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PERSONALIZED FEDERATED LEARNING

• Personalized models are a necessity in many Federated Learning (FL) applications

• Key questions: how to model the relations between local data distributions? How to
design efficient FL algorithms that exploit these relations?

1



BRIEF OVERVIEW OF RELATED WORK

• Local fine-tuning of a global model: [Jiang et al., 2019], [Fallah et al., 2020]...

• Interpolation of global and local model: [Deng et al., 2020], [Mansour et al., 2020]...

⇒ works only if local distributions are close from the global distribution

• Clustered FL: [Sattler et al., 2020], [Ghosh et al., 2020]...

⇒ no knowledge transfer across clusters
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BRIEF OVERVIEW OF RELATED WORK

• Multi-task learning via task relationships [Smith et al., 2017], [Vanhaesebrouck et al., 2017]
or simpler penalization terms [Hanzely et al., 2020], [Dinh et al., 2020]...

⇒ limited to linear models or lose ability to model complex relationships

• Hypernetworks [Shamsian et al., 2021]

⇒ flexible but potential blow up in the number of parameters

Overall: conditions under which users benefit from collaboration are not well understood
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SUMMARY OF CONTRIBUTIONS

1. A flexible statistical assumption for personalized FL: local distributions are mixtures
of underlying components

2. Federated EM-like algorithms with convergence guarantees, both in server-client and
fully decentralized settings

3. A general federated surrogate optimization framework that can be used to analyze
other FL algorithms

4. Higher accuracy and fairness than SOTA algorithms, even for users not present at
training time
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PROBLEM SETTING

• A (countable) set T of tasks representing the set of possible users

• A data distribution Dt over X × Y for each user t ∈ T with pt(x, y) the joint density
and pt(x), pt(y) the marginal densities

• User t wants to learn hypothesis ht ∈ H minimizing the expected risk over Dt:

min
ht∈H

LDt(ht) = E(x,y)∼Dt [l(ht(x), y)]

• A set of T users [T] = {1, . . . , T} ⊆ T participate to the training phase

• Local dataset St = {(x(i)t , y(i)t )}nti=1 at user t ∈ T drawn i.i.d. from Dt
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AN IMPOSSIBILITY RESULT

• Assume pt(x) is identical across t ∈ T, but pt(y|x) can be arbitrarily different

• FL with T users is then equivalent to T semi-supervised learning (SSL) problems

• With no assumptions on the data distribution, SSL does not improve sample
complexity [Ben-David et al., 2008, Darnstädt et al., 2013, Göpfert et al., 2019]

⇒ some assumptions on local data distributions are needed for FL to be beneficial
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PROPOSED ASSUMPTION

• For any user t ∈ T , the local distribution Dt is a mixture of underlying distributions
D̃1, . . . , D̃M defined by weights π∗

t1, . . . , π
∗
tm

Assumption
There exist M underlying (independent) distributions D̃m, 1 ≤ m ≤ M, such that for t ∈ T ,
Dt is mixture of the distributions {D̃m}Mm=1 with weights π∗

t = [π∗
t1, . . . , π

∗
tm] ∈ ∆M, i.e.

zt ∼ M(π∗
t ), ((xt, yt) |zt = m) ∼ D̃m, ∀t ∈ T ,

where M(π) is a multinomial (categorical) distribution with parameters π.
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GENERALIZING EXISTING FRAMEWORKS

• Our assumptions generalizes previous personalized FL formulations

• Clustered FL [Sattler et al., 2020, Ghosh et al., 2020] with C clusters: set M = C and π∗
tc = 1

if task (user) t is in cluster c and π∗
tc = 0 otherwise

• We also recover model interpolation [Deng et al., 2020, Mansour et al., 2020] and Fed-MTL
with task relationships [Smith et al., 2017, Vanhaesebrouck et al., 2017] as special cases
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LEARNING UNDER A MIXTURE MODEL

Proposition (informal)
Let Θ̆ = [θ̆1, . . . , θ̆M] and Π̆ = [π̆1, . . . , π̆T ] be a solution of

argminΘ,Π E
t∼DT

E
(x,y)∼Dt

[− log pt(x, y|Θ, πt)]

Then, for any t ∈ T , we have:

h∗
t =

M∑
m=1

π̆tmhθ̆m
(1)

• We can estimate Θ̆ and Π̆ by minimizing

f(Θ,Π) ≜ − log p(S1:T|Θ,Π)

n ≜ − 1
n

T∑
t=1

nt∑
i=1

log p(s(i)t |Θ, πt),

• For a user t′ not seen at training time: learn πt′ in a single shot, and use (1) 9



CENTRALIZED EXPECTATION-MAXIMIZATION

• Natural approach: Expectation-Maximization (EM) algorithm

• We denote by qt the distribution over the latent variables z(i)t

• E-step: qk+1
t (z(i)t = m) ∝ πk

tm · exp
(
−l(hθkm

(⃗x(i)t ), y(i)t )
)

• M-step:

πk+1
tm =

∑nt
i=1 q

k+1
t (z(i)t = m)

nt

θk+1
m ∈ argminθ∈Rd

T∑
t=1

nt∑
i=1

qk+1
t (z(i)t = m) · l

(
hθ (⃗x(i)t ), y(i)t

)
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FEDERATED EXPECTATION-MAXIMIZATION
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FEDERATED EXPECTATION-MAXIMIZATION
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FEDERATED EXPECTATION-MAXIMIZATION
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CONVERGENCE RATE

Theorem (Informal)
With local SGD as the local solver, the iterates of FedEM satisfy:

1
K

K∑
k=1

E
∥∥∥∇Θf

(
Θk,Πk

)∥∥∥2
F
≤ O

(
1√
K

)
,

1
K

K∑
k=1

∆Πf(Θk,Πk) ≤ O
(

1
K3/4

)
,

where the expectation is over the random batches samples, and

∆Πf(Θk,Πk) ≜ f
(
Θk,Πk

)
− f

(
Θk,Πk+1

)
≥ 0.
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SURROGATE FEDERATED OPTIMIZATION

• FedEM can be seen as a particular instance of a more general framework that we call
federated surrogate optimization, extending the centralized framework of [Mairal, 2013]

• This framework minimizes an objective function of the form
∑T

t=1 ωtft
(
u⃗, v⃗t

)
• Each user t ∈ [T] can compute a partial first order surrogate of ft

• Our framework can be used to analyze the convergence of other FL algorithms, such
as pFedMe [Dinh et al., 2020] (see paper for details)
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EXPERIMENTS

Dataset Local FedAvg FedProx FedAvg+ clustered FL pFedMe FedEM (Ours)

FEMNIST 71.0 / 57.5 78.6 / 63.9 78.9 / 64.0 75.3 / 53.0 73.5 / 55.1 74.9 / 57.6 79.9 / 64.8
EMNIST 71.9 / 64.3 82.6 / 75.0 83.0 / 75.4 83.1 / 75.8 82.7 / 75.0 83.3 / 76.4 83.5 / 76.6
CIFAR10 70.2 / 48.7 78.2 / 72.4 78.0 / 70.8 82.3 / 70.6 78.6 / 71.2 81.7 / 73.6 84.3 / 78.1
CIFAR100 31.5 / 19.9 40.9 / 33.2 41.0 / 33.2 39.0 / 28.3 41.5 / 34.1 41.8 / 32.5 44.1 / 35.0
Shakespeare 32.0 / 16.6 46.7 / 42.8 45.7 / 41.9 40.0 / 25.5 46.6 / 42.7 41.2 / 36.8 46.7 / 43.0
Synthetic 65.7 / 58.4 68.2 / 58.9 68.2 / 59.0 68.9 / 60.2 69.1 / 59.0 69.2 / 61.2 74.7 / 66.7

Table 1: Test accuracy: average across users / bottom decile.

Dataset FedAvg FedAvg+ FedEM

FEMNIST 78.3 (80.9) 74.2 (84.2) 79.1 (81.5)
EMNIST 83.4 (82.7) 83.7 (92.9) 84.0 (83.3)
CIFAR10 77.3 (77.5) 80.4 (80.5) 85.9 (90.7)
CIFAR100 41.1 (42.1) 36.5 (55.3) 47.5 (46.6)
Shakespeare 46.7 (47.1) 40.2 (93.0) 46.7 (46.6)
Synthetic 68.6 (70.0) 69.1 (72.1) 73.0 (74.1)

Table 2: Average test accuracy across users unseen at training (train accuracy in parenthesis). 14



EXPERIMENTS

Figure 1: Effect of local dataset size on the average test accuracy across unseen users for CIFAR100.
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EXPERIMENTS

Figure 2: Effect of user sampling rate on the test accuracy for CIFAR10.
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EXPERIMENTS

Figure 3: Effect of number of mixture components M on the test accuracy for CIFAR10.
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THANK YOU FOR YOUR ATTENTION!

TO APPEAR AT NEURIPS 2021

ARXIV LINK: https://arxiv.org/abs/2108.10252

CODE: https://github.com/omarfoq/fedem
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