Conditional Anomaly Detection

Michal Valko, Miles Hauskrecht (CS), G. Cooper, S. Visweswaran, M. Saul (DBMIL), A. Seybert (Pharm), J. Harrison, A. Post (PHS, Virginia)

Target attributes

| : o STRUCTURE METRIC SELECTION AUCROC SP>95%
Fact: Medical errors account for 200 000 preventable deaths a year. PORT dataset y, Hospitalization ALL ) 11.6%
(Wall Street Journal on July 27, 2004) (Kapoor 1996) W any 72.7% 070
.. . o )
Patients diagnosed with o araphic factor Naive Bayes |Euclidean |CLOSEST 40 74.64. 16.4%
Main goal: Detect anomalies in clinical decisions. the community acquired Xo A e~ true, female = 2159 NCA CLOSEST 40 70.0% 16.8%
. X3 Gen.‘e.l oiihlesses . 0,
pheumonia Coexisting 1A% 0 ure Euclidean |ALL 76.2% 8.0%
. . _ . Co 1gest1‘\€ § e
Patient records today have: demographics, conditions, labs, 2287 patient cases 3 C:-cbftw\t':‘li\.‘ilxillz;{\:\:ca.Ae . uclidean  |CLOSEST 40 76-2%| 8 0%
. . . . leoplastic A15€a=
medications administered, procedures performed,... 19 discrete attributes Xs P\ disease oftiViax NCA ALL 77.9% 18.0%
Errors in decisions are costly and may be life threatening no missing values Xeo e camination fnding: A COSEST20 ™ 20.9%
1Yy SiL€ ) . .J70 .
o . ) . - 125 / min e el
Knowledge-based alerting systems exist, 100 evaluated by the Xo I;{:;pﬁmw e > 30/ oy " . 13 8%
. 5 5 - 0 " 1 nresSure e .U .
but are expensive to build and maintain panel of three physicians - Systoli blood PIESS® < T -
73 i Xip  Tempert il d radiographic ﬁ“‘;‘“‘"* BBN Eaton Euclidean |CLOSEST 40 72.2% 17.8%
anomalies 412 | aboratory and FACORTLL o )¢
. . L. L ) ood ur amtrog_cn[;» = o 0
Solution: Evidenced based methods requiring minimal expert Goal: Detect whether the o B e > 250 me / di NCA CLOSEST 40 12:5% 26.4%
- 5 . . A14 g it < 30%
knowledge and relying on the historical data decisi ot N, ~ Hematoerit =< ' —
- ecision of hospitalization Xis oo o 130mmol /L g0 mm He . . o
. P Xio 800 pressure of arterial OXYEE? SP > 95%: AUC for ROC in acceptable range (with specificity >95%)
is anomalous Xir el pH < 735
13 Y
4138 Pleurﬂl eﬁq;yon
; ‘,\V,‘?, —— ’ 1I=hE:n::neeivn..nE:r Operating Characteristic curves: PORT
0.9t
In the medical setting: the identification of Metric: o
o 4 **,ef unusual patient management decisions Standard Euclidean metric > (s, —a | Zos|
5 % I i - . : . g L . = 0.5¢
= o with respect to the past patients who Learn linear projection with Neighborhood Component Analysis o - . _ el
- suffer from the same or similar condition Goldb | 2005) using decisi he class label SP>95% - statistic of the interest: .
- . ’ . 0.3 __ Naive Bayes all 2286
alue A (Goldberger et a ) using decision as the class labe Hospitals will not use system with o palients - AUC: 0.73
. BBN (Eaton) NCA
5 d hlgh false alarm rate o _G|DSES{I L?DE{HAUC: 0.76
— — = . . 0 ' ' - ' ]
exp(—|| Az, — Az,[[") using only closer patients works o 0z 84 G608 |

1 - specificity

e 2 ts XP((— | Azy, — Awy[[2) e IHEXQ(A) e H{?XZ Z(: . better in this important ROC range
: IS OF

Low number of variables opened way for exact models
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Patient Selection Methods:
All patients
k-closest patients with respect to the chosen metric

Probabilistic Models:

Main _question: Given the values of context variables
for the current patient are the values of the decision
variables for that patient unusual?
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Fixed Naive Bayes Structure

SoftMax model induced by the metric

Instance Specific model: Bayesian Network from the data using
Approximate Edge Marginals with MCMC (Eaton & Murphy 2007)

5..16 17 - 18

Research funded by NLM grant R21-LM009102

Structure learning improved the performance: ~“50% increase
Instance-specific models:
1) Models can be simpler (require less examples)
2) Models can be tuned to the individual patients
Metric learning alleviates the effect of redundant and noisy features

Current/Future work:

How to select the appropriate number of closest patients?
Would learning multiple models from the different populations help?
HIT dataset with thousands of records per patient

Anomaly detection in time
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