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PRIVACY AND FAIRNESS IN Al: CONFLICTING OBJECTIVES?

- Privacy and fairness are two critical concerns when Al systems are deployed in
high-stakes applications like health (e.g., for Al-assisted medical diagnosis)
- The prediction model should not leak sensitive information about individuals whose data
was used to train the model
- Model predictions should not unjustly discriminate against some individuals or
subgroups of the population

- Unfortunately, privacy and fairness are sometimes conflicting objectives
[Bagdasaryan et al,, 2019, Cummings et al., 2019, Chang and Shokri, 2020, Tran et al., 2021]

- Privacy: “prevent the model from learning too much about a single individual”
- Fairness: “make sure that underrepresented individuals have sufficient weight”

- Our work: provably bound the impact of privacy on fairness in classification, and
uncover some of the key factors that govern this impact



BASIC NOTATIONS

- We consider a multi-class classification problem with a feature space X, a finite set
of labels Y, and a finite set of sensitive attributes S

- We denote by D the data distribution of variables (X, Y,Z) over ¥ x § x Y

- We denote by D = {(x1,51,V1), .-, (Xn,Sn,¥n)} the training set of n examples drawn
i.i.d. from D

- Leth: X — Y be a model that predicts a label h(x) € Y from features x € X



GROUP FAIRNESS

- We focus on group fairness, which requires that decisions made by machine learning
models do not unjustly discriminate against subgroups of the population

- Accuracy parity:
Pr[h(X)=Y|S=5s]=Pr[h(X) =Y]

- Equality of opportunity (assuming Y = 11is the desirable outcome):
Prih(X)=Y|Y=1S=s]=Prh(X)=Y|Y=1]
- Also demographic parity and equalized odds
- Our results are general and hold for these 4 classic group fairness measures

- Given a partition of D into K groups Ds, ..., D, we will use Fy(h) to denote the
fairness level of model h for group k (when F(h) < 0, group k is disadvantaged)



DIFFERENTIAL PRIVACY
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TRAINING A MODEL WITH DIFFERENTIAL PRIVACY

- Consider the classic Empirical Risk Minimization (ERM) framework:
,I n

h* = argminycrcro {f(h) = - zah;x/»,s,-,y;)}
=

- Differential privacy requires to add some noise to the model

- Output perturbation [Chaudhuri et al, 2011]: hP™Y = h* + N(0, o°L,)

- Differentially Private SGD [Bassily et al., 2014, Abadi et al,, 2016]: iterate over
At = pt — y(VL(hY; X, si, i) + N(O, O’ZHD))

- In both cases, we know how to choose o to achieve the desired (e, 4)-DP guarantee
(under suitable assumptions)



PROBLEM: DIFFERENTIAL PRIVACY CAN EXACERBATE UNFAIRNESS

- Previous work has empirically shown that differential privacy can exacerbate
unfairness, see e.g. the results below for accuracy parity [Bagdasaryan et al,, 2019]
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Figure 1: Gender and age classification on facial images.

- Question: when does this happen? how bad can it get?



SIMILAR MODELS HAVE SIMILAR FAIRNESS LEVELS!

Theorem (Pointwise Lipschitzness of group fairness)
For any two models h, h’ € H, we have, for all k € [K],

K
L
) il < 3 118 (e o ) 1 =

—1

where p(h,X,Y) is the confidence margin, Lxy is the Lipschitz constant of p(h,X,Y), and
the C’s are constants independent of h and h'.

- If two , then their

- The difference in fairness is smaller if for the true label



APPLICATION TO PRIVATE MODELS

Theorem (Fairness loss due to privacy)

Let the loss function ¢ be A-Lipschitz and u-strongly convex. Let h* be the optimal model,
and hP"" its private estimate obtained by output perturbation. Let h*ef € {hPiv h*}.
Then, for all k € [K] and any 0 < ¢ < 1, we have with probability at least 1 — ¢:

priv * Xf?(hrEf)/\\/?)zp IOg(125/5) |Og(2/<)
|Fr(hP™) = Fr(h*)] < e

)

re K 4 Lx,
where xu(™) = Ty 16§ (e | O )

- The ata 5(\Fp/n) rate!
- A similar result holds for DP-SGD

- Note: we can pick the “reference” model to be either h?™ or h* (e.g,, depending on
which model is known)



EMPIRICAL ILLUSTRATIONS

For sufficiently large datasets, our bound gives useful guarantees

Table 1. Upper bound, with 99% probability, on the difference of fairness between private and non-private models for different fairness
measures and accuracy. Privacy parameters are e = 1 and 6 = 1/ n? where n is the number of samples in the training data.

Dataset Equality of Opportunity  Equalized Odds  Demographic Parity ~ Accuracy Parity ~ Accuracy
celebA (n = 182, 339) 0.1044 0.0975 0.0975 0.0975 0.0487
folktables (n = 1,498, 050) 0.0017 0.0026 0.0026 0.0026 0.0013




EMPIRICAL ILLUSTRATIONS
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- Our bounds appear to capture the right dependence in p and n

- With additional knowledge on models, we can get quite tight bounds



CONCLUSION & PERSPECTIVES

Take-home messages
- We can bound the impact of differential privacy on the fairness of classifiers

- The fairness loss due to privacy depends on the size of the training set, the number
of model parameters, and the confidence margin of the model

Perspectives

- Apply our results to other privacy-preserving methods (and beyond): one only needs
to derive a high-probability bound on the distance between the models of interest

- Extensions to nonconvex settings (what should the reference model be?)

- Design fairer privacy-preserving algorithms: combine our results with
fairness-promoting regularizers [Lohaus et al., 2020], privately learn models with
large-margin guarantees [Bassily et al., 2022]
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RELATED WORK

- Empirical evidence that privacy can exacerbate unfairness [Bagdasaryan et al., 2019]
[Pujol et al, 2020, Farrand et al., 2020, Uniyal et al., 2021], and that enforcing fairness can
lead to more privacy leakage for the unprivileged group [Chang and Shokri, 2020]

- Approaches to learn models that are both fair and privacy-preserving have limited
guarantees [Kilbertus et al,, 2018, Xu et al,, 2019, Xu et al,, 2020, Tran et al,, 2020] and/or
require stochastic decisions [Jagielski et al.,, 2019, Mozannar et al,, 2020]

- Incompatibility results [Sanyal et al,, 2022, Cummings et al,, 2019, Agarwal, 2020] consider
unrealistic cases that are hardly encountered in practice

- [Tran et al,, 2021] analyze the impact of privacy on fairness in ERM, but only in terms of
loss-based fairness and via loose Taylor approximations



GENERAL FORM FOR GROUP FAIRNESS

- Assume that the data D can be partitioned into K disjoint groups denoted by
D1,...,Dx (based on the sensitive attribute and possibly the label)

- Our results hold for any fairness measure that, for each group k =1,...,K, can be
written as

K
Fa(h) = Ch+ > CF Pr{H(X) = Y| Dy]
=1

- See the paper for the derivation of the 4 classic group fairness measures from this
general formula



