Conditional Anomaly Detection Using Soft Harmonic Functions: An Application to Clinical Alerting

Motivation

- traditionally: anomalies in the data
- we want to detect anomalies in responses
- conditioning on the remaining features/covariates
- very useful for medical applications
- action anomalies: lab orders and medications
- budget control, overspending

Background

Goal: Conditional Anomaly Detection

- detect anomalous decisions
- robust to traditional outliers

Problem statement (\bigstar) : Given a set of npast observed examples $(\mathbf{x}_i, y_i)_{i=1}^n$ (with possible label noise), check if any instance i in recent m examples $(\mathbf{x}_i, y_i)_{i=n+1}^{n+m}$ is unusual.

Alternative methods:

- class outlier approach
- take traditional anomaly detection method
- detect anomalies within the same class
- cons: ignores the other classes
- discriminative approach
- difference between predictions and labels
- cons: sensitive to fringe and isolated points

Our method takes all classes into account and uses regularization to avoid unwanted behavior.

Challenges

Algorithm

- graph-based representation $w_{ij} = \exp\left|-\right|$
- label propagation on graph
- checking for inconsistencies

$$\ell^{\star} = \left((c_l I)^{-1} \left(\mathcal{L}(W) + \gamma_g \right) + I \right)^{-1} \mathbf{y}$$

- addressing computational complexity
- create a backbone graph
- make the calculation on a smaller graph
- compact computation

MICHAL VALKO, HAMED VALIZADEGAN, BRANISLAV KVETON, GREGORY F. COOPER, MILOS HAUSKRECHT

 underlying density is often unknown high-dimensional and non-linear data fringe points (on the boundary support) isolated points (unconditional outliers)

$$\left(\left| \left| \mathbf{x}_{i} - \mathbf{x}_{j} \right| \right|_{2,\psi}^{2} \right) / \sigma^{2} \right]$$

 $\boldsymbol{\ell}^{\star} = \min_{\boldsymbol{\ell} \subset \mathbb{R}^n} \left(\boldsymbol{\ell} - \mathbf{y} \right)^{\mathsf{T}} C(\boldsymbol{\ell} - \mathbf{y}) + \boldsymbol{\ell}^{\mathsf{T}} K \boldsymbol{\ell}$

regularization to prevent unwanted anomalies

Comparison on Synthetic Data

- (conditional) evaluation of anomaly methods is very challenging
- synthetic data with known distribution
- flip 3% of the labels
- compare how the anomaly score agrees with true score \implies

Comparison on UCI ML Datasets

ordinal response used to calculate the true score

-			
V	Vine Quality	Housing	Auto
QDA	75.1% (1.3)	56.7%~(1.5)	65.9%
SVM	$75.0\% \ (9.3)$	58.5% (4.4)	37.1%
1-class SVM	44.2% (1.9)	27.2% (0.5)	50.1%
wk– NN	67.6% (1.4)	44.4% (2.0)	61.4%
SoftHAD	74.5%~(1.5)	71.3% (3.2)	72.6%
		•	•

Contributions

- non-parametric and graph-based method for conditional anomaly detection
- takes advantage of the data structure
- important application for medical data
- robust to fringe and isolated points

1-class SVM 64.7% (0.7)

wk-NN = 61.4% (2.1)

Results on Clinical Data (EHRs)

- medical health records (UMPC)
- 4486 patients (50K instances, 9K features)
- 749 laboratory tests or medication orders
- 222 instances evaluated
- panel of 15 expert clinicians (3 per instance)
- evaluation metric: area under ROC

Case Segmentation of EHR Case A 8am actions Case A-1 actions

Feature Construction from EHRs Current time Time t_B 24 hours 24 hours 24 hours

Last slope = (B-A)/(tB-tA)

Drop from baseline = F-A

Outperforming SVM method over the range of settings of regularization parameters ---- SVM (RBF) SoftHAD with scaling

