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Context

Differential Privacy (DP) [Dwork et al., 2006] is a rigorous mathematical framework that provides
privacy guarantees for individuals in a dataset. It ensures that the outcome of any analysis is not
significantly affected by any individual’s data, thereby protecting personal information from being
inferred. In a machine learning (ML) context, models trained on personal data can inadvertently
reveal private details or allow adversaries to reconstruct original data [Nasr et al., 2019]. DP
addresses this by enabling the training of models on sensitive datasets while preserving user privacy,
with DP-SGD [Abadi et al., 2016] serving as the standard algorithm for implementing differential
privacy in model training. DP-SGD follows the same steps as standard SGD but clips the gradients’
norm to a threshold before perturbing them with carefully calibrated Gaussian noise, providing
differential privacy guarantees for each gradient step.

However, practical implementations of DP mechanisms face some challenges:

• Implementation artefacts, such as numerical errors due to floating-point arithmetic [Mironov,
2012] or theoretical mistakes in privacy accounting [Tramer et al., 2022], can lead to un-
derestimating the actual privacy leakage. This means the system may be less private than
theoretically guaranteed.

• Conservative privacy analyses might provide pessimistic upper bounds on the privacy loss,
overestimating privacy leakage. This can result in an unnecessary loss in the utility of the
model due to excessive noise being added.

To address these issues, privacy auditing [Jagielski et al., 2020, Nasr et al., 2023] has emerged
as a method to empirically estimate lower bounds on the privacy loss. Privacy auditing involves
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simulating attacks—such as membership inference attacks—that attempt to determine whether a
specific individual’s data was included in the training dataset. By assessing the success rate of
these attacks, we can measure the practical privacy leakage of the model.

Objectives

The goal of this internship is to investigate the practical guarantees of differentially private machine
learning models. The internship will focus on (a subset of) the following questions:

1. Auditing differentially private machine learning algorithms: Recent work [Cebere
et al., 2024] indicates that, under certain technical assumptions, the theoretical privacy anal-
ysis of DP-SGD is tight—that is, the theoretical bounds closely match the actual privacy loss.
This project aims to i) Explore additional assumptions: Investigate whether introducing
new or stronger assumptions can improve the upper bound provided by privacy accounting,
potentially leading to better privacy-utility trade-offs for DP-SGD. ii) Relax existing as-
sumptions: Examine if the assumptions required for tight analysis can be weakened without
losing tightness, resulting in more realistic adversaries.

2. Analyzing the impact of subsampling schemes on privacy guarantees: Privacy am-
plification by subsampling [Kasiviswanathan et al., 2011, Balle et al., 2018] is instrumental
in the privacy analysis of DP-SGD, where only a random subset of the data (a mini-batch)
is used in each iteration. Recent studies [Chua et al., 2024, Lebeda et al., 2024] have shown
that the choice of subsampling method (e.g., sampling with or without replacement) can sig-
nificantly affect the theoretical privacy guarantees. On the other hand, sampling schemes
considered in formal privacy guarantees do not always align with the ones used in practi-
cal implementations. This misalignment can lead to incorrect or loose privacy guarantees.
The objectives are to: i) Audit current approaches: Examine existing DP-SGD imple-
mentations to identify discrepancies between assumed and actual subsampling methods and
ii) Detect theoretical gaps in practice: Use privacy auditing to empirically detect any
gaps between theoretical privacy guarantees and actual privacy leakage due to subsampling
schemes.

Skills Required

• Background in Probability and Statistics, Machine Learning, and/or Algorithms and Com-
puter Science.

• Proficiency in Python programming.

• Familiarity with Differential Privacy is a plus.

• Familiarity with Floating Point Arithmetics is a plus.
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