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Abstract—In this paper, we consider the problem of condi-
tional anomaly detection that aims to identify data instances
with an unusual response or a class label. We develop a new
non-parametric approach for conditional anomaly detection
based on the soft harmonic solution, with which we estimate
the confidence of the label to detect anomalous mislabeling. We
further regularize the solution to avoid the detection of isolated
examples and examples on the boundary of the distribution
support. We demonstrate the efficacy of the proposed method
on several synthetic and UCI ML datasets in detecting unusual
labels when compared to several baseline approaches. We
also evaluate the performance of our method on a real-world
electronic health record dataset where we seek to identify
unusual patient-management decisions.

Keywords-conditional anomaly detection, outlier and
anomaly detection, graph methods, harmonic solution,
backbone graph, random walks, health care informatics

I. INTRODUCTION

Anomaly detection is the task of finding unusual elements
in a set of observations. Most existing anomaly detection
methods in data analysis are unconditional and look for
outliers with respect to all data attributes [1], [2]. Conditional
anomaly detection (CAD) [3], [4], [5] is the problem of
detecting unusual values for a subset of variables given the
values of the remaining variables. In other words, one set
of variables defines the context in which the other set is
examined for anomalous values.

CAD can be extremely useful for detecting unusual be-
haviors, outcomes, or unusual attribute pairings in many
domains [6]. Examples of such problems are the detection of
unusual actions or outcomes in medicine [4], [5], [7], invest-
ments [8], law [9], social networks [10], politics [11] and
other fields [6]. In all these domains, the outcome strongly
depends on the context (patient conditions, economy and
market, case circumstances, etc.), hence the outcome is
unusual only if it is compared to the examples with the
same context.

In this work, we study a special case of CAD that tries to
identify the unusual values for just one target variable given
the values of the remaining variables (attributes). The target
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variable is assumed to take on a finite set of values which
we also refer to as labels, because of its similarity to the
classification problems.

In general, the concept of anomaly in data in the existing
literature is somewhat ambiguous and several definitions
have been proposed in the past [1], [2]. Typically, an
example is considered anomalous when it is not expected
from some underlying model. For the practical purposes of
this paper, we define the conditional anomaly detection as
follows:

Problem statement (F): Given a set of n past
examples (xi, yi)

n
i=1 (with possible label noise),

identify and rank instances i in recent m examples
(xi, yi)

n+m
i=n+1 that are unusual.

In this statement, we do not assume that the labels {yi}ni=1

are perfect; they may also be subject to the label noise.
In order to assess the anomalousness of an example,

we typically output an anomaly score. One way to define
the score is to use a probabilistic model M and calculate
the anomaly score as the probability of a different label:
P (y 6= yi|xi,M). However, the probabilistic model M is
not known in advance and must be estimated from available
data. This may lead to two major complications that are
illustrated in Figure 1: First, an instance may be far from the
past observed data points. Because of the lack of the support
for alternative responses, it is difficult to assess the anoma-
lousness of these instances. We refer to these instances as
isolated points. Second, the examples on the boundary of the
class distribution support may look anomalous due to their
low likelihood. These boundary examples are also known as
fringe points [12].

One approach to the CAD task is to construct a clas-
sification model on the past data (xi, yi)

n
i=1 and apply it

to (xi, yi)
n+m
i=n+1 to check if the assigned labels (yi)

n+m
i=n+1

are correct. However, in that way we would disregard the
labels (yi)

n+m
i=n+1 which are available and can be utilized to

improve the performance of the CAD task by leveraging the
interaction between the labels of past examples and the new
observed examples.

Because the underlying conditional distribution of the data
is unknown, a non-parametric approach that looks for the



Figure 1. Challenges for CAD — the squares and the plus signs represent
the examples from the two different classes: 1) Fringe points are the
examples on the boundary of the class distribution support 2) Isolated
points are the examples far from the majority but not within a different
class.

label consistency of the instances on their neighborhood
(e.g., k-nearest neighbor or k-NN) can be very useful [12].
One problem with relying on models such as k-NN is that
they fail to detect clusters of anomalous instances.

In this paper, we develop and present a new non-
parametric method to tackle CAD and its challenges. Our
method relies on the similarity graph of instances and
attempts to assess whether the response to an input variable
agrees with responses of data points in its neighborhood
using propagation of labeling information through the graph.
Our method differs from typical local neighborhood methods
in two important aspects. First, it respects the structure of
the manifold and accounts for more complex interactions
in the data. Second, it solves the problem of isolated and
fringe points by decreasing the confidence in predicting an
opposite label for such points through regularization.

Similar to other graph-based approaches for propagation
of information (e.g., semi-supervised learning), the solution
to our approach demands the computation of the inverse
of the similarity matrix that can be challenging for large
number of instances. We address this problem by propos-
ing a method for building a smaller backbone graph that
approximates the original graph.

In summary, the main contributions of this paper are:

• We introduce a label propagation approach on the data
similarity graph for conditional anomaly detection to
estimate the confidence of the labels.

• We propose a specific regularization that avoids uncon-
ditional outliers and fringe points (Figure 1).

• We present a compact computation of unconstrained
regularization to account for the approximate backbone
graph with different node weights.

• We propose a scaling approach that adjusts for multi-
task predictions and makes anomaly scores comparable.

• We verify the efficacy of the proposed algorithm
on some synthetic datasets, several UCI datasets and

a challenging real-world dataset of patients’ health
records.

In the following, we first review the related work in
Section II-A, and label propagation on the data similarity
graph in Section II-C. In Section III-A, we adopt the label
propagation on the data similarity graph for CAD problem
and propose a regularization that addresses the isolated and
fringe points problems. Next, in Section III-B, we show
how to create a smaller backbone graph to deal with more
than a few thousand examples. We report the results of our
approach on the synthetic datasets, UCI ML datasets, and a
real-world medical dataset in Section IV.

II. BACKGROUND

A. Related work

While traditional anomaly detection has been studied for
a long time [1], [2], the methods for CAD are relatively
new and the research in this area is only emerging [3], [4],
[13]. Typically, the existing CAD methods adopt and use
classification methods, such as generative models [4], [13],
[14], or max-margin classifiers [5], [7]. In Section IV, we
compare our method to these approaches.

The work on CAD, when the target variable is restricted
to discrete values only, is closely related to mislabeling
detection [15] and cross-outlier detection [12]. The objective
of mislabeling detection is to 1) make a yes/no decision on
whether the examples are mislabeled, and 2) improve the
classification accuracy by removing the mislabeled exam-
ples.

Brodley et al. [15] used different classification approaches
to remove mislabeled samples including single and ensemble
classifiers. Bagging and boosting are applied in [16]. Jiang
et al. [17] used an ensemble of neural nets to enhance
the performance of a k-NN classifier. Sanchez et al. [18]
introduced several other k-NN based approaches including
depuration, nearest centroid neighborhood (NCN) and iter-
ative k-NCN. Finally, Valizadegan and Tan [19] introduced
an objective function based on the weighted nearest neighbor
approach and solved it with Newton method.

The main difference between mislabeling detection and
CAD is that mislabeling detection identifies and removes
the mislabeled examples in order to learn better classifiers,
while CAD is interested in ranking examples according to
the severity of conditional anomalies in data. This is the
main reason our evaluations in Section IV measure the
rankings of the cases being anomalous and not the improved
classification accuracy when we remove them. Nevertheless,
we do compare (Sections IV-A and IV-B) to the methods
typically used in mislabeling detection.

Papadimitriou and Faloutsos [12] define cross-outliers as
examples that seem normal when considering the distribu-
tion of examples from the assigned class, but are abnormal
when considering the examples from the other class. For



each sample (x, y), they compute two statistics based on
the the similarity of x to its neighborhood from the samples
belonging to class y and samples not belonging to class y.
An example is considered anomalous if the first statistic is
significantly smaller than the second statistic. However, their
method is not very robust to fringe points (Figure 1) [12].
The conditional anomaly approach developed in this paper
addresses this problem.

B. Notation

We use the following notation throughout the paper.
Let (xi, yi)

n+m
i=1 be the collection of n past and m recent

observed examples. Without loss of generality, we limit y to
binary class labels, i.e., y ∈ {±1}. Let G be the similarity
graph constructed on the nodes {xi}n+mi=1 with weighted
edges W . The entries wij of W encode the pairwise
similarities between xi and xj . We denote by L(W ) the
unnormalized graph Laplacian defined as L(W ) = D −W
where D is a diagonal matrix whose entries are given by
dii =

∑
j wij .

C. Label Propagation

Label propagation on the graph is widely used for semi-
supervised learning (SSL). The general idea is to assume
the consistency of labels among the data which are 1) close
to each other and 2) lie on some structure (a manifold or
a cluster). The two examples are the consistency method of
Zhou et al. [20] and the harmonic solution of Zhu et al. [21].
The inference of the labels by the approach of Zhu et al. [21]
can be interpreted as a random walk on G with the transition
matrix P = D−1W . The harmonic solution satisfies the
harmonic property `i = 1

dii

∑
j∼i wij`j .

1

Harmonic solution and consistency method are the in-
stances of a bigger class of the optimization problems called
the unconstrained regularization [22]. In the transductive
setting, the unconstrained regularization searches for soft
(continuous) label assignment such that it maximizes fit to
the labeled data and penalizes for not following the manifold
structure:

`? = min
`∈Rn

(`− y)TC(`− y) + `TK`, (1)

where K is a symmetric regularization matrix and C is
a symmetric matrix of empirical weights. C is usually
diagonal and the diagonal entries often equal to some fixed
constant cl for the labeled data and cu for the unlabeled. In a
SSL setting, y is a vector of pseudo-targets such that yi is the
label of the i-th example when the example is labeled, and
yi = 0 otherwise. Many methods can be derived from (1).
For example, for the (hard) harmonic solution K = L(W ),
cl =∞, and cu = 0. Consistency method has K equal to the
normalized graph Laplacian K = I −D−1/2WD−1/2 and
cu = cl is set to a non-zero constant. The appealing property

1j ∼ i denotes that j and i are neighbors in G

of (1) is that its solution can be computed in closed form as
follows [22]:

`? = (C−1K + I)−1y (2)

III. METHODOLOGY

In this section we show how to solve the CAD problem
(F) using label propagation on a data similarity graph and
how to compute the anomaly score. In particular, we will
build on the harmonic solution approach (Section II-C) and
adopt it for CAD in the following ways: 1) show how to
compute the confidence of mislabeling, 2) add a regularizer
to address the problem of isolated and fringe points, 3) use
soft constraints to account for a fully labeled setting, and
4) describe a compact computation of the solution from a
quantized backbone graph.

A. Conditional Anomaly Detection

The label propagation method described in Section II-C
can be applied to CAD by considering all observed data as
labeled examples with no unlabeled examples. The setting
for matrix C is dependent on the quality of the past observed
data. If the labels of the past observed data (or any example
from the recent sample) are guaranteed to be correct, we
set the corresponding diagonal elements of C to a large
value to make their labels fixed. Notice that specific domain
techniques can be used to make sure that the collected
examples from the past observed data have correct labels.
In this paper, we assume that we do not have access to such
prior knowledge and therefore, the observed data are also
subject to label noise.

We now propose a way to compute the anomaly score
from (2). The output `? of (1) for the example i can be
rewritten as:

`?i = |`?i | × sgn(`?i ) (3)

SSL methods use sgn(`?i ) in (3) as the predicted label for
i. For an unlabeled example, when the value of `i is close
to ±1, then the labeling information that was propagated to
it is more consistent. Typically, that means that the example
is close to the labeled examples of the respective class. The
key observation, which we exploit in this paper, is that we
can interpret |`?i | as a confidence in the label. Our situation
differs from SSL, as all our examples are labeled and we
aim to assess the confidence of already labeled example.
Therefore, we define the anomaly score as the absolute
difference between the actual label yi and the inferred soft
label `i:

si = |`?i − yi|. (4)

We will now address the problems illustrated in Figure 1.
Recall that the isolated points are the examples that are
(with respect to some metric) far from the majority of the
data. Consequently, they are surrounded by few or no nearby



points. Therefore, no matter what their label is, we do not
want to report them as conditional anomalies. In other words,
we want CAD methods to assign them a low anomaly score.
Even when the isolated points are far from the majority
data, they still can be orders of magnitudes closer to the
data points with the opposite label. This can make a label
propagation approach falsely confident about that example
being a conditional anomaly. In the same way we do not
want to assign a high anomaly score to fringe points just
because they lie on a distribution boundary. To tackle these
problems we set K = L(W )+γgI , where we diagonally reg-
ularize the graph Laplacian. Intuitively, such a regularization
lowers the confidence value |`?| of all examples; however it
reduces the confidence score of far outlier points relatively
more. To see this, notice (Section IV-C) that the similarity
weight metric is an exponentially decreasing function of the
Euclidean distance. In other words, such a regularization can
be interpreted as a label propagation on the graph with an
extra sink. The sink is an extra node in G with label 0 and
every other node connected to it with the same small weight
γg . The edge weight of γg affects the isolated points more
than other points because their connections to other nodes
are small.

In the fully labeled setting, the hard harmonic solution
degenerates to the weighted k-NN. In particular, the hard
constraints of the harmonic solution do not allow the labels
spread beyond other labeled examples. However, despite the
fully labeled case, we still want to take the advantage of
the manifold structure. To alleviate this problem we allow
labels to spread on the graph by using soft constraints in
the unconstrained regularization problem (1). In particular,
instead of cl =∞ we set cl to a finite constant and we also
set C = clI . With such a setting of K and C, we can solve
(1) using (2) to get:

`? =
(
(clI)

−1
(L(W ) + γg) + I

)−1
y (5)

=

(
c−1l L(W ) +

(
1 +

γg
cl

)
I

)−1
y. (6)

To avoid computation of the inverse,2 we calculate (6) using
the following system of linear equations:(

c−1l L(W ) +

(
1 +

γg
cl

)
I

)
`? = y (7)

We then plug the output of (7) into (4) to get the anomaly
score. We will refer to this score as the SoftHAD score. In-
tuitively, when the confidence is high but sign(`?i ) 6= yi, we
will consider the label yi of the case (xi, yi) conditionally
anomalous.

2due to numerical instability

B. Backbone Graph

The computation of the system of linear equations (7)
scales with complexity3 O(n3). This is not feasible for a
graph with more than several thousand nodes. To address the
problem, we use data quantization [23] and sample a set of
nodes from the training data to create G. We then substitute
the nodes in the graph with a smaller set of k � n distinct
centroids which results in O(k3) computation.

We improve the approximation of the original graph with
the backbone graph, by assigning different weights to the
centroids. We do it by computing the multiplicities (i.e., how
many nodes each centroid represents). In the following we
will describe how to modify (7) to allow for the computation
with multiplicities.

Let V be the diagonal matrix of multiplicities with vii
being the number of nodes that centroid xi represents. We
will set the multiplicities according to the empirical prior.
Let WV be the compact representation of the matrix W on
G, where each node xi is replicated vii times. Let LV and
KV be the graph Laplacian and regularized graph Laplacian
of WV . Finally, let CV be the C in (1) with the adjustment
for the multiplicities. CV accounts for the fact that we
care about “fitting” to train data according to the train data
multiplicities. Then:

WV = VWV

LV = L(WV )

KV = LV + γgV

CV = V 1/2CV 1/2

The unconstrained regularization (1) now becomes:

`V ? = min
`∈Rn

(`− y)TCV (`− y) + `TKV ` (8)

and subsequently (6) becomes:

`V ? =
((
CV
)−1

KV + I
)−1

y

=
(
V −1/2C−1V −1/2(LV + γgV ) + I

)−1
y

=
(
(clV )

−1
(LV + γgV ) + I

)−1
y

=
(
1/clV

−1LV + clγg + I
)−1

y

With these adjustments the anomaly score that accounts for
the multiplicities is equal to |`V ? − y|.

3The complexity can be further improved to O(n2.376
u ) with the

Coppersmith-Winograd algorithm.



Figure 2. Synthetic Data. Top: A sample of datasets D1, D2, and D3. Bottom: Synthetic datasets after changing the labels of 3% of the examples.

IV. EXPERIMENTS

To evaluate the performance of our SoftHAD method, we
compare it to the following baselines:
• 1-class SVM approach in which we cover each class

by a separate 1-class SVM [24] with RBF kernel
and the anomaly score equals to the distance of the
example from the learned boundary of its own class.
This method is an example of the traditional anomaly
detection method adopted for CAD.

• Quadratic discriminant analysis (QDA) model [25],
where we model each class by a multivariate Gaussian,
and the anomaly score is the class posterior of the
opposite class.

• SVM classification model [26] with RBF kernel where
we consider an example anomalous if it falls far on the
opposite side of the decision boundary. This method
is an example of the classification method adopted for
CAD and was used by Valko et al. [5].

• Weighted k-NN approach [25] that uses the same
weight metric W as SoftHAD, but relies only on the
labels in the local neighborhood and does not account
for the manifold structure.

A. Synthetic data
The evaluation of a CAD is a very challenging task when

the true model is not known. Therefore, we first evaluate

and compare the results of different CAD methods on three
synthetic datasets (D1, D2, and D3) with known underlying
models that let us compute the true anomaly scores.

We show the three datasets we used in our experiments
in Figure 2. All datasets are modeled as the mixtures of
multivariate Gaussians and the class densities we used to
generate these datasets vary in locations, shapes and mutual
overlaps. Dataset D1 is similar to XOR type of data with
one of the classes modeled by a single elongated Gaussian.
In D2, the classes overlap and the form of D3 is close to the
concentric circles but the clusters are non-overlapping. For
each dataset, we sampled 500 examples from the class +1
and 500 examples from the class −1 for the training set and
the same number of the examples for the testing set. For
each experiment we sample the datasets 100 times. After
the sampling, we randomly switch the class labels for three
percent of examples for both training and testing set.

We then calculate the true anomaly score as

P (y 6= yi|xi) = 1− P (y = yi|xi),

reflecting how anomalous the label of the example is with
respect to the true model. Each of the methods outputs a
score which orders the examples according to the belief of
the anomalous labeling. For each of the CAD methods, we
assess how much this ordering is consistent with the ordering
of the true anomaly score. We did it by counting the number



of swapped pairs between the true and predicted ordering
which is equivalent to the Wilcoxon score or AUC score.4

The less number of swapped pairs, the higher the agreement
score.

Table I compares the agreement scores (or equivalently,
the AUCs) of the experiment for all methods. The results
demonstrate that our method outperforms all other baselines
and comes closest to the order induced by the true model.
We also evaluated the linear versions of SVM and 1-class
SVM, but the results were inferior to the ones with the RBF
kernel.

Dataset D1 Dataset D2 Dataset D3

QDA 73.4% (2.4) 48.0% (1.4) 54.5% (1.2)
SVM 59.8% (4.8) 58.8% (5.7) 50.8% (2.2)

1-class SVM 50.7% (1.3) 52.3% (1.2) 59.4% (1.6)
wk–NN 66.6% (1.4) 64.6% (1.3) 60.5% (1.5)

SoftHAD 81.3% (1.8) 82.4% (1.6) 63.0% (2.9)

Table I
MEAN ANOMALY AGREEMENT SCORE AND VARIANCE (OVER 100

RUNS) FOR CAD METHODS ON THE 3 SYNTHETIC DATASETS.

Figure 3 shows the top 5 anomalies identified by each
method on D3. We see that only the soft harmonic method
was able to identify the top conditional anomalies, which
correspond to the examples with switched labels in the
middle region that carries a lot of counter-support and hence
leads to the highest anomaly score.

B. UCI ML Datasets

We also evaluated our method on the three UCI ML
datasets [27], for which an ordinal response variable was
available to calculate the true anomaly score. In particular,
we selected 1) Wine Quality dataset with the response vari-
able quality 2) Housing dataset with the response variable
median value of owner-occupied homes and 3) Auto MPG
dataset with the response variable miles per gallon. In each
of the dataset we scaled the response variable yr to the
[−1,+1] interval and set the class label as y := yr ≥ 0.
As with the synthetic datasets, we randomly switched the
class labels for three percent of examples. The true anomaly
score was computed as the absolute difference between the
original response variable yr and the (possibly switched)
label. Table II compares the agreement scores to the true
score for all methods on (2/3, 1/3) train-test split. Again,
we see that SoftHAD either performed the best or was close
to the best method.

C. Medical data

In this experiment, we evaluated our method on the prob-
lem of detecting unusual patient-management actions [7].

4AUC commonly used for classification is a special case with the true
score being ±1.

Wine Quality Housing Auto MPG

QDA 75.1% (1.3) 56.7% (1.5) 65.9% (2.9)
SVM 75.0% (9.3) 58.5% (4.4) 37.1% (8.6)

1-class SVM 44.2% (1.9) 27.2% (0.5) 50.1% (3.5)
wk–NN 67.6% (1.4) 44.4% (2.0) 61.4% (2.3)

SoftHAD 74.5% (1.5) 71.3% (3.2) 72.6% (1.7)

Table II
MEAN ANOMALY AGREEMENT SCORE AND VARIANCE (OVER 100

RUNS) FOR CAD METHODS ON THE 3 UCI ML DATASETS.

We asked a panel of clinical experts to judge the outputs of
the CAD methods for the clinical relevance.

1) Data: We used the data extracted from electronic
health records (EHRs) of 4,486 patients as described in [7].
The patients were divided into a train set (2646 patients) and
a test set (1840 patients). Patient records were segmented in
time (every day of a patient’s visit at 8:00am) to obtain
51,492 patient-state instances, such that 30,828 were train
and 20,664 test instances. The data in EHRs for these
instances were then converted into 9,282 features – a vector
representation of the patient state. For every patient-state
instance we had 749 decision labels (or tasks) which were
possible lab-order and medication decisions with true/false
values, reflecting whether a particular lab was ordered or a
particular medication was given within a 24-hour period.

2) Evaluation: We evaluated our CAD method on 222
patient-instance/action pairs. We selected these 222 cases
such that they represented a wide range of low, medium
and high anomaly scores according to the baseline SVM
method [5], [7]. Each instance/action pair was evaluated
by three different clinical experts determining whether the
action is anomalous and whether this anomaly is clinically
relevant. To assess the example, we used the majority rule
(two out of three experts). We then evaluated the quality of
CAD methods using the area under the ROC (AUC) metric.
We compared SoftHAD method to the three baselines 1)
weighted k–NN on the same graph 2) SVM with RBF kernel
3) 1-class SVM with RBF kernel described at the beginning
of this section.

3) Parameters for the graph-based algorithms: To con-
struct G, we computed the similarity weights as:

wij = exp
[
−
(
||xi − xj ||22,ψ

)
/σ2
]
,

where ψ is a weighing of the features and σ is a length
scale parameter. The reason for the different feature weights
is the high dimensionality of the data. Without any feature
scaling, a distance based on 9K features would make any two
points almost equidistant and thus meaningless. Therefore,
we weighted the features based on their discriminative power
according to the univariate Wilcoxon score [28]. Next, σ
is chosen so that the graph is reasonably sparse [29]. We
followed [19] and chose σ as 10% of the empirical variance



Figure 3. Black dots depict the top five conditional anomalies based on the score for each of the methods on D3. The top five conditional anomalies
according to the true model are in the middle (top left).

of the Euclidean distances. Based on the experiments, our
algorithm is not sensitive to the small perturbations of
σ; what is important is that the graph does not become
disconnected by having all edges of several nodes with
weights close to zero. For each label, we sampled an equal
number of positive and negative instances to construct a k-
NN graph. We set k = 75, cl = 1 and varied γg and the
graph size.

4) Scaling for multi-task anomaly detection: So far, we
have described CAD only for a single task (anomaly in a
single label). In this dataset, we have 749 binary tasks (or
labels) that correspond to 749 different possible orders of
lab tests or medications. In our experiments, we compute
the CAD score for each task independently. Figure 4 shows
the CAD scores for two of them. CAD scores close to 1
indicate that the order should be done, while the scores close
to 0 indicate the opposite. The ranges for the anomaly scores
can vary among the different labels/tasks, as one can notice
in Figure 4. However, we want to output an anomaly score
which is comparable among the different tasks/labels so we
can set a unified threshold when the system is deployed in
practice. To achieve this score comparability, we propose
a simple approach, where we take the minimum and the
maximum score obtained for the training set and scale all
scores for the same task linearly so that the score after the
scaling ranges from 0 to 1.

5) Results: In Figure 5, we fixed γg = 1 and vary the
number of examples we sample from the training set to
construct the similarity graph, and also compare it to the
weighted k–NN. The error bars show the variances over
10 runs. Notice that the both of the methods are not too
sensitive to the graph size. This is due to the multiplicity

Figure 4. Histogram of anomaly scores for 2 different tasks. The scores
for the top and bottom task range from 0.1 to 0.9 and from 0.25 and 0.61,
respectively. The arrow in both cases points to the scores of the evaluated
examples, both with negative labels. Despite the score is lower for the
bottom task, we may believe that it is more anomalous because it is more
extreme within the scores for the same task.

adjustment for the backbone graph (Section III-B). Since we
use the same graph both for SoftHAD and weighted k–NN,
we anticipate that we are able to outperform weighted k–
NN due to the label propagation over the data manifold and
not only within the immediate neighborhood. In Figure 6,
we compare SoftHAD to the CAD using SVM with an RBF
kernel for different regularization settings. We sample 200
examples to construct a graph (or train an SVM) and vary
the γg regularizer (or cost c for SVM). We outperform the
SVM approach over the range of regularizers. The AUC
for the 1-class SVM with an RBF was consistently below
55%, so we do not show it in the figure. We also compared



Figure 5. Medical Dataset: Varying graph size. Comparison of 1) SoftHAD
and 2) weighted k-NN on the same graph.

Figure 6. Medical Dataset: Varying regularizer 1) γg for SoftHAD 2) cost
c for SVM with RBF kernel.

the two methods with scaling adjustment for this multi-task
problem (Figure 6). The scaling of anomaly scores improved
the performance of both methods and makes the methods
less sensitive to the regularization settings.

V. CONCLUSION

We presented a non-parametric graph-based algorithm for
conditional anomaly detection. Our algorithm goes beyond
exploring just the local neighborhood (nearest neighbor
approach) and uses label propagation on the data manifold
structure to estimate the confidence of labeling. We evalu-
ated our method on synthetic data, where the true model was
known to confirm that the anomaly score from our method
outperforms the others in ordering examples according to
the true anomaly score. We also presented the evaluation of
our method on the real-world data of patient health records,
where the true model is not know, but when we used the
experts in clinical care to evaluate the severity of our alerts.

In future, we plan to work on the structure anomalies
where instead of computing the anomaly score indepen-
dently for each label, we compute it jointly. With such a
structured approach we can avoid the necessity of the score
scaling.
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