FEDERATED MULTI-TASK LEARNING UNDER A MIXTURE OF DISTRIBUTIONS

Aurélien Bellet (Inria) Joint work with O. Marfoq, G. Neglia (Inria), L. Kameni, R. Vidal (Accenture Labs)

Google Federated Learning Workshop November 8-10, 2021

PERSONALIZED FEDERATED LEARNING

- Personalized models are a necessity in many Federated Learning (FL) applications
- **Key questions:** how to model the relations between local data distributions? How to design efficient FL algorithms that exploit these relations?

- Local fine-tuning of a global model: [Jiang et al., 2019], [Fallah et al., 2020]...
- Interpolation of global and local model: [Deng et al., 2020], [Mansour et al., 2020]...

 \Rightarrow works only if local distributions are close from the global distribution

• Clustered FL: [Sattler et al., 2020], [Ghosh et al., 2020]...

 \Rightarrow no knowledge transfer across clusters

- Multi-task learning via task relationships [Smith et al., 2017], [Vanhaesebrouck et al., 2017] or simpler penalization terms [Hanzely et al., 2020], [Dinh et al., 2020]...
 - \Rightarrow limited to linear models or lose ability to model complex relationships
- Hypernetworks [Shamsian et al., 2021]

 \Rightarrow flexible but potential blow up in the number of parameters

Overall: conditions under which users benefit from collaboration are not well understood

- 1. A flexible statistical assumption for personalized FL: local distributions are mixtures of underlying components
- 2. Federated EM-like algorithms with convergence guarantees, both in server-client and fully decentralized settings
- 3. A general federated surrogate optimization framework that can be used to analyze other FL algorithms
- 4. Higher accuracy and fairness than SOTA algorithms, even for users not present at training time

- \cdot A (countable) set ${\mathcal T}$ of tasks representing the set of possible users
- A data distribution \mathcal{D}_t over $\mathcal{X} \times \mathcal{Y}$ for each user $t \in \mathcal{T}$ with $p_t(x, y)$ the joint density and $p_t(x)$, $p_t(y)$ the marginal densities
- User t wants to learn hypothesis $h_t \in \mathcal{H}$ minimizing the expected risk over \mathcal{D}_t :

$$\min_{h_t \in \mathcal{H}} \mathcal{L}_{\mathcal{D}_t}(h_t) = \mathbb{E}_{(x,y) \sim \mathcal{D}_t}[l(h_t(x), y)]$$

- A set of T users $[T] = \{1, \dots, T\} \subseteq T$ participate to the training phase
- Local dataset $S_t = \{(x_t^{(i)}, y_t^{(i)})\}_{i=1}^{n_t}$ at user $t \in T$ drawn i.i.d. from \mathcal{D}_t

- Assume $p_t(x)$ is identical across $t \in T$, but $p_t(y|x)$ can be arbitrarily different
- FL with T users is then equivalent to T semi-supervised learning (SSL) problems
- With no assumptions on the data distribution, SSL does not improve sample complexity [Ben-David et al., 2008, Darnstädt et al., 2013, Göpfert et al., 2019]

 \Rightarrow some assumptions on local data distributions are needed for FL to be beneficial

• For any user $t \in \mathcal{T}$, the local distribution \mathcal{D}_t is a mixture of underlying distributions $\tilde{\mathcal{D}}_1, \ldots, \tilde{\mathcal{D}}_M$ defined by weights $\pi^*_{t1}, \ldots, \pi^*_{tm}$

Assumption

There exist M underlying (independent) distributions $\tilde{\mathcal{D}}_m$, $1 \le m \le M$, such that for $t \in \mathcal{T}$, \mathcal{D}_t is mixture of the distributions $\{\tilde{\mathcal{D}}_m\}_{m=1}^M$ with weights $\pi_t^* = [\pi_{t1}^*, \ldots, \pi_{tm}^*] \in \Delta^M$, i.e.

$$z_t \sim \mathcal{M}(\pi_t^*), \quad ((x_t, y_t) | z_t = m) \sim \tilde{\mathcal{D}}_m, \quad \forall t \in \mathcal{T},$$

where $\mathcal{M}(\pi)$ is a multinomial (categorical) distribution with parameters π .

- Our assumptions generalizes previous personalized FL formulations
- Clustered FL [Sattler et al., 2020, Ghosh et al., 2020] with C clusters: set M = C and $\pi_{tc}^* = 1$ if task (user) t is in cluster c and $\pi_{tc}^* = 0$ otherwise
- We also recover model interpolation [Deng et al., 2020, Mansour et al., 2020] and Fed-MTL with task relationships [Smith et al., 2017, Vanhaesebrouck et al., 2017] as special cases

LEARNING UNDER A MIXTURE MODEL

Proposition (informal)

Let
$$\breve{\Theta} = [\breve{\theta}_1, \dots, \breve{\theta}_M]$$
 and $\breve{\Pi} = [\breve{\pi}_1, \dots, \breve{\pi}_T]$ be a solution of

$$\arg\min_{\Theta,\Pi} \underset{t \sim \mathcal{D}_{\mathcal{T}}}{\mathbb{E}} \underset{(x,y) \sim \mathcal{D}_{t}}{\mathbb{E}} \left[-\log p_{t}(x,y|\Theta,\pi_{t}) \right]$$

Then, for any $t \in \mathcal{T}$, we have:

$$h_t^* = \sum_{m=1}^M \breve{\pi}_{tm} h_{\breve{\theta}_m} \tag{1}$$

 \cdot We can estimate $\breve{\Theta}$ and $\breve{\Pi}$ by minimizing

$$f(\Theta, \Pi) \triangleq -\frac{\log p(\mathcal{S}_{1:T}|\Theta, \Pi)}{n} \triangleq -\frac{1}{n} \sum_{t=1}^{T} \sum_{i=1}^{n_t} \log p(\mathbf{s}_t^{(i)}|\Theta, \pi_t),$$

• For a user t' not seen at training time: learn $\pi_{t'}$ in a single shot, and use (1)

CENTRALIZED EXPECTATION-MAXIMIZATION

- Natural approach: Expectation-Maximization (EM) algorithm
- We denote by q_t the distribution over the latent variables $z_t^{(i)}$

• **E-step**:
$$q_t^{k+1}(z_t^{(i)} = m) \propto \pi_{tm}^k \cdot \exp\left(-l(h_{\theta_m^k}(\vec{x}_t^{(i)}), y_t^{(i)})\right)$$

· M-step:

$$\pi_{tm}^{k+1} = \frac{\sum_{i=1}^{n_t} q_t^{k+1}(z_t^{(i)} = m)}{n_t}$$

$$\theta_m^{k+1} \in \arg\min_{\theta \in \mathbb{R}^d} \sum_{t=1}^T \sum_{i=1}^{n_t} q_t^{k+1}(z_t^{(i)} = m) \cdot l(h_\theta(\vec{x}_t^{(i)}), y_t^{(i)})$$

FEDERATED EXPECTATION-MAXIMIZATION

FEDERATED EXPECTATION-MAXIMIZATION

FEDERATED EXPECTATION-MAXIMIZATION

Theorem (Informal)

With local SGD as the local solver, the iterates of FedEM satisfy:

$$\frac{1}{K}\sum_{k=1}^{K} \mathbb{E} \left\| \nabla_{\Theta} f\left(\Theta^{k}, \Pi^{k}\right) \right\|_{F}^{2} \leq \mathcal{O}\left(\frac{1}{\sqrt{K}}\right),$$
$$\frac{1}{K}\sum_{k=1}^{K} \Delta_{\Pi} f(\Theta^{k}, \Pi^{k}) \leq \mathcal{O}\left(\frac{1}{K^{3/4}}\right),$$

where the expectation is over the random batches samples, and

$$\Delta_{\Pi} f(\Theta^k, \Pi^k) \triangleq f\left(\Theta^k, \Pi^k\right) - f\left(\Theta^k, \Pi^{k+1}\right) \geq 0.$$

- FedEM can be seen as a particular instance of a more general framework that we call federated surrogate optimization, extending the centralized framework of [Mairal, 2013]
- This framework minimizes an objective function of the form $\sum_{t=1}^{T} \omega_t f_t \left(\vec{u}, \vec{v}_t \right)$
- Each user $t \in [T]$ can compute a partial first order surrogate of f_t
- Our framework can be used to analyze the convergence of other FL algorithms, such as **pFedMe** [Dinh et al., 2020] (see paper for details)

Dataset	Local	FedAvg	FedProx	FedAvg+	clustered FL	pFedMe	FedEM (Ours)
FEMNIST	71.0 / 57.5	78.6 / 63.9	78.9 / 64.0	75.3 / 53.0	73.5 / 55.1	74.9 / 57.6	79.9 / 64.8
EMNIST	71.9 / 64.3	82.6 / 75.0	83.0 / 75.4	83.1 / 75.8	82.7 / 75.0	83.3 / 76.4	83.5 / 76.6
CIFAR10	70.2 / 48.7	78.2 / 72.4	78.0 / 70.8	82.3 / 70.6	78.6 / 71.2	81.7 / 73.6	84.3 / 78.1
CIFAR100	31.5 / 19.9	40.9 / 33.2	41.0 / 33.2	39.0 / 28.3	41.5 / 34.1	41.8 / 32.5	44.1 / 35.0
Shakespeare	32.0 / 16.6	46.7 / 42.8	45.7 / 41.9	40.0 / 25.5	46.6 / 42.7	41.2 / 36.8	46.7 / 43.0
Synthetic	65.7 / 58.4	68.2 / 58.9	68.2 / 59.0	68.9 / 60.2	69.1/59.0	69.2 / 61.2	74.7 / 66.7

Table 1: Test accuracy: average across users / bottom decile.

Dataset	FedAvg	FedAvg+	FedEM
FEMNIST	78.3 (80.9)	74.2 (84.2)	79.1 (81.5)
EMNIST	83.4 (82.7)	83.7 (92.9)	84.0 (83.3)
CIFAR10	77.3 (77.5)	80.4 (80.5)	85.9 (90.7)
CIFAR100	41.1 (42.1)	36.5 (55.3)	47.5 (46.6)
Shakespeare	46.7 (47.1)	40.2 (93.0)	46.7 (46.6)
Synthetic	68.6 (70.0)	69.1 (72.1)	73.0 (74.1)

 Table 2: Average test accuracy across users unseen at training (train accuracy in parenthesis).

EXPERIMENTS

Figure 1: Effect of local dataset size on the average test accuracy across unseen users for CIFAR100.

EXPERIMENTS

Figure 2: Effect of user sampling rate on the test accuracy for CIFAR10.

EXPERIMENTS

Figure 3: Effect of number of mixture components M on the test accuracy for CIFAR10.

THANK YOU FOR YOUR ATTENTION!

TO APPEAR AT NEURIPS 2021

ARXIV LINK: https://arxiv.org/abs/2108.10252 code: https://github.com/omarfoq/fedem

```
[Ben-David et al., 2008] Ben-David, S., Lu, T., and Pál, D. (2008).
```

Does unlabeled data provably help? worst-case analysis of the sample complexity of semi-supervised learning. In COLT.

```
[Darnstädt et al., 2013] Darnstädt, M., Simon, H. U., and Szörényi, B. (2013).
Unlabeled data does provably help.
```

In STACS.

```
[Deng et al., 2020] Deng, Y., Kamani, M. M., and Mahdavi, M. (2020).
Adaptive personalized federated learning.
```

arXiv preprint arXiv:2003.13461.

```
[Dinh et al., 2020] Dinh, C. T., Tran, N. H., and Nguyen, T. D. (2020).
Personalized Federated Learning with Moreau Envelopes.
```

In NeurIPS.

```
[Fallah et al., 2020] Fallah, A., Mokhtari, A., and Ozdaglar, A. (2020).
```

Personalized Federated Learning with Theoretical Guarantees: A Model-Agnostic Meta-Learning Approach. In *NeurIPS*.

[Ghosh et al., 2020] Ghosh, A., Chung, J., Yin, D., and Ramchandran, K. (2020). An efficient framework for clustered federated learning. In NeurIPS. [Göpfert et al., 2019] Göpfert, C., Ben-David, S., Bousquet, O., Gelly, S., Tolstikhin, I., and Urner, R. (2019). When can unlabeled data improve the learning rate? In *COLT*.

[Hanzely et al., 2020] Hanzely, F., Hanzely, S., Horváth, S., and Richtarik, P. (2020). Lower Bounds and Optimal Algorithms for Personalized Federated Learning. In *NeurIPS*.

[Jiang et al., 2019] Jiang, Y., Konečný, J., Rush, K., and Kannan, S. (2019). Improving federated learning personalization via model agnostic meta learning. *arXiv preprint arXiv:1909.12488.*

[Mairal, 2013] Mairal, J. (2013).

Optimization with first-order surrogate functions.

In ICML.

[Mansour et al., 2020] Mansour, Y., Mohri, M., Ro, J., and Suresh, A. T. (2020). Three approaches for personalization with applications to federated learning. *arXiv preprint arXiv:2002.10619.*

[Sattler et al., 2020] Sattler, F., Müller, K.-R., and Samek, W. (2020). Clustered federated learning: Model-agnostic distributed multitask optimization under privacy constraints. IEEE Transactions on Neural Networks and Learning Systems.

REFERENCES III

```
[Shamsian et al., 2021] Shamsian, A., Navon, A., Fetaya, E., and Chechik, G. (2021).

Personalized federated learning using hypernetworks.

In ICML.
[Smith et al., 2017] Smith, V., Chiang, C.-K., Sanjabi, M., and Talwalkar, A. S. (2017).

Federated Multi-Task Learning.

In NIPS.
```

[Vanhaesebrouck et al., 2017] Vanhaesebrouck, P., Bellet, A., and Tommasi, M. (2017). Decentralized collaborative learning of personalized models over networks. In AISTATS.