
FEDERATED LEARNING: ADVANCES AND OPEN CHALLENGES

Aurélien Bellet (MAGNET)

Journées Scientifiques Inria 2021
Session IA



OUTLINE

1. What is Federated Learning?

2. A concrete Federated Learning algorithm

3. Some challenges in Federated Learning

4. Wrapping up

1



WHAT IS FEDERATED LEARNING?



(SUPERVISED) MACHINE LEARNING
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A SHIFT OF PARADIGM: FROM CENTRALIZED TO DECENTRALIZED DATA

• The standard setting in Machine Learning (ML) considers a centralized dataset

• But in the real world data is often decentralized across different parties

data center

≠
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WHY DON’T WE ALWAYS CENTRALIZE DATA?

1. Sending the data may be too costly

• Self-driving cars are expected to generate several TBs of data a day
• Some wireless devices have limited bandwidth/power

2. Data may be considered too sensitive

• Growing public awareness and regulations on data privacy

• Keeping control of data can give a competitive advantage in business and research
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HOW ABOUT EACH PARTY LEARNING ON ITS OWN?

1. The local dataset may be too small
• Sub-par predictive performance (e.g., due to overfitting)
• Non-statistically significant results (e.g., medical studies)

2. The local dataset may be biased
• Not representative of the target distribution
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FEDERATED LEARNING

Federated Learning (FL) aims to
collaboratively train ML models

while keeping the data decentralized

• FL is a booming topic
• Term first coined in 2016; more than 1,000 papers in first half of 2020 alone1

• First real-world deployments by companies and researchers

• FL is multidisciplinary: ML, optimization, privacy & security, networks, systems...

• FL could eventually enable remote data science, make AI accessible to citizens for
collaborative tasks on personal data, ...

1https://www.forbes.com/sites/robtoews/2020/10/12/the-next-generation-of-artificial-intelligence/
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A CONCRETE FEDERATED LEARNING
ALGORITHM



CLASSIC FL PROBLEM FORMULATION

• We consider a set of K parties

• Each party k holds a dataset Dk of nk points, so there is n =
∑

k nk points in total

• We denote by θ the model parameters (e.g., weights of a neural network)

• We want to find the parameters that minimize the overall prediction error:

min
θ

K∑
k=1

nk
n Loss(θ;Dk)
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A BASELINE FL ALGORITHM: FEDAVG [MCMAHAN ET AL., 2017]

Algorithm FedAvg (server-side)
initialize θ

for each round t = 0, 1, . . . do
for each party k in parallel do

θk ← ClientUpdate(k, θ)
θ ←

∑K
k=1

nk
n θk

Algorithm ClientUpdate(k, θ)
Parameters: # steps L, step size η

for 1, . . . , L do
θ ← θ − η∇Loss(θ;Dk)

send θ to server
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A BASELINE FL ALGORITHM: FEDAVG [MCMAHAN ET AL., 2017]

each party makes an update
using its local dataset
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A BASELINE FL ALGORITHM: FEDAVG [MCMAHAN ET AL., 2017]
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A BASELINE FL ALGORITHM: FEDAVG [MCMAHAN ET AL., 2017]

parties update their copy
of the model and iterate
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SOME CHALLENGES
IN FEDERATED LEARNING

1. DEALING WITH HETEROGENEOUS DATA



DEALING WITH HETEROGENEOUS DATA

• Unlike distributed ML on a cluster, local data distributions may be arbitrarily different

• When data is heterogeneous across parties, FedAvg suffers from local drift

(Figure taken from [Karimireddy et al., 2020])

• Challenges: design algorithms which minimize communication costs, ensure that
model is fair to all parties, automatically adapt the network topology...
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FEDERATED LEARNING OF PERSONALIZED MODELS

• Instead of training a single global model, learn personalized models collaboratively!

• Inspired by multi-task learning, we proposed to learn personalized models along
with relationships between tasks in fully decentralized networks:2

F(θ1, . . . , θK,W;D) = 1
K

K∑
k=1

Loss(θk;Dk) +
∑
k<l

Wk,l∥θk − θl∥2

• Ongoing collaboration with NEO team (G. Neglia) on formulations based on clear
statistical assumptions that can offer generalization guarantees

2[Vanhaesebrouck et al., 2017, Bellet et al., 2018, Zantedeschi et al., 2020]
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SOME CHALLENGES
IN FEDERATED LEARNING

2. PRESERVING PRIVACY



PRIVACY ISSUES IN (FEDERATED) ML

• ML models are susceptible to various attacks on data privacy

• Membership inference attacks try to infer the presence of a known individual in the
training set [Shokri et al., 2017]

• Reconstruction attacks try to infer some of the points used to train the model
[Paige et al., 2020]

• Federated Learning offers an additional attack surface because the server and/or
other parties observe model updates (not only the final model) [Nasr et al., 2019]
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DIFFERENTIAL PRIVACY IN A NUTSHELL

Randomized
algorithm

A

x1

x2

xn

random coins

A(D)

distribution of A(D)

...

Randomized
algorithm

A

x1

xn

random coins

A(D')

distribution of A(D')

...

x2'

output range of A

p
ro

b
a
b
ili

ty ratio
bounded

Definition ([Dwork et al., 2006], informal)
A is ε-differentially private (DP) if for all neighboring datasets
D = {x1, x2, . . . , xn} and D′ = {x1, x′2, x3, . . . , xn} and all sets S:

Pr[A(D) ∈ S] ≤ eε Pr[A(D′) ∈ S].
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DIFFERENTIALLY PRIVATE AGGREGATION

• In most FL algorithms, parties interact through an aggregation step θ ← 1
K
∑

k θk

• DP in centralized setting: trusted curator adds (Gaussian) noise to the average θ

• DP in FL setting: each party k adds noise to its local update θk before sharing it

• The error due to privacy is O(
√
K) larger in the FL case

• Challenges: improve the privacy-utility trade-off while maintaining efficiency, model
rich privacy constraints in complex systems...
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A SIMPLE PROTOCOL FOR DP AGGREGATION WITH BETTER UTILITY [SABATER ET AL., 2020]

Algorithm GOPA protocol
Parameters: graph G, variances σ2

∆, σ
2
η ∈ R+

for all neighboring parties {k, l} in G do
k and l draw y ∼ N (0, σ2

∆)

set ∆k,l ← y, ∆l,k ← −y
for each party k do
k draws ηk ∼ N (0, σ2

η)

k reveals θ̂k ← θk +
∑

l∼k∆k,l + ηk

1. Pairs of parties securely exchange
pairwise-canceling Gaussian noise

2. Each party generates personal Gaussian
noise

3. Each party reveals sum of local update,
pairwise and personal noise terms

• Private & accurate: result θ̂ = 1
K
∑

k θ̂k can match the accuracy of centralized setting

• Scalable: it is sufficient for each party to communicate with O(log K) others

• Robust: it can handle some collusions, dropouts and even malicious behavior
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SOME CHALLENGES
IN FEDERATED LEARNING
3. PUTTING FL TO PRACTICE



PUTTING FL TO PRACTICE

• Technological challenges: develop general-purpose software libraries which can be
easily deployed in production systems

• Regulatory/legal challenges: when should model updates be considered as personal
data? how to ensure compliance with current regulations (e.g., GDPR)?

• Convincing stakeholders: what are the key merits of FL for a given application? how
to make FL as transparent as possible to the end-users?
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COLLABORATION WITH LILLE UNIVERSITY HOSPITAL

• We are currently exploring these questions with Lille University Hospital (INCLUDE
team) in the context of AEx FLAMED

• We have started developing our own FL library and will soon deploy a
proof-of-concept across 4 hospitals of the GCS G4

• We will have some official support from CNIL on legal aspects in the context of its
Bac à Sable 20213

• Discussions with EPIONE team, who are also working on FL applied to health data

3https://www.cnil.fr/fr/bac-sable-donnees-personnelles-la-cnil-accompagne-12-projets-dans-le-domaine-de-la-sante-numerique
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WRAPPING UP



KEEPING UP WITH ADVANCES IN FEDERATED LEARNING

Survey paper: Advances and Open Problems in FL [Kairouz et al., 2021]

• A large collaborative effort (50+ authors!)

• Updated in December 2020, to appear in FnTML 2021

Online seminar: Federated Learning One World (FLOW)
https://sites.google.com/view/one-world-seminar-series-flow/

• Weekly talks (usually on Wednesdays, 1pm UTC) covering all aspects of FL

• The videos and slides of all previous talks are available online

17

https://sites.google.com/view/one-world-seminar-series-flow/


THANK YOU FOR YOUR ATTENTION!
QUESTIONS?
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