. While it is clear that (a) is smiling, and (c) is not, the more in-
formative and intuitive description for (b) is via relative attributes: he is
smiling more than (a) but less than (c). Similarly, scene (e) is less natural
than (d), but more so than (f). Our main idea is to model relative attributes
via learned ranking functions, and then demonstrate their impact on novel
forms of zero-shot learning and generating image descriptions.

binary properties (e.g., ‘spotted’). However, for a large va-
riety of attributes, not only is this binary setting restrictive,
but it is also unnatural. For instance, it is not clear if in Fig-
ure 1(b) Hugh Laurie is smiling or not; different people are
likely to respond inconsistently in providing the presence
or absence of the ‘smiling’ attribute for this image, or of the
‘natural’ attribute for Figure 1(e).

Indeed, we observe that relative visual properties are a
semantically rich way by which humans describe and com-
pare objects in the world. They are necessary, for instance,
to refine an identifying description (“the ‘rounder’ pillow”;
“the same except ‘bluer”’), or to situate with respect to ref-
erence objects (“‘brighter’ than a candle; ‘dimmer’ than a
flashlight”). Furthermore, they have potential to enhance
active and interactive learning—for instance, offering a bet-
ter guide for a visual search (“find me similar shoes, but
‘shinier’.” or “refine the retrieved images of downtown
Chicago to those taken on ‘sunnier’ days”).

Proposal: In this work, we propose to model relative at-

tributes. As opposed to predicting the presence of an at-
tribute, a relative attribute indicates the strength of an at-
tribute in an image with respect to other images. For exam-

To appear, Proceedings of the International Conference on Computer Vision (ICCV), 2011.



CV app: What are attributes? 

•  Mid-level concepts 
⚬  Higher than low-level features 
⚬  Lower than high-level categories 

•  Shared across categories 
•  Human-understandable 

(semantic) 
•  Machine-detectable (visual) 

Slide credit: Devi Parikh 

Face Tracer 
Image Search 

(Kumar 08) 
“Smiling Asian 

Men With 
Glasses” 



CV app:  Attribute Models 
xi Real value 

 

“I am 60% sure this person is smiling” 
(Binary Classifier Confidence) 

Density, 
Smiling, 

…. 

“This person is smiling 60%” 
(Attribute Strength) 

Slide credit: Devi Parikh 
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CV app:  Relative Attributes 

> 
natural 

< 
smiling 

“Person A is smiling more than Person B” 
[Relative Attribute, Parikh and Grauman ICCV 2011] 

46 



Scarlett 

•  Training sets: 
Attributes labeled 
at category level 
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CV app:  Attribute Models 

•  Ranking functions for relative attributes 
For each attribute 

Supervision = all pairs as: 

open 

48 



CV app:  pairwise ranking 

•  Coarse labeling at 
category level => 
noisy pair sampling 

OK 

? 

NO 

•  Quadruplet to minimize this artefact 
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Scarlett Johansson vs Miley Cyrus 



CV app:  Quadruplet-wise ML 

    

•  Relative attributes => (Dis)similarity Learning under Qwise constraints 
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Relative attribute learning 
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• Learning a feature space

D2

M(pi, pj) = Φ(pi, pj)
⊤
MΦ(pi, pj)

= (xi − xj)
⊤
L
⊤
L(xi − xj)

• Corresponds to learn a linear transformation parameterized by L ∈ RM×d

such that hi = Lxi where the m-th row of L is w⊤
m

• Application to Actor retrieval and classification:



Relative attribute learning 
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min
w

µ∥w∥22 +
∑

(pi,pj ,pk,pl)

ℓ
(

w
⊤ [Ψ(pk, pl)−Ψ(pi, pj)]

)

• xi ∈ Rd: GIST (+ color) descriptor

• Ψ(pi, pj) = xi − xj

• Relative attributes am for m ∈ {1, . . . ,M}: smiling, masculine-looking,
young...

• Learning a wm for each attribute am using Qwise optimization

• Resulting in learning a linear transformation parameterized by L ∈ RM×d:

L =

⎡

⎢

⎣

w1,1 . . . w1,d
...

...
...

wM,1 . . . wM,d

⎤

⎥

⎦

=

⎡

⎢

⎣

w⊤
1
...

w⊤
M

⎤

⎥

⎦

, w
⊤
m : m-th row



Relative attribute experiments 
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•  Outdoor Scene Recognition 
OSR [Oliva 01] 

•  8 classes, ~2700 images, GIST 
•  6 attributes: open, natural … 

•  Public Figures Faces PubFig 
[Kumar 09] 

•  8 classes, ~800 images, GIST
+color 

•  11 attributes: smiling, shubby … 



Relative attribute experiments 

•  Baselines 
⚬  RA Relative attribute method (Parikh and Grauman)  

▸  annotations on class relationships with pairwise constraints 

⚬  LMNN Linear transformation learned 
▸  class membership information used only unlike RA 

⚬  RA + LMNN: Combination of the first two baselines  
1.  Relative attribute annotations to learn attribute space 
2.  Metric in attribute space with LMNN 

•  Qwise Method:  
⚬  Qwise constraints generated as pairwise 
⚬  Qwise output alone or combined Qwise + LMNN 
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Relative attribute experiments 
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OSR Pubfig
Parikh’s code 71.3± 1.9% 71.3± 2.0%
LMNN-G 70.7± 1.9% 69.9± 2.0%
LMNN 71.2± 2.0% 71.5± 1.6%

RA + LMNN 71.8± 1.7% 74.2± 1.9%

Qwise 74.1± 2.1% 74.5± 1.3%
Qwise + LMNN-G 74.6± 1.7% 76.5± 1.2%
Qwise + LMNN 74.3± 1.9% 77.6± 2.0%

Table 1: Test classification accuracies on the OSR and Pubfig datasets for dif-
ferent methods.



Relative attribute experiments 
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Query Top 5 

Learned Distance 

Euclidean Distance 

Learned Distance 

Euclidean Distance 



Relative attribute experiments 
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Query Top 5 

Learned Distance 

Euclidean Distance 

Learned Distance 

Euclidean Distance 



Relative attribute experiments 
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Query Top 5 

Learned Distance 

Euclidean Distance 

Learned Distance 

Euclidean Distance 



Relative attribute experiments 
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Query Top 5 

Learned Distance 

Euclidean Distance 

Learned Distance 

Euclidean Distance 



Outline 
1.  Introduction 
2.  Metric Learning 
3.  Computer Vision Applications 

⚬  Relative attribute learning 
⚬  Web page comparison 
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Web page ML 
•  Context: 

⚬  For Web crawling purpose, useful to understand the change behavior of websites 
over  time 

⚬  Significant changes between successive versions of a same webpage => revisit the 
page 

•  Web page comparison 
⚬  Learning Web page metric and significant webpage regions 61 



Web page ML 
•  Focus on news websites 

⚬  Advertisements or menus not 
significant  

⚬  News content significant 

•  Find a metric able to properly 
identify significant changes 
between webpage versions  

•  Localize changes inside pages: 
⚬  semantic spatial structure 
⚬  significant to capture  
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Web page ML 
•  Temporal info. to get Pair/Triplet/Qwise Constraints: 

⚬  Adjacent screenshots in a temporal sequence of a web site are more likely 
to be semantically similar than distant frames  

⚬  Fully unsupervised ML (just using temporal information available) 
⚬  Constraints by comparing  screenshots of successive webpage versions: 
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Web page ML 
⚬  Descriptors: classical image descriptors 

over a spatial m-by-m image grid  
⚬  Ψ is a m-by-m vector of Euclidean 

distance between blocks 
⚬  Diagonal PSD matrix: w represents block 

weights 
⚬  Optimization over w 

▸  Learning of spatial weights of webpage regions 
using temporal relationships 

▸  Discovering important change regions  
▸  Ignoring menus and advertisements 
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Web page ML 

•  Evaluation and Comparison [Law PhD 2015] 
⚬  Crawling 50 days Several sites CNN, NPR, BBC, … 
⚬  Manual change detection (news updates) for GT on 5 days 
⚬  Baselines: Euclidean Dist, LMNN 
⚬  GIST on 10x10 
⚬  Mean Average Precision on succ. Web page Metric scores 

Site CNN NPR New York Times BBC

Eval. APS APD MAP APS APD MAP APS APD MAP APS APD MAP

Eucl. 68.1 85.9 77.0 96.3 89.5 92.9 69.8 79.5 74.6 91.1 76.7 83.9

Dist. ±0.6 ±0.6 ±0.5 ±0.2 ±0.5 ±0.3 ±0.9 ±0.4 ±0.5 ±0.3 ±0.6 ±0.4

LMNN 78.8 91.7 85.2 98.0 92.5 95.2 83.2 89.1 86.1 92.5 80.1 86.3

±1.9 ±1.7 ±1.8 ±0.6 ±1.1 ±0.9 ±1.4 ±2.7 ±2.0 ±0.4 ±1.0 ±0.6

Qwise 82.7 94.6 88.6 98.6 94.3 96.5 85.5 92.3 88.9 92.8 79.3 86.1

±4.1 ±1.8 ±2.9 ±0.2 ±0.6 ±0.4 ±5.4 ±4.1 ±4.6 ±0.4 ±1.3 ±0.8
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Web page ML 
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Web page ML 
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•  Not connected to the structural layout of the Web page 



Web page ML 

•  Detect significant changes using the source code of 
pages (Segmentation) + Qwise 
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Key issues in Metric Learning for CV 
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•  Modeling: Data representation, type of metric (linear, 
non lin., local) 
⚬  Connection to deep : deep features + metric learn on top 

•  Learning Paradigm: unsupervised, semi-supervised, 
transfer, type of constraints 
⚬  Temporal/spatial  relationships [LeCun ICCV 2015]  
⚬  Class/Structure relationships => rich context to learn metrics or 

semantic embedding  

•  Optimization issues: Global/local solution, Convexity, 
Scalability, … 

•  Learning joint embedding 



General conclusion of this tutorial 
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•  Ongoing and open topics 
⚬  Adapting metrics to changing data 

▸  Lifelong learning, etc 

⚬  Unsupervised metric learning 
▸  What is a good metric for clustering? 
▸  Denoising / Robustness to invariance 

⚬  Learning richer metrics 
▸  Different degrees of similarity 
▸  Several co-existing notions of similarity 

⚬  Relation to representation learning 
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