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BACKGROUND: DIFFERENTIAL
PRIVACY & DP-SGD



MACHINE LEARNING MODELS CAN LEAK PERSONAL INFORMATION

• Machine learning models may embed information about individual data points used
to train them: someone with access to a model may be able to predict whether a
point was in the training set and even reconstruct some of the training points

(figure from [Nasr et al., 2023])

→ when trained on personal data, models should be considered personal data

• Question: how to quantify and provably control this leakage?
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DIFFERENTIAL PRIVACY

Randomized
algorithm

A

x1

x2

xn

random coins

A(D)

distribution of A(D)

...

Randomized
algorithm

A

x1

xn

random coins

A(D')

distribution of A(D')

...

x2'

• Neighboring datasets D = {x1, x2, . . . , xn} and D′ = {x1, x′2, x3, . . . , xn}

• Requirement: A(D) and A(D′) should have “similar” distributions

output range of A

p
ro

b
a
b
ili

ty ratio
bounded

3



RÉNYI DIFFERENTIAL PRIVACY

Definition (Rényi Differential Privacy [Mironov, 2017])
An algorithm A satisfies (α, ε)-Rényi Differential Privacy (RDP) for α > 1 and ε > 0 if for
all pairs of neighboring datasets D ∼ D′:

Dα (A(D)||A(D′)) ≤ ε , (1)

where for two r.v. X, Y with densities µX, µY, Dα

(
X || Y

)
is the Rényi divergence of order α:

Dα

(
X || Y

)
=

1
α− 1 ln

∫ (µX(z)
µY(z)

)α
µY(z)dz .

• Conversion to standard (ϵ, δ)-DP: (α, ε)-RDP implies (ε+ ln(1/δ)
α−1 , δ)-DP for any δ ∈ (0, 1)
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PROPERTIES OF RDP

• RDP is robust to auxiliary knowledge, as seen by its Bayesian interpretation:
• Consider an adversary who seeks to infer whether the dataset is D or D′

• The adversary has prior knowledge p and observes X ∼ A(D)
• Let the r.v. Rprior =

p(D′)
p(D) and Rpost =

p(D′|X)
p(D|X) = p(X|D′)p(D′)

p(X|D)p(D) for X ∼ A(D)
• RDP bounds the α-th moment of Rpost

Rprior
(for α→∞, we recover “pure” ϵ-DP)

• “The adversary doesn’t know much more after observing the output of A”

• Immunity to post-processing: for any g, if A(·) is (α, ε)-RDP, then so is g(A(·))

• Composition: if A1 is (α, ε1)-RDP and A2 is (α, ε2)-RDP, then A = (A1,A2) is
(α, ε1 + ε2)-RDP→ simpler and tighter than composition for (ε, δ)-DP
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ENFORCING RDP WITH THE GAUSSIAN MECHANISM

• Consider f taking as input a dataset and returning a p-dimensional real vector

• Denote its sensitivity by ∆ = maxD∼D′ ∥f(D)− f(D′)∥2

Theorem (Gaussian mechanism)
Let σ > 0. The algorithm A(·) = f(·) +N (0, σ2∆2) satisfies (α, α

2σ2 )-RDP for any α > 1.

Theorem (Subsampled Gaussian mechanism, informal)

If A is executed on a random fraction q of D, then it satisfies (α, q2α
2σ2 )-RDP.

• DP induces a privacy-utility trade-off, here in terms of the variance of the estimate

• Random subsampling amplifies privacy guarantees
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PRIVATELY RELEASING A MACHINE LEARNING MODEL

• A trusted curator wants to privately release a model trained on data D = {di}ni=1

• We focus here on approximately solving an Empirical Risk Minimization (ERM)
problem under a DP constraint:

min
w∈Rp

{
F(w;D) := 1

n

n∑
i=1

f(w;di)
}
, with f differentiable in w

• Note: in some cases, DP implies generalization [Bassily et al., 2016, Jung et al., 2021]
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DIFFERENTIALLY PRIVATE SGD

Algorithm Differentially Private SGD (DP-SGD) [Bassily et al., 2014, Abadi et al., 2016]
Initialize w(0) ∈ Rp (must be independent of D)
for t = 0, . . . , T− 1 do

Pick it ∈ {1, . . . ,n} uniformly at random
w(t+1) ← w(t) − γ(t)(∇f(w(t);dit) + η(t)

)
where η(t) ∼ N (0, σ2∆2Ip)

Return w(T)

• The sensitivity ∆ = supw supd,d′ ∥∇f(w(t);d)−∇f(w(t);d′)∥2 can be controlled by
assuming f(·;d) Lipschitz for all d, or using gradient clipping [Abadi et al., 2016]

• Extensions to mini-batch SGD, projected SGD and regularization are straightforward
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PRIVACY-UTILITY TRADE-OFF OF DP-SGD

• Utility analysis: same as non-private SGD (with additional noise due to privacy)

• Privacy analysis: DP-SGD is (α, αT
2n2σ2 ) by subsampled Gaussian mechanism +

composition of RDP

• Setting σ2 to satisfy (ϵ, δ)-DP and choosing T to balance optimization and privacy
errors, we get for the suboptimality gap E[F(wpriv)− F∗]

Convex, Lipschitz, smooth Õ
(√p ln(1/δ)

nϵ Λ∥w(0) − wpriv∥2
)

µ-strongly convex, Λ-Lipschitz, smooth Õ
(

p ln(1/δ)
n2ϵ2

Λ2

µ

)
• This is optimal [Bassily et al., 2014]: cannot do better without additional assumptions
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DIFFERENTIALLY PRIVATE (GREEDY)
COORDINATE DESCENT



DP-SGD FAILS ON IMBALANCED PROBLEMS
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REFINING THE REGULARITY MEASURES

We need to refine measure of regularity of f:

• coordinate-wise smoothness:

∥∇f(w+ t)−∇f(w)∥2 ≤ M∥t∥2|∇jf(w+ tej)−∇jf(w)| ≤ Mj|t|

• coordinate-wise Lipschitzness:

∥∇f(w)∥2 ≤ Λ|∇jf(w)| ≤ Lj

Important: we always have Mj ≤ M, and Lj ≤ Λ

• Scaled norm: ∥w∥M,q =
( p∑

j=1

M
q
2
j |wj|q

) 1
q for q ∈ {1, 2}
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DIFFERENTIALLY PRIVATE COORDINATE DESCENT (DP-CD)

Algorithm Differentially Private Coordinate Descent (DP-CD) [Mangold et al., 2022]
Initialize w(0) ∈ Rp

for t = 0, . . . , T− 1 do
Pick coordinate jt ∈ {1, . . . ,p} uniformly at random
w(t+1)

jt = w(t)
jt − γjt(∇jtF(w(t)) + η

(t)
jt ) where η

(t)
jt ∼ N (0, σ2Lj) and γjt ∝ 1/Mjt

Return 1
T
∑T

t=1 w(T)

• Noise and step sizes scaled to the appropriate coordinate-wise regularity constants

• In practice: estimate the Mj’s privately, and use coordinate-wise clipping with
threshold Cj = C

√
Mj/ tr(M) where C is a hyper-parameter
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PRIVACY-UTILITY TRADE-OFF: DP-CD VS DP-SGD

Convex Strongly-convex

DP-CD Õ
(√

p log(1/δ)
nϵ ∥L∥M−1RM

)
Õ
(
p log(1/δ)

n2ϵ2
∥L∥2M−1

µM

)

DP-SGD Õ
(√

p log(1/δ)
nϵ ΛRI

)
Õ
(
p log(1/δ)

n2ϵ2
Λ2

µI

)
RM = ∥w(0) − wpriv∥M,2, µM strong convexity in ∥ · ∥M,2

• DP-CD improves upon DP-SGD on imbalanced problems (but can be worse when
features are balanced and highly correlated)

• But the privacy loss is still polynomial in p...
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NUMERICAL ILLUSTRATION

Imbalanced problems:
DP-CD largely improves upon DP-SGD thanks to more appropriate step sizes
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• Regularized logistic regression

• Raw (imbalanced) data

• n = 45, 312 records

• p = 8 features

• ϵ = 1, δ = 1/n2
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NUMERICAL ILLUSTRATION

Balanced problems:
DP-CD still improves upon DP-SGD because it does not require amplification by sampling
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DIFFERENTIALLY PRIVATE GREEDY COORDINATE DESCENT (DP-GCD)

Algorithm Differentially Private Greedy Coordinate Descent (DP-GCD) [Mangold et al., 2023]
Initialize w(0) ∈ Rp

for t = 0, . . . , T− 1 do
Pick coordinate jt = argmaxj∈[p] |∇jF(w(t)) + ζj| where ζj ∼ Lap(0, σ2Lj)
w(t+1)

jt = w(t)
jt − γjt(∇jtF(w(t)) + η

(t)
jt ) where η

(t)
jt ∼ Lap(0, σ2Lj) and γjt ∝ 1/Mjt

Return w(T)

• Key idea: approximately picking the best coordinate only yields a privacy cost
logarithmic in p (Laplace noise used for technical reasons)

• We get more bang for our privacy budget by trading-off computational efficiency for
better utility
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PRIVACY-UTILITY TRADE-OFF: DP-GCD VS DP-SGD

Convex Strongly-convex

DP-GCD Õ
(
log p log(1/δ)

n2/3ϵ2/3
L2/3maxR

4/3
M,1

)
Õ
(
log p log(1/δ)

n2ϵ2
L2max

µ2
M,1

)

DP-SGD Õ
(√p√log(1/δ)

nϵ ΛRI,2

)
Õ
(
p log(1/δ)

n2ϵ2
Λ2

µI,2

)
RM,q = ∥w(0) − wpriv∥M,q µM,q strong convexity in ∥ · ∥M,q

• Logarithmic dependence in the dimension (sometimes)
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WHEN IS GCD TRULY LOGARITHMIC IN THE DIMENSION?

1. Problems in ℓ1 geometry: RM,1 or µM,1 are O(1)
• DP-GCD is optimal in the convex setting (matches known lower bound)
• DP-GCD improves upon best known rate in the strongly convex case

2. Problems with (quasi) sparse solutions: w∗ has a few large coordinates
• When iterates remain sparse, we get dependence in the effective dimension
rather than in the ambient dimension
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NUMERICAL ILLUSTRATION

DP-GCD can focus on relevant coordinates
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• Regularized logistic regression

• Standardized data

• n = 2, 600 records

• p = 501 features

• ϵ = 1, δ = 1/n2
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PRIVATE OPTIMIZATION VIA NOISY
FIXED-POINT ITERATIONS



HOW ABOUT OTHER OPTIMIZATION ALGORITHMS?

• Take the Alternating Direction Method of Multipliers (ADMM), which aims to solve:

minimize
w, z

f(w;D) + g(z)

subject to Aw+ Bz = c

Algorithm ADMM algorithm
Input: initial point u0, step size λ ∈ (0, 1], Lagrange parameter γ > 0
for k = 0 to K− 1 do
zk+1 = argminz

{
g(z) + 1

2γ ∥Bz+ uk∥22
}

wk+1 = argminw

{
f(w;D) + 1

2γ ∥Aw+ 2Bzk+1 + uk − c∥22
}

uk+1 = uk + 2λ (Awk+1 + Bzk+1 − c)
Return zK

• How can we make ADMM private and analyze its utility? More generally, how can we
design and analyze new private optimization algorithms? 19



FIXED-POINT ITERATIONS

• Let T : U → U be an operator with fixed points u∗, i.e., points for which T(u∗) = u∗

• We say that T is non-expansive if it is 1-Lipschitz, τ-contractive if it is τ-Lipschitz
when τ < 1, and λ-averaged if T = λR+ (1− λ)I for R non-expansive

• When T is contractive or λ-averaged, given an initial point u0, the fixed-point
iteration uk+1 = T(uk) converges to a fixed point u∗

• Fixed-point iterations come with a rich convergence theory, which covers for instance
inexact and block-wise updates [Combettes and Pesquet, 2021]
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FIXED-POINT ITERATIONS FOR OPTIMIZATION

• To minimize a function f, we can choose T such that its fixed points coincide with the
stationary points of f, i.e., 0 ∈ ∂f(u∗)

• For f convex and β-smooth, choosing T = I− γ∇f (which is γβ/2-averaged), we
recover gradient descent

• Many optimization algorithms can be cast as fixed-point iterations: this includes
proximal point, proximal gradient, Douglas Rachford, ADMM...
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NOISY FIXED-POINT ITERATIONS

• We propose to study the following noisy fixed-point iteration, inspired from
[Iutzeler et al., 2013, Combettes and Pesquet, 2019]

Algorithm Noisy fixed-point iteration [Cyffers et al., 2023]
Input: non-expansive operator R = (R1, . . . ,RB) over 1 ≤ B ≤ p blocks,step sizes
(λk)k∈N ∈ (0, 1], active blocks (ρk)k∈N ∈ {0, 1}B, errors (ek)k∈N, noise variance σ2 ≥ 0
for k = 0, 1, . . . do
for b = 1, . . . ,B do
uk+1,b = uk,b + ρk,bλk(Rb(uk) + ek,b + ηk+1,b − uk,b) with ηk+1,b ∼ N (0, σ2Ip)

• This general algorithm applies a λk-averaged operator with Gaussian noise, with
possibly randomized, inexact and block-wise updates

• We recover DP-SGD with R(u) = u− 2
β∇f(u;D), B = 1, ek = 2

β (∇f(uk;D)−∇f(uk;dik))

• With B > 1, we recover DP-CD [Mangold et al., 2022]
22



GENERAL UTILITY ANALYSIS

Theorem (Utility guarantees for noisy fixed-point iterations [Cyffers et al., 2023],
“adapted” from [Combettes and Pesquet, 2019])
Assume that R is τ-contractive with fixed point u∗. Let P[ρk,b = 1] = q for some q ∈ (0, 1].
Then there exists a learning rate λk = λ ∈ (0, 1] such that the iterates satisfy:

E
(
∥uk+1 − u∗∥2

)
⩽
(
1− q2(1− τ)

8

)k

D+ 8
( √pσ + ζ
√q (1− τ)

+
pσ2 + ζ2

q3(1− τ)3

)
(2)

where D = ∥u0 − u∗∥22, p is the dimension of u, and E[∥ek∥22] ≤ ζ2 for some ζ ≥ 0.

• The only assumption on R is that it is τ-contractive

• This property holds for DP-SGD when the objective is strongly convex, and we recover
the known rates up to the 1/(1− τ)3 factor in the second term

• It also holds for ADMM (again on strongly convex objectives)...
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ERM AS A CONSENSUS PROBLEM

• Consider the composite ERM problem:

minimize
u ∈ U ⊆ Rp

1
n

n∑
i=1

f(u;di) + r(u),

where f is a (typically smooth) and loss r is (typically non-smooth) regularizer

• We can reformulate this into a consensus problem that fits the general form solved
by ADMM algorithms:

minimize
w ∈ Rnp, z ∈ Rp

1
n

n∑
i=1

f(wi;di) + r(z)

subject to w− In(p×p)z = 0,

where each data item di has its own parameter wi ∈ Rp
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CENTRALIZED PRIVATE ADMM

• Consider a trusted curator with data D = (d1, . . . ,dn) who seeks to release a model
trained on D with record-level DP guarantees

• We directly get a private ADMM algorithm by applying our general noisy fixed-point
iteration to the appropriate operator

Algorithm Centralized private ADMM [Cyffers et al., 2023]
Input: initial point z0, step size λ ∈ (0, 1], privacy noise variance σ2 ≥ 0, parameter γ > 0
for k = 0 to K− 1 do
ẑk+1 =

1
n
∑n

i=1 uk,i
zk+1 = proxγr (ẑk+1)

for i = 1 to n do
wk+1,i = proxγfi(2zk+1 − uk,i)

uk+1,i = uk,i + 2λ
(
wk+1,i − zk+1 +

1
2ηk+1,i

)
with ηk+1,i ∼ N (0, σ2Ip)

Return zK
25



PRIVACY-UTILITY TRADE-OFF OF CENTRALIZED PRIVATE ADMM

Theorem (Privacy of centralized ADMM [Cyffers et al., 2023])
Assume that the loss function f(·,d) is L-Lipschitz for any data record d. Then Private
Centralized ADMM satisfies (α, 8αKL2γ2

σ2n2 )-RDP.

Corollary (Privacy-utility trade-off of centralized ADMM [Cyffers et al., 2023])
Using previous results and setting K appropriately, Private Centralized ADMM satisfies

E
(
∥uK − u∗∥2

)
= Õ

( √pαLγ√
εn (1− τ)

+
pαL2γ2

εn2 (1− τ)3

)
.

• Privacy guarantees follow from a sensitivity analysis of the fixed-point update and
do not require strong convexity
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FEDERATED PRIVATE ADMM WITH CLIENT SAMPLING

• Consider a federated learning setting with n clients (di now denoting the local
dataset of client i) and client-level DP guarantees

• Defining a block for each client and leveraging the randomization of updates in our
general scheme, we get a federated private ADMM algorithm with client sampling

Algorithm Federated private ADMM [Cyffers et al., 2023]
Input: initial point z0, step size λ ∈ (0, 1], privacy noise variance σ2 ≥ 0, parameter γ > 0, number
of sampled clients 1 ≤ m ≤ n

Server loop:
for k = 0 to K− 1 do

Subsample a set S of m clients
for i ∈ S do

∆uk+1,i = LocalADMMstep(zk, i)
ẑk+1 = zk + 1

n
∑

i∈S ∆uk+1,i

zk+1 = proxγr(ẑk+1)

Return zK

LocalADMMstep(zk, i):
Sample ηk+1,i ∼ N (0, σ2Ip)
wk+1,i = proxγfi(2zk − uk,i)

uk+1,i = uk,i + 2λ
(
wk+1,i − zk + 1

2ηk+1,i
)

Return uk+1,i − uk,i
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PRIVACY-UTILITY TRADE-OFF OF FEDERATED PRIVATE ADMM

Theorem (Privacy of federated ADMM [Cyffers et al., 2023])
Let Ki be the number of participations of client i. Then, Private Federated ADMM satisfies
(α, 8αKiL2γ2

σ2 )-RDP for client i in the local model. Furthermore, it also satisfies
(α, 16αKL2γ2

σ2n2 )-RDP in the central model.

Corollary (Privacy-utility trade-off of federated ADMM [Cyffers et al., 2023])
Setting m = rn and K appropriately, Private Federated ADMM satisfies (central model)

E ∥uK − u∗∥2 = Õ
( √pαLγ√

εrn (1− τ)
+

pαL2γ2

εr2n2 (1− τ)3

)
.

• Note: we also have a fully decentralized version which we analyze using network DP
[Cyffers and Bellet, 2022] and privacy amplification by iteration [Feldman et al., 2018]
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WRAPPING UP



TAKE-HOME MESSAGES

• Differentially private optimization is the workhorse of privacy-preserving ML

• DP-SGD is the de-facto standard but other algorithms can better harness the
problem structure→ coordinate descent for imbalanced and sparse problems

• Designing an analyzing private optimization algorithms can be challenging→ the
general framework of fixed-point iterations gives general recipes and results

Plenty of opportunities for optimizers to contribute!
such as: analyze the utility of proximal DP-GCD,

privacy-utility trade-off for non-expansive operators (convex case)
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THANK YOU FOR YOUR ATTENTION!
QUESTIONS?
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