Similarity Learning for Provably Accurate Sparse Linear Classification

Aurélien Bellet Amaury Habrard Marc Sebban

Laboratoire Hubert Curien, UMR CNRS 5516, Université de Saint-Etienne, France

ICML 2012
Introduction

Similarity/Distance Learning
Introduction: Similarity/Distance Learning

Similarity learning

Similarity learning overview

Learning a similarity function $K(x, x')$ implying a new instance space where the performance of a given algorithm is improved.

Very popular approach

Find the positive semi-definite (PSD) matrix $M \in \mathbb{R}^{d \times d}$ parameterizing a (squared) Mahalanobis distance $d_M^2(x, y) = (x - x')^T M(x - x')$ such that d_M^2 satisfies best local constraints.
Motivation of our work

Limitations of Mahalanobis distance learning

- Must enforce $M \succeq 0$ (costly).
- Works well in practice in k-NN (based on local neighborhoods), but not really appropriate for global classifiers?
- No theoretical link between the learned metric and the error of the classifier.

Goal of our work

- Learn a non PSD similarity function,
- designed to improve global linear classifiers,
- with theoretical guarantees on the classifier error.
(ϵ, γ, τ)-Good Similarity Functions
The theory of Balcan et al. (2006, 2008) makes the link between the properties an arbitrary similarity function and its performance in binary linear classification.

Definition (Balcan et al., 2008)

A similarity function $K \in [-1, 1]$ is an (ϵ, γ, τ)-good similarity function for a learning problem P if there exists an indicator function $R(x)$ defining a set of “reasonable points” such that the following conditions hold:

1. A $1 - \epsilon$ probability mass of examples (x, ℓ) satisfy:

 $$E_{(x', \ell') \sim P} [\ell \ell' K(x, x') | R(x')] \geq \gamma$$

2. $\Pr_{x'}[R(x')] \geq \tau.$

$\epsilon, \gamma, \tau \in [0, 1]$
Implications for learning

Strategy

Each example is mapped to the space of “the similarity scores with the reasonable points” (similarity map).
Theorem (Balcan et al., 2008)

Given K is (ϵ, γ, τ)-good, there exists a linear separator α in the above-defined projection space that has error close to ϵ at margin γ.

$$K(x, G)$$

$$K(x, C)$$

$$K(x, A)$$
Hinge loss version of the definition.

Definition (Balcan et al., 2008)

A similarity function K is an (ϵ, γ, τ)-good similarity function in hinge loss for a learning problem P if there exists a (random) indicator function $R(x)$ defining a (probabilistic) set of “reasonable points” such that the following conditions hold:

1. $\mathbb{E}_{(x,\ell) \sim P} \left[\left[1 - \ell g(x) / \gamma \right]^+ \right] \leq \epsilon,$ where $g(x) = \mathbb{E}_{(x',\ell') \sim P} [\ell' K(x, x') | R(x')]$ and $[1 - c]^+ = \max(1 - c, 0)$ is the hinge loss,

2. $\Pr_{x'}[R(x')] \geq \tau.$
Learning rule

Learning the separator α with a **linear program**

$$\min_{\alpha} \sum_{i=1}^{n} \left[1 - \sum_{j=1}^{n} \alpha_j \ell_i K(x_i, x_j) \right] + \lambda \| \alpha \|_1$$

Advantage: sparsity

Thanks to **L$_1$-regularization**, α will have some zero-coordinates (depending on λ). Makes prediction much faster than k-NN.
Learning Good Similarity Functions for Linear Classification
We propose to optimize a **bilinear similarity** K_A:

$$K_A(x, x') = x^T A x'$$

parameterized by the matrix $A \in \mathbb{R}^{d \times d}$ (not constrained to be PSD nor symmetric).

K_A is efficiently computable for sparse inputs.
Empirical goodness

Goal

Optimize the \((\epsilon, \gamma, \tau)\)-goodness of \(K_A\) on a finite-size sample.

Notations

Given a training sample \(T = \{z_i = (x_i, \ell_i)\}_{i=1}^{N_T}\), a subsample \(R \subseteq T\) of \(N_R\) reasonable points and a margin \(\gamma\),

\[
V(A, z_i, R) = \left[1 - \ell_i \frac{1}{\gamma N_R} \sum_{k=1}^{N_R} \ell_k K_A(x_i, x_k)\right]_+
\]

is the empirical goodness of \(K_A\) w.r.t. a single training point \(z_i \in T\), and

\[
\epsilon_T = \frac{1}{N_T} \sum_{i=1}^{N_T} V(A, z_i, R)
\]

is the empirical goodness over \(T\).
SLLC (Similarity Learning for Linear Classification)

\[
\min_{A \in \mathbb{R}^{d \times d}} \epsilon_T + \beta \|A\|_F^2
\]

where \(\beta\) is a regularization parameter.

- SLLC can be cast as a convex QP and efficiently solved.
- Only one constraint per training example.
- Different from classic metric learning approaches: similarity constraints must be satisfied only on average, learn global similarity (same \(R\) for all training examples).
Theoretical analysis

We want to bound the **goodness in generalization** ϵ of our learned similarity:

$$\epsilon = \mathbb{E}_{z=(x,l) \sim \mathcal{P}} V(A, z, R)$$

by its **empirical goodness** ϵ_T:

$$\epsilon_T = \frac{1}{N_T} \sum_{i=1}^{N_T} V(A, z_i, R)$$
Theoretical analysis ctd

Theorem: SLLC has a uniform stability in κ / N_T

$$\kappa = \frac{1}{\gamma} \left(\frac{1}{\beta \gamma} + \frac{2}{\hat{\tau}} \right),$$

where β is the regularization parameter, γ the margin and $\hat{\tau}$ the proportion of reasonable points in the training sample.

Theorem: Generalization bound - Convergence in $O(\sqrt{1/N_T})$

With probability $1 - \delta$, we have:

$$\epsilon \leq \epsilon_T + \frac{\kappa}{N_T} + (2\kappa + 1) \sqrt{\frac{\ln 1/\delta}{2N_T}}.$$

Guarantee on the error of the classifier and convergence rate independent from dimensionality.
Experimental set-up

- 7 datasets

<table>
<thead>
<tr>
<th></th>
<th>Breast</th>
<th>Iono.</th>
<th>Rings</th>
<th>Pima</th>
<th>Splice</th>
<th>Svmguide1</th>
<th>Cod-RNA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Train size</td>
<td>488</td>
<td>245</td>
<td>700</td>
<td>537</td>
<td>1,000</td>
<td>3,089</td>
<td>59,535</td>
</tr>
<tr>
<td>Test size</td>
<td>211</td>
<td>106</td>
<td>300</td>
<td>231</td>
<td>2,175</td>
<td>4,000</td>
<td>271,617</td>
</tr>
<tr>
<td># dimensions</td>
<td>9</td>
<td>34</td>
<td>2</td>
<td>8</td>
<td>60</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td># runs</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

- We compare SLLC to K_I (cosine baseline) and two widely-used Mahalanobis distance learning methods: LMNN and ITML.
Experiments: overall results

<table>
<thead>
<tr>
<th></th>
<th>Breast</th>
<th>Ion.</th>
<th>Rings</th>
<th>Pima</th>
<th>Splice</th>
<th>SVMguide1</th>
<th>Cod-RNA</th>
</tr>
</thead>
<tbody>
<tr>
<td>K_I</td>
<td>96.57</td>
<td>89.81</td>
<td>100.00</td>
<td>75.62</td>
<td>83.86</td>
<td>96.95</td>
<td>95.91</td>
</tr>
<tr>
<td></td>
<td>(20.39)</td>
<td>(52.93)</td>
<td>(18.20)</td>
<td>(25.93)</td>
<td>(362)</td>
<td>(64)</td>
<td>(557)</td>
</tr>
<tr>
<td>SLLC</td>
<td>96.90</td>
<td>93.25</td>
<td>100.00</td>
<td>75.94</td>
<td>87.36</td>
<td>96.55</td>
<td>94.08</td>
</tr>
<tr>
<td></td>
<td>(1.00)</td>
<td>(1.00)</td>
<td>(1.00)</td>
<td>(1.00)</td>
<td>(1)</td>
<td>(8)</td>
<td>(1)</td>
</tr>
<tr>
<td>LMNN</td>
<td>96.46</td>
<td>88.68</td>
<td>100.00</td>
<td>73.50</td>
<td>87.59</td>
<td>96.23</td>
<td>94.98</td>
</tr>
<tr>
<td></td>
<td>(488)</td>
<td>(245)</td>
<td>(700)</td>
<td>(537)</td>
<td>(1,000)</td>
<td>(3,089)</td>
<td>(59,535)</td>
</tr>
<tr>
<td>ITML</td>
<td>96.38</td>
<td>88.29</td>
<td>100.00</td>
<td>72.80</td>
<td>84.41</td>
<td>96.80</td>
<td>95.42</td>
</tr>
<tr>
<td></td>
<td>(488)</td>
<td>(245)</td>
<td>(700)</td>
<td>(537)</td>
<td>(1,000)</td>
<td>(3,089)</td>
<td>(59,535)</td>
</tr>
</tbody>
</table>

- SLLC outperforms K_I, LMNN and ITML on 4 out of 7 datasets.
- Always leads to **extremely sparse models**.
Experiments: linear classification

<table>
<thead>
<tr>
<th></th>
<th>Breast</th>
<th>Iono.</th>
<th>Rings</th>
<th>Pima</th>
<th>Splice</th>
<th>SVMguide1</th>
<th>Cod-RNA</th>
</tr>
</thead>
<tbody>
<tr>
<td>K₁</td>
<td>96.57</td>
<td>89.81</td>
<td>100.00</td>
<td>75.62</td>
<td>83.86</td>
<td>96.95</td>
<td>95.91</td>
</tr>
<tr>
<td></td>
<td>(20.39)</td>
<td>(52.93)</td>
<td>(18.20)</td>
<td>(25.93)</td>
<td>(362)</td>
<td>(64)</td>
<td>(557)</td>
</tr>
<tr>
<td>SLLC</td>
<td>96.90</td>
<td>93.25</td>
<td>100.00</td>
<td>75.94</td>
<td>87.36</td>
<td>96.55</td>
<td>94.08</td>
</tr>
<tr>
<td></td>
<td>(1.00)</td>
<td>(1.00)</td>
<td>(1.00)</td>
<td>(1.00)</td>
<td>(1)</td>
<td>(8)</td>
<td>(1)</td>
</tr>
<tr>
<td>LMNN</td>
<td>96.81</td>
<td>90.21</td>
<td>100.00</td>
<td>75.15</td>
<td>86.85</td>
<td>96.53</td>
<td>95.15</td>
</tr>
<tr>
<td></td>
<td>(9.98)</td>
<td>(13.30)</td>
<td>(8.73)</td>
<td>(69.71)</td>
<td>(156)</td>
<td>(82)</td>
<td>(591)</td>
</tr>
<tr>
<td>ITML</td>
<td>96.80</td>
<td>93.05</td>
<td>100.00</td>
<td>75.25</td>
<td>85.29</td>
<td>96.70</td>
<td>95.14</td>
</tr>
<tr>
<td></td>
<td>(9.79)</td>
<td>(18.01)</td>
<td>(15.21)</td>
<td>(16.40)</td>
<td>(287)</td>
<td>(49)</td>
<td>(206)</td>
</tr>
</tbody>
</table>
Experiments: projection space

KI (0.50196)

SLLC (1)

LMNN (0.85804)

ITML (0.50002)
Experiments: k-NN

Surprisingly, SLLC also outperforms LMNN and ITML on the small datasets.

<table>
<thead>
<tr>
<th></th>
<th>Breast</th>
<th>Iono.</th>
<th>Pima</th>
<th>Splice</th>
<th>Svmsguide1</th>
<th>Cod-RNA</th>
</tr>
</thead>
<tbody>
<tr>
<td>K_1</td>
<td>96.71</td>
<td>83.57</td>
<td>72.78</td>
<td>77.52</td>
<td>93.93</td>
<td>90.07</td>
</tr>
<tr>
<td>SLLC</td>
<td>96.90</td>
<td>93.25</td>
<td>75.94</td>
<td>87.36</td>
<td>93.82</td>
<td>94.08</td>
</tr>
<tr>
<td>LMNN</td>
<td>96.46</td>
<td>88.68</td>
<td>73.50</td>
<td>87.59</td>
<td>96.23</td>
<td>94.98</td>
</tr>
<tr>
<td>ITML</td>
<td>96.38</td>
<td>88.29</td>
<td>72.80</td>
<td>84.41</td>
<td>96.80</td>
<td>95.42</td>
</tr>
</tbody>
</table>
Conclusion
Making use of Balcan et al.’s theory, we propose a novel similarity learning method that:

- has guarantees in terms of the error of a linear classifier,
- is effective in practice as compared to the state-of-the-art,
- produces extremely sparse models.

Future work could include:

- playing with other regularizers ($L_{1,2}$-norm?),
- deriving an online algorithm.
Conclusion

Thank you!

Come to the poster for more details :-)
Backup slide 1: another projection space example
LMNN and ITML have their own sophisticated solver.

For SLLC we just use a standard convex programming package.

SLLC is much faster than LMNN but remains slower than ITML.

<table>
<thead>
<tr>
<th></th>
<th>Breast</th>
<th>Iono.</th>
<th>Rings</th>
<th>Pima</th>
<th>Splice</th>
<th>SVMguide1</th>
<th>Cod-RNA</th>
</tr>
</thead>
<tbody>
<tr>
<td>SLLC</td>
<td>4.76</td>
<td>5.36</td>
<td>0.05</td>
<td>4.01</td>
<td>158.38</td>
<td>185.53</td>
<td>2471.25</td>
</tr>
<tr>
<td>LMNN</td>
<td>25.99</td>
<td>16.27</td>
<td>37.95</td>
<td>32.14</td>
<td>309.36</td>
<td>331.28</td>
<td>10418.73</td>
</tr>
<tr>
<td>ITML</td>
<td>1.68</td>
<td>3.09</td>
<td>0.19</td>
<td>2.74</td>
<td>3.41</td>
<td>0.83</td>
<td>5.98</td>
</tr>
</tbody>
</table>
Our approach is very simple: learn a global linear similarity, use it to learn a global linear classifier.

Would be interesting to be able to learn more powerful similarities and classifiers.

We **kernelize** SLLC to be able to learn in a **nonlinear** feature space induced by a kernel.

This is done with the **KPCA trick** (Chatpatanasiri et al., 2010): projection of data in kernel space + dimensionality reduction.

Then we apply SLLC in this new feature space.
Backup slide 4: overfitting

LMNN and ITML overfit the data as dimensionality grows.