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LEARNING SCORING FUNCTIONS

• Algorithmic decisions often involve scoring individuals using a learned function of
their attributes

• Decisions are usually taken based on whether the score exceeds a certain threshold,
where the value of threshold depends on the context in which the decision is taken

• Examples: credit lending [Chen, 2018], medical diagnosis [Deo, 2015], recidivism
prediction in criminal justice [Rudin et al., 2018]

• Fairness is a major concern in such applications!
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BIPARTITE RANKING

• Statistical framework: same as in binary classification
• Random variables (X, Y) with joint distribution P
• X ∈ X : observation (features)
• Y ∈ {−1,+1}: binary label

• Training dataset: D = {(Xi, Yi)}ni=1
i.i.d.∼ P

• Objective: learn a scoring function s : X → R from D so that positive observations
are ranked higher with high probability

• Optimal scoring function orders elements by decreasing Pr[Y = +1 | X = x]

• Performance measures: derived from the ROC curve
• For any threshold t ∈ R, we can define an induced classifier g(X) = I[s(X) > t]
• ROC : true positive rate (TPR) as a function of the false positive rate (FPR) when varying t
• Common scalar summary: Area under the ROC curve (AUC )
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FAIRNESS IN BIPARTITE RANKING: A MOTIVATING EXAMPLE

• Sensitive group Z ∈ {0, 1}: we now have D = {(Xi, Yi, Zi)}ni=1
i.i.d.∼ P

Motivating Example: credit-risk screening
• A bank grants a loan to a client with socio-economic features X if the score s(X) > t
• The risk aversion may vary so the precise value of t is unknown, but the bank is
generally interested in regimes where the probability of default is small (low FPR).

• The bank would like to design a score function s that ranks higher the clients that are
more likely to repay the loan (ranking performance), while ensuring that any t in the
regime of interest leads to similar FNR across sensitive groups (fairness constraint)

• Learning a scoring function gives flexibility in thresholding the scores but we cannot
rely on fairness notions that consider a single classifier!

• How to define and guarantee fairness for a scoring function?
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AUC-BASED FAIRNESS CONSTRAINTS

• Previous work in different communities [Kallus and Zhou, 2019] [Beutel et al., 2019]
[Borkan et al., 2019] introduced several fairness notions relevant to bipartite ranking

• For conciseness, denote the r.v. s(X | y) := s(X)|Y = y and s(X | y, z) := s(X)|Y = y, Z = z

Intra-group pairwise Pr[s(X | −1, 0) < s(X′ | +1, 0)] = Pr[s(X | −1, 1) < s(X′ | +1, 1)]
Inter-group pairwise Pr[s(X | −1, 0) < s(X′ | +1, 1)] = Pr[s(X | −1, 1) < s(X′ | +1, 0)]
Background Neg. Subgroup Pos. Pr[s(X,−1) < s(X′,+1, 0)] = Pr[s(X,−1) < s(X′,+1, 1)]

• We show that these are special cases of a general family AUC-based fairness notions,
which we precisely characterize [Vogel et al., 2021]

• The choice of AUC -based fairness constraint depends on the use-case
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LIMITATIONS OF AUC-BASED FAIRNESS

• Recall our credit lending example and assume that the scoring function s satisfies
Background Negative Subgroup Positive fairness:

Pr[s(X,−1) < s(X′,+1, 0)] = Pr[s(X,−1) < s(X′,+1, 1)]

• This means that creditworthy individuals from either group have the same
probability of being ranked higher than a “bad borrower”

• Sounds good?
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LIMITATIONS OF AUC-BASED FAIRNESS

• The ROC curves associated with such s might look like this:

• High thresholds (low prob. of default) lead to unfair decisions
• @FPR=10%, the FNR is 30% for group 0 and 60% for group 1

• There is a single threshold t at which the scoring function
induces a classifier satisfying equal opportunity

• This threshold is not relevant for the use-case of interest
(probability of default is too high!) 0.00 0.25 0.50 0.75 1.00
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More generally, AUC -based fairness constraints only guarantee that
there exists some t ∈ R for which s induces a fair classifier
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ROC-BASED FAIRNESS CONSTRAINTS

• We propose richer and more targeted fairness constraints

• Given a scoring function s, consider the conditional c.d.f.’s of s:

G(z)
s (t) = Pr[s(X) ≤ t | Y = +1, Z = z]

H(z)
s (t) = Pr[s(X) ≤ t | Y = −1, Z = z]

• Let’s start from the “ideal fairness goal”: enforcing G(0)
s = G(1)

s and H(0)
s = H(1)

s

• This can be expressed in terms of ROC curves: for any α ∈ [0, 1]

ROC G(0)
s ,G(1)

s
(α) = α

ROC H(0)
s ,H(1)

s
(α) = α

• When these conditions are satisfied, all AUC -based fairness constraints are satisfied
and all induced classifiers are fair, but ranking performance is typically destroyed
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ROC-BASED FAIRNESS CONSTRAINTS
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• Instead, we propose to enforce a finite number of pointwise constraints, providing
fair classifiers when thresholding at the desired trade-offs (e.g., FPR vs FNR)

• Discretization of interval [α1, α2] → classifiers are approximately fair in the whole interval

• For credit lending, we want fair classifiers in FNR for low FPR regimes: one could use

ROC G(0)
s ,G(1)

s
(α) = α, for α ∈ [0, αmax]
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ROC-BASED FAIRNESS CONSTRAINTS
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Objective for fair
scoring at low FPR

• Instead, we propose to enforce a finite number of pointwise constraints, providing
fair classifiers when thresholding at the desired trade-offs (e.g., FPR vs FNR)

• Discretization of interval [α1, α2] → classifiers are approximately fair in the whole interval

• For credit lending, we want fair classifiers in FNR for low FPR regimes: one could use

ROC G(0)
s ,G(1)

s
(α) = α, for α ∈ [0, αmax]
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LEARNING WITH AUC AND ROC-BASED FAIRNESS CONSTRAINTS

• We introduce empirical risk minimization formulations for learning fair scoring
functions under AUC and ROC-based constraints

• We establish generalization bounds for fair bipartite ranking

• We propose efficient gradient-based training algorithms (in-processing approach)

• See the paper [Vogel et al., 2021] for details
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ILLUSTRATION ON COMPAS

• Compas is a recidivism prediction dataset provided by ProPublica in their
investigation of the COMPAS algorithm used in US courts

• No fairness constraint → more ranking errors for non-recidivist African-Americans

• As being labeled +1 (recidivist) is a disadvantage, we use BPSN AUC→ still more of
such errors in top 25% (the potential region of interest for decisions like denying bail)

• To address limitations of AUC -based fairness, we enforce:
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TAKE-AWAYS

• Predictive risk scores are used in many real-world applications of AI/ML

• The fairness of a scoring function can be defined based on ROC curves

• AUC -based fairness sets a global constraint on the full ordering → not so relevant
when decisions are taken by thresholding the scores

• Pointwise ROC -based fairness allows more focused constraints and can ensure
fairness for classifiers obtained by thresholding in a certain range

• Both types of constraints can used for training of the scoring function, with efficient
algorithms and generalization guarantees
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THANK YOU FOR YOUR ATTENTION!
QUESTIONS?
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