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PRIVACY IN THE BIG DATA ERA

• Massive collection of personal data by companies and public organizations, driven
by the progress of data science and AI

• Data is increasingly sensitive and detailed: browsing history, purchase history, social
network posts, speech, geolocation, health...

• Quantifying privacy risks is challenging!
• Attacker may have prior knowledge
• Same data used in multiple computations
• Indirect leakage from aggregate quantities
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AGGREGATE STATISTICS ARE NOT SAFE

• Aggregate (potentially noisy) statistics about many individuals are vulnerable to
various attacks on data privacy

• Membership inference attacks, i.e. inferring presence of known individual in a
dataset from (high-dimensional) aggregate statistics

• Example: statistics about genomic variants [Homer et al., 2008]

• Reconstruction attacks, i.e. inferring (part of) the dataset from the output of many
aggregate statistics

• After sufficiently many queries, one can reconstruct the dataset [Dinur and Nissim, 2003]
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MACHINE LEARNING MODELS ARE NOT SAFE

• Machine learning models are elaborate kinds of aggregate statistics

• They are also susceptible to membership inference and reconstruction attacks, see
e.g. [Shokri et al., 2017, Paige et al., 2020, Geiping et al., 2020]
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PRIVATE DATA ANALYSIS

(Figure inspired from R. Bassily)
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• Goal: achieve utility while preserving privacy (conflicting objectives!)

• Note: this is separate from security concerns (e.g., unauthorized access to the system)
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OUTLINE

1. Differential Privacy

2. Private learning in the centralized setting

3. Private learning without a trusted curator
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DIFFERENTIAL PRIVACY



DIFFERENTIAL PRIVACY
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DIFFERENTIAL PRIVACY

Definition ([Dwork et al., 2006], informal)
A randomized algorithm A is (ε, δ)-differentially private (DP) if for all neighboring
datasets D = {x1, x2, . . . , xn} and D′ = {x1, x′2, x3, . . . , xn} and all sets S:

Pr[A(D) ∈ S] ≤ eε Pr[A(D′) ∈ S] + δ.

• DP is a property of the analysis, not of a particular output

• Sufficient condition: for o ∼ A(D), the privacy loss
∣∣∣ ln( Pr[A(D)=o]

Pr[A(D′)=o]

)∣∣∣ is bounded by ϵ
with probability 1− δ (note: ϵ can be seen as a function of δ)

• For meaningful privacy guarantees, think of ε ≤ 1 and δ ≪ 1/n

• In 2017, Dwork, McSherry, Nissim & Smith won the Gödel prize for introducing DP

• In 2020, the US Census started to use DP for its data releases
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PROPERTIES OF DP: ROBUSTNESS TO POSTPROCESSING AND AUXILIARY KNOWLEDGE

• Robustness to processing: informally, if A is (ϵ, δ)-DP, then so is f ◦ A for any f

• Robustness to auxiliary knowledge: DP bounds the relative advantage that an
adversary gets from observing the output of an algorithm

• DP holds even if adversary knows all but one data record
• Interpretation as hypothesis testing: adversary knows A and neighboring datasets D0

and D1, observes a realization of A(Db) for a secret bit b ∈ {0, 1}, and must guess
whether it was drawn from A(D0) or A(D1)

• DP puts a bound on the trade-offs between the true positive rate and the false positive
rate that can be achieved for this test
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PROPERTIES OF DP: COMPOSITION

• Composition allows to control the worst-case cumulative privacy loss over multiple
analyses run on the same dataset, including complex multi-step algorithms

Theorem (Simple composition)
Let A1, . . . ,AK be such that Ak satisfies (ϵk, δk)-DP. For any dataset D, let A be such that
A(D) = (A1(D), . . . ,Ak(D)). Then A is (ϵ, δ)-DP with ϵ =

∑K
k=1 ϵk and δ =

∑K
k=1 δk.

Theorem (Advanced composition)
Let ϵ, δ, δ′ > 0. If Ak satisfies (ϵ, δ)-DP, then A is (ϵ′, Kδ + δ′)-DP with

ϵ′ =
√

2K ln(1/δ′)ϵ+ Kϵ(eϵ − 1)

• The sequence of algorithms can be chosen adaptively

• Numerically tighter composition can be obtained with through a variant of DP based
on the Rényi divergence [Mironov, 2017]
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ENFORCING DP WITH THE GAUSSIAN MECHANISM

• Consider f taking as input a dataset and returning a p-dimensional real vector

Gaussian mechanism AGauss(D, f, ε, δ)

1. Compute sensitivity ∆ = max(D,D′) are neighboring ∥f(D)− f(D′)∥2

2. Output f(D) + η, where η ∼ N (0, σ2Ip) with σ =

√
2 ln(1.25/δ)∆

ε

Theorem
Let ε, δ > 0. The Gaussian mechanism AGauss(·, f, ε, δ) is (ε, δ)-DP.

• Noise calibrated using sensitivity of f and privacy budget (ε and δ)

• Sketch of proof: tail bound for the Gaussian distribution + simplifications

• DP induces a privacy-utility trade-off, here in terms of the variance of the estimate

• Note: the MSE achieved by the Gaussian mechanism is worst-case optimal
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PRIVATE LEARNING IN THE
CENTRALIZED SETTING



PRIVATELY RELEASING A MACHINE LEARNING MODEL

• A trusted curator wants to privately release a model trained on data D = {(xi, yi)}ni=1

• We focus here on approximately solving an Empirical Risk Minimization (ERM)
problem under an (ϵ, δ)-DP constraint:

min
θ∈Θ

{
F(θ;D) := 1

n

n∑
i=1

L(θ; xi, yi)
}

(Note: in some cases, DP can imply generalization [Bassily et al., 2016, Jung et al., 2021])

• We can achieve this by designing a differentially private ERM solver
Private
dataset

Differentially

private

ERM solver

Private model...

DP queries

answers
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DIFFERENTIALLY PRIVATE SGD

Algorithm: Differentially Private SGD ADP-SGD(D, L, ϵ, δ)

• Initialize parameters to θ(0) ∈ Θ (must be independent of D)
• For t = 0, . . . , T− 1:

• Pick random mini-batch B(t) ⊆ {1, . . . ,n} of size m
• η(t) ← (η

(t)
1 , . . . , η

(t)
p ) ∈ Rp where each η

(t)
j ∼ N (0, σ2) with σ =

16l
√

T ln(2/δ) ln(1.25T/δn)
nϵ

• θ(t+1) ← ΠΘ

(
θ(t) − γt

(
∇L(θ(t);B(t)) + η(t))) (ΠΘ projection operator)

• Return θ(T)

• More data (larger n)→ less noise added to each gradient

• More iterations (larger T)→ more noise added to each gradient

Theorem (DP guarantees for DP-SGD)
Let ϵ ≤ 1, δ > 0. Let the loss function L(·; x, y) be l-Lipschitz w.r.t. the ℓ2 norm for all
x, y ∈ X × Y . Then ADP-SGD(·, L, ϵ, δ) is (ϵ, δ)-DP.
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DIFFERENTIALLY PRIVATE SGD

Sketch of proof.
• Recall that for a query with ℓ2 sensitivity ∆, achieving (ϵ′, δ′) with the Gaussian
mechanism requires to add noise with standard deviation σ′ =

√
2 ln(1.25/δ′)∆

ϵ′

• The loss function L is l-Lipschitz, which implies that ℓ2-norm of individual gradients
is bounded by l and therefore ∆ = 2l/m

• Hence, with σ =
16l
√

T ln(2/δ) ln(1.25T/δn)
nϵ , each noisy gradient is

(
nϵ

4m
√

2T ln(2/δ)
, δn
2mT

)
-DP

• Using privacy amplification by subsampling [Balle et al., 2018] allows to leverage the
randomness in the choice of B: each noisy gradient is in fact

(
ϵ

2
√

2T ln(2/δ)
, δ
2T

)
-DP

• DP-SGD is an adaptive composition of T DP mechanisms, so by advanced
composition we obtain that it is (ϵ, δ)-DP
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DIFFERENTIALLY PRIVATE SGD

Theorem (Utility guarantees for DP-SGD [Bassily et al., 2014])
Let Θ be a convex domain of diameter bounded by R, and let the loss function L be
convex and l-Lipschitz over Θ. For T = n2 and γt = O(R/

√
t), DP-SGD guarantees:

E[F(θ(T)]−min
θ∈Θ

F(θ) ≤ O
(
lR
√
p ln(1/δ) ln3/2(n/δ)

nϵ

)
.

• Proof: plug variance of stochastic gradients in analysis of SGD [Shamir and Zhang, 2013]

• Utility gap w.r.t. the non-private model is Õ(√p/ϵn), which is worst-case optimal

• In practice: drop Lipschitz assumption and use gradient clipping [Abadi et al., 2016],
which introduces a bias-variance trade-off in gradient estimation
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PRIVATE LEARNING WITHOUT A
TRUSTED CURATOR



FROM CENTRALIZED TO DECENTRALIZED DATA

• In the real world data is often decentralized across different parties

data center

≠

• Data may be considered too sensitive to be shared (e.g., due to legal restrictions,
intellectual property rights, or because it provides a competitive advantage)

• Inferior performance and/or biased results if each party learns independently
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FEDERATED LEARNING

Federated Learning (FL) aims to
collaboratively train ML models

while keeping the data decentralized

• FL is a booming and multidisciplinary topic: see collaborative survey
[Kairouz et al., 2021] to know more about existing work and open problems

• FL does not itself provide any privacy guarantees: in fact, it offers an additional
attack surface compared to the centralized setting as participants will observe some
intermediate results [Nasr et al., 2019, Geiping et al., 2020]
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TRUST MODELS: CENTRAL DP VERSUS LOCAL DP

Central DP: a trusted curator collects
raw data and runs a DP algorithm on it

→ the observed output is only the
final result

Individuals
(or organizations)

... A

Trusted
curator

A(D)

x1
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xn

Local DP: no trusted curator so each
party must locally run a DP algorithm

→ the observed output consists of
all messages shared by all parties
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... A
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y2
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A KEY FUNCTIONALITY FOR FL: DP AGGREGATION

• Consider K parties, with each party k holding local dataset Dk

• Many FL algorithms rely on a coordinating server and proceed as follows:

for t = 1 to T do
At each party k: compute θk ← LOCALUPDATE(θ, θk;Dk), send θk to server
At server: compute θ ← 1

K
∑

k θk, send θ back to the parties

• Therefore: DP aggregation + Composition property of DP =⇒ DP-FL

• DP aggregation: given a private value θk ∈ [0, 1] for each party k, we want to
accurately estimate θavg = 1

K
∑

k θk under a DP constraint

• Central DP: trusted server computes θavg and adds Gaussian noise

• Local DP: each party k adds Gaussian noise to θk before sharing it

Error is
√
K larger in local DP→ study intermediate trust models
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GOPA PROTOCOL FOR DP AGGREGATION

• Assume that pairs of parties can communicate through secure channels (the server
may serve as relay), e.g. using a public key infrastructure

Algorithm GOPA protocol [Sabater et al., 2020]
Each party k generates independent Gaussian noise ηk
Each party k selects a random set of m other parties
for all selected pairs of parties k ∼ l do

Parties k and l securely exchange pairwise-canceling Gaussian noise ∆k,l = −∆l,k
Each party k sends θ̂k = θk +

∑
k∼l ∆k,l + ηk to the server

• Estimate of the average: θ̂avg = 1
K
∑

k θ̂k = θavg + 1
K
∑

k ηk

• Intuition: pairwise noise does not affect utility but helps protecting individual values
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PRIVACY GUARANTEES FOR GOPA

• Adversary: coalition of the server with a proportion 1− τ of the parties

Theorem (Privacy of GOPA [Sabater et al., 2020], informal)
• Let each party select m = O(log(τK)/τ) other parties
• Set the independent noise variance so as to satisfy (ϵ, δ′)-DP in the central model
• For large enough pairwise noise variance, GOPA is (ϵ, δ)-DP with δ = O(δ′).

• Same utility as central DP with only logarithmic number of messages per party

• Our theoretical results give practical values for the quantities above

• More generally, we precisely quantify the effect of the graph of communications
between honest parties on the privacy guarantees
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GOPA: EMPIRICAL ILLUSTRATION

• For reasonable proportions ρ of honest parties, the variance of the estimated
average produced by GOPA is similar to the trusted curator setting

• As expected, the resulting FL model also has similar accuracy
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PRIVACY & FULL DECENTRALIZATION

• In fully decentralized FL, global aggregations are replaced by local aggregations
among neighbors in a graph (thus, the previous approach cannot be applied)

• But there is no server observing all messages, and each party k has a limited view

• Can this be used to prove stronger differential privacy guarantees?

22



NETWORK DIFFERENTIAL PRIVACY

• Let Ok be the set of messages sent and received by party k

Definition (Network DP [Cyffers and Bellet, 2022])
An algorithm A satisfies (ϵ, δ)-network DP if for all
pairs of distinct parties k, l ∈ {1, . . . , K} and all pairs
of datasets D,D′ that differ only in the local dataset
of party l, we have:

Pr[Ok(A(D))] ≤ eϵ Pr[Ok(A(D′))] + δ.

• This is a relaxation of local DP: if Ok contains the full transcript of messages, then
network DP boils down to local DP
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WALK-BASED DECENTRALIZED SGD

• Consider the standard objective F(θ;D) = 1
K
∑K

k=1 Fk(θ;Dk) and a complete graph

• We consider a fully decentralized algorithm where the model is updated sequentially
by following a random walk

Algorithm Private decentralized SGD on a complete graph
Initialize model θ
for t = 1 to T do

Current party updates θ by a gradient update with Gaussian noise
Current party sends θ to a random party

return θ
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PRIVACY AMPLIFICATION BY DECENTRALIZATION FOR SGD

Theorem ([Cyffers and Bellet, 2022], informal)
To achieve a fixed (ϵ, δ)-DP guarantee with the previous algorithm, the standard
deviation of the noise is O(

√
K/ ln K) smaller under network DP than under local DP.

• Accounting for the limited view in fully decentralized algorithms amplifies privacy
guarantees by a factor of O(ln K/

√
K), nearly recovering the utility of central DP

• The proof leverages recent results on privacy amplification by iteration
[Feldman et al., 2018] and exploits the randomness of the path taken by the model

• We show some robustness to collusion (albeit with smaller privacy amplification)
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FULL DECENTRALIZATION: EMPIRICAL ILLUSTRATION
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• Results are consistent with our theory: network DP-SGD significantly amplifies
privacy guarantees compared to local DP-SGD
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WRAPPING UP



SUMMARY

• Differential privacy provides a robust mathematical definition of privacy and a strong
algorithmic framework allowing to design complex private algorithms

• DP induces a privacy-utility trade-off which depends on the trust model: the two
extreme cases are the central (trusted curator) model and the local model (trust no
one and nothing except oneself)

• In the context of federated learning, we can leverage appropriate relaxations of local
DP to nearly match the privacy-utility trade-off of the central model
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SOME OPEN PROBLEMS IN PRIVACY & ML

• Going beyond worst-case privacy-utility trade-offs: leverage the structure of some
machine learning problems to design better DP algorithms

• Better privacy accounting: tight, automatic and personalized

• Correctness guarantees under malicious parties: make computation verifiable while
preserving privacy guarantees

• Combining DP with secure multi-party computation: identify tractable secure
primitives under which one can achieve trusted curator utility for many problems

• Concrete DP/FL deployments: match DP bounds to protection against specific
attacks, articulate with the law (GDPR), make FL transparent to end-users
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THANK YOU FOR YOUR ATTENTION!
QUESTIONS?
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RÉNYI DP

Definition (Rényi Differential Privacy)
Let α > 1, ϵ > 0. A randomized algorithm A is (α, ϵ)-RDP if for every adjacent datasets
D ∼ D′, we have:

Dα (A(D)∥A(D′)) ≤ ϵ,

where Dα(P∥Q) is the Rényi divergence of order α between probability distributions P
and Q defined as:

Dα(P∥Q) =
1

α− 1 logEx∼Q

[
P(x)
Q(x)

]α
.

Proposition (From RDP to (ϵ, δ)-DP)

If A is an (α, ϵ)-RDP algorithm, then it also satisfies (ϵ+ log(1/δ)
α−1 , δ)-DP for any δ ∈ (0, 1).
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RÉNYI DP

Proposition (Gaussian mechanism in RDP)
Let f be a function taking as input a dataset, and has L2 sensitivity bounded by ∆. Then
A(D) = f(D) + η with η ∼ N (0, σ2I) satisfies (α, ϵ)-RDP for any α > 1 and ϵ = α∆

2σ2 .

Proposition (Composition under RDP)
If A1 satisfies (α, ϵ1)-RDP and A2 satisfies (α, ϵ2)-RDP, then A = (A1,A2) satisfies
(α, ϵ1 + ϵ2)-RDP.

• RDP keeps tracks of the distribution of the privacy loss random variable

• Privacy accounting is done in RDP; then given the desired δ for the final guarantee, α
is optimized (analytically or numerically) to get the best ϵ

• In practice this is much better than resorting to advanced composition
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