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PRIVACY AND FAIRNESS IN AI: CONFLICTING OBJECTIVES?

• Privacy and fairness are two critical concerns when AI systems are deployed in
high-stakes applications like health (e.g., for AI-assisted medical diagnosis)

• The prediction model should not leak sensitive information about individuals whose data
was used to train the model

• Model predictions should not unjustly discriminate against some individuals or
subgroups of the population

• Unfortunately, privacy and fairness are sometimes conflicting objectives
[Bagdasaryan et al., 2019, Cummings et al., 2019, Chang and Shokri, 2020, Tran et al., 2021]

• Privacy: “prevent the model from learning too much about a single individual”
• Fairness: “make sure that underrepresented individuals have sufficient weight”

• Our work: provably bound the impact of privacy on fairness in classification, and
uncover some of the key factors that govern this impact
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BASIC NOTATIONS

• We consider a multi-class classification problem with a feature space X , a finite set
of labels Y , and a finite set of sensitive attributes S

• We denote by D the data distribution of variables (X, Y, Z) over X × S × Y

• We denote by D = {(x1, s1, y1), . . . , (xn, sn, yn)} the training set of n examples drawn
i.i.d. from D

• Let h : X → Y be a model that predicts a label h(x) ∈ Y from features x ∈ X
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GROUP FAIRNESS

• We focus on group fairness, which requires that decisions made by machine learning
models do not unjustly discriminate against subgroups of the population

• Accuracy parity:
Pr [h(X) = Y | S = s] = Pr [h(X) = Y]

• Equality of opportunity (assuming Y = 1 is the desirable outcome):

Pr [h(X) = Y | Y = 1, S = s] = Pr [h(X) = Y | Y = 1]

• Also demographic parity and equalized odds

• Our results are general and hold for these 4 classic group fairness measures

• Given a partition of D into K groups D1, . . . ,DK, we will use Fk(h) to denote the
fairness level of model h for group k (when Fk(h) < 0, group k is disadvantaged)
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DIFFERENTIAL PRIVACY
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• Differential Privacy (DP) requires that the distribution of outputs should be “similar”
for two neighboring datasets D = {d1,d2,d3, . . . ,dn} and D′ = {d1,d′

2,d3, . . . ,dn}

• Formally, for ϵ > 0 and δ ∈ (0, 1), A satisfies (ϵ, δ)-DP if for all pairs of neighboring
datasets D and D′, and all S ⊆ range(A), we have:

Pr[A(D) ∈ S] ≤ eϵ Pr[A(D′) ∈ S] + δ
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TRAINING A MODEL WITH DIFFERENTIAL PRIVACY

• Consider the classic Empirical Risk Minimization (ERM) framework:

h∗ = argminh∈H⊆Rp

{
f(h) = 1

n

n∑
i=1

ℓ(h; xi, si, yi)
}

• Differential privacy requires to add some noise to the model

• Output perturbation [Chaudhuri et al., 2011]: hpriv = h∗ +N (0, σ2Ip)

• Differentially Private SGD [Bassily et al., 2014, Abadi et al., 2016]: iterate over

ht+1 = ht − γ(∇ℓ(ht; xi, si, yi) +N (0, σ2Ip))

• In both cases, we know how to choose σ to achieve the desired (ϵ, δ)-DP guarantee
(under suitable assumptions)
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PROBLEM: DIFFERENTIAL PRIVACY CAN EXACERBATE UNFAIRNESS

• Previous work has empirically shown that differential privacy can exacerbate
unfairness, see e.g. the results below for accuracy parity [Bagdasaryan et al., 2019]

• Question: when does this happen? how bad can it get?
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SIMILAR MODELS HAVE SIMILAR FAIRNESS LEVELS!

Theorem (Pointwise Lipschitzness of group fairness)
For any two models h,h′ ∈ H, we have, for all k ∈ [K],

|Fk(h)− Fk(h′)| ≤
K∑

k′=1

|Ck
′

k |E
(

LX,Y
|ρ(h, X, Y)|

∣∣∣∣ Dk′

)
∥h− h′∥H,

where ρ(h, X, Y) is the confidence margin, LX,Y is the Lipschitz constant of ρ(h, X, Y), and
the C’s are constants independent of h and h′.

• If two models h and h′ are close, then their fairness levels are similar

• The difference in fairness is smaller if h is confident in its prediction for the true label
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APPLICATION TO PRIVATE MODELS

Theorem (Fairness loss due to privacy)
Let the loss function ℓ be Λ-Lipschitz and µ-strongly convex. Let h∗ be the optimal model,
and hpriv its private estimate obtained by output perturbation. Let href ∈ {hpriv,h∗}.
Then, for all k ∈ [K] and any 0 < ζ < 1, we have with probability at least 1− ζ :

|Fk(hpriv)− Fk(h∗)| ≤
χk(href)Λ

√
32p log(1.25/δ) log(2/ζ)

µnϵ ,

where χk(href) =
∑K

k′=1 |Ck
′

k |E
(

LX,Y
|ρ(href,X,Y)|

∣∣∣ Dk′
)
.

• The unfairness due to privacy vanishes at a Õ(√p/n) rate!

• A similar result holds for DP-SGD

• Note: we can pick the “reference” model to be either hpriv or h∗ (e.g., depending on
which model is known)
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EMPIRICAL ILLUSTRATIONS

• For sufficiently large datasets, our bound gives useful guarantees
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EMPIRICAL ILLUSTRATIONS

• Our bounds appear to capture the right dependence in p and n

• With additional knowledge on models, we can get quite tight bounds 10



CONCLUSION & PERSPECTIVES

Take-home messages

• We can bound the impact of differential privacy on the fairness of classifiers

• The fairness loss due to privacy depends on the size of the training set, the number
of model parameters, and the confidence margin of the model

Perspectives

• Apply our results to other privacy-preserving methods (and beyond): one only needs
to derive a high-probability bound on the distance between the models of interest

• Extensions to nonconvex settings (what should the reference model be?)

• Design fairer privacy-preserving algorithms: combine our results with
fairness-promoting regularizers [Lohaus et al., 2020], privately learn models with
large-margin guarantees [Bassily et al., 2022]

11



THANK YOU FOR YOUR ATTENTION!
QUESTIONS?
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RELATED WORK

• Empirical evidence that privacy can exacerbate unfairness [Bagdasaryan et al., 2019]
[Pujol et al., 2020, Farrand et al., 2020, Uniyal et al., 2021], and that enforcing fairness can
lead to more privacy leakage for the unprivileged group [Chang and Shokri, 2020]

• Approaches to learn models that are both fair and privacy-preserving have limited
guarantees [Kilbertus et al., 2018, Xu et al., 2019, Xu et al., 2020, Tran et al., 2020] and/or
require stochastic decisions [Jagielski et al., 2019, Mozannar et al., 2020]

• Incompatibility results [Sanyal et al., 2022, Cummings et al., 2019, Agarwal, 2020] consider
unrealistic cases that are hardly encountered in practice

• [Tran et al., 2021] analyze the impact of privacy on fairness in ERM, but only in terms of
loss-based fairness and via loose Taylor approximations
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GENERAL FORM FOR GROUP FAIRNESS

• Assume that the data D can be partitioned into K disjoint groups denoted by
D1, . . . ,DK (based on the sensitive attribute and possibly the label)

• Our results hold for any fairness measure that, for each group k = 1, . . . , K, can be
written as

Fk(h) = C0k +
K∑

k′=1

Ck
′

k Pr [H(X) = Y | Dk′ ]

• See the paper for the derivation of the 4 classic group fairness measures from this
general formula
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