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Abstract
Hierarchical bandits are an approach for global optimization of extremely irregular functions. This
paper provides new elements regarding POO, an adaptive meta-algorithm that does not require the
knowledge of local smoothness of the target function. We first highlight the fact that the subroutine
algorithm used in POO should have a small regret under the assumption of local smoothness with
respect to the chosen partitioning, which is unknown if it is satisfied by the standard subroutine HOO.
In this work, we establish such regret guarantee for HCT, which is another hierarchical optimistic
optimization algorithm that needs to know the smoothness. This confirms the validity of POO. We
show that POO can be used with HCT as a subroutine with a regret upper bound that matches the
one of best-known algorithms using the knowledge of smoothness up to a

√
log n factor. On top of

that, we propose a general wrapper, called GPO, that can cope with algorithms that only have simple
regret guarantees. Finally, we complement our findings with experiments on difficult functions.
Keywords: continuously-armed bandits, global optimization, black-box optimization

1. Introduction

Global optimization (GO) has applications in several domains including hyper-parameter tuning
(Jamieson and Talwalkar, 2016; Li et al., 2017; Samothrakis et al., 2013). GO usually consists
of a data-driven optimization process over an expensive-to-evaluate function. It is also known as
black-box optimization since the inner behavior of a function is often unknown.

In GO, we optimize an unknown and costly-to-evaluate function f : X → R based on n
noisy evaluations, that can be sequentially selected. This setting is a generalization of multi-armed
bandits, where the arm space X is some measurable space (Bubeck et al. 2011). Each arm x ∈ X
gets its mean reward f(x) through the reward function f , which is the function to be optimized.
At each round t, the learner chooses an arm xt ∈ X and receives a reward rt. We study the noisy
setting in which the obtained reward is a noisy evaluation of f : rt , f(xt) + εt, where εt is a
bounded noise.

Treating the setting without any further assumption would be a mission impossible. However,
the setting gets easier if we assume a global smoothness of the reward function (Agrawal, 1995;
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Kleinberg, 2005; Kleinberg et al., 2008; Cope, 2009; Auer et al., 2007; Slivkins, 2011; Kleinberg
et al., 2015). A weaker condition is some local smoothness where only neighborhoods around the
maximum are required to be smooth. In fact, local smoothness is sufficient for achieving near-
optimality (Valko et al., 2013; Azar et al., 2014; Grill et al., 2015; Bull, 2015). We base our work on
optimistic tree-based optimization algorithms (Munos, 2011; Valko et al., 2013; Preux et al., 2014;
Azar et al., 2014) that approach the problem with a hierarchical partitioning of the arm space and
take the optimistic principle. This idea comes from planning in Markov decision processes (Kocsis
and Szepesvári, 2006; Munos, 2014; Grill et al., 2016).

Our work is motivated by the parallel optimistic optimization (POO) approach proposed by Grill
et al. (2015), that adapts to the smoothness without the knowledge of it. POO is a meta-algorithm
which can be used on top of any hierarchical optimization algorithm that knows the smoothness,
that we call a subroutine. Not only does POO require only the mildest local regularity conditions,
but it also gets rid of the unnecessary metric assumption that is often required. Local smoothness
naturally covers a larger class of functions than global smoothness, yet still assures that the function
does not decrease too fast around the maximum. We highlight that the analysis of POO is modular:
Assuming the subroutine has a regret of orderRn under a local smoothness assumption with respect
to a fixed partitioning (Grill et al. 2015, Assumption 1, formally introduced in Section 2), POO run
with such subroutine has a regret bounded by Rn

√
log n. POO was originally analyzed using HOO

as a subroutine. However, unlike what Grill et al. (2015) hypothesize, it is non-trivial to provide a
regret bound for HOO under Assumption 1. We elaborate on that in Section 3. In order to validate
POO, there needs to exist a subroutine with a regret guarantee that is provable under Assumption 1.
This is what we deliver.

In particular, we prove that HCT-iid1 of Azar et al. (2014) satisfies the required regret guarantee,
and is, therefore, a desirable subroutine to be plugged in POO. Similar to HOO, HCT is a hierarchi-
cal optimization algorithm based on confidence intervals. However, unlike HOO, these confidence
intervals are obtained by repeatedly sampling a representative point of each cell in the partitioning
before splitting the cell. This yields partition trees that have a controlled depth, which are easier
to analyze under a local smoothness assumption with respect to the partitioning. Whether HOO has
similar regret guarantees under the desired local metricless assumption remains an open question.

POO requires the subroutine to have a cumulative regret guarantee. In this paper, we also provide
a more general wrapper for algorithms that only have guarantee for their simple regret, called GPO
(for general parallel optimization). We show that with a cross-validation scheme instead of the
original recommendation strategy, any hierarchical bandit algorithm with simple regret guarantee
can be plugged into GPO with only a tiny increase in the resulting simple regret.

Paper outline We first formulate the sequential optimization problem and introduce some pre-
liminary notions and assumptions in Section 2. Our main result is presented in Section 3, where
we provide a regret upper bound for HCT under local smoothness with respect to the partitioning.
In Section 4, we present the instantiation of POO studied in the paper that we call PCT, in which
the underlying subroutine HOO is replaced by HCT. We show that PCT enjoys the same regret bound
as HCT up to a

√
log n factor. The general wrapper and its simple regret analysis are presented in

Section 5. We conclude by some numerical simulations in Section 6.

1. Denoted by HCT in the rest of the paper since we do not consider the correlated feedback setting.
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2. Smoothness assumptions for black-box optimization

Let X be a measurable space. Our goal is to find the maximum of an unknown noisy function
f : X → R of which the cost of evaluation is high, given a total budget of n evaluations. At each
round t, a learner selects a point xt ∈ X and observes a reward rt , f(xt) + εt, bounded by [0, 1],
from the environment where the noise εt is assumed to be independent from previous observations
and such that E[εt|xt] = 0. After n evaluations, the algorithm outputs a guess for the maximizer,
denoted by x(n). We assume that there exists at least one x? ∈ X s.t. f(x?) , supx∈X f(x),
denoted by f? in the following. We measure the performance by the simple regret, also called the
optimization error,

Sn , f? − f(x(n)).

Another related notion is the cumulative regret, defined as

Rn , nf? −
n∑
t=1

f(xt).

As observed by Bubeck et al. (2009), a good cumulative regret naturally implies a good simple
regret: If we recommend x(n) according to the distribution of previous plays, we immediately get
E[Sn] = E[Rn]/n.

2.1. Covering tree that guides the optimization

Hierarchical bandits rely on the existence of hierarchical partitioning P , {Ph,i}h,i defined recur-
sively, where

P0,1 = X , Ph,i =

K−1⋃
j=0

Ph+1,Ki−j .

Such a partition can be naturally represented by a tree, where K denotes the maximum number of
children of a node in that tree. Many of known algorithms depend on a metric/dissimilarity over the
search space to define the regularity assumptions that link the partitioning to some near-optimality
dimension, that is independent of the partitioning. However, this was shown to be artificial (Grill
et al., 2015), since (i) the metric is not fully exploited by the algorithms and (ii) the notion of
near-optimality dimension independent of partitioning is ill-defined. Hence, it is natural to make
smoothness assumptions directly related only to the partitioning.

We now present the only regularity assumption on the target function f that is expressed in
terms of the partitioning P . We stress again that requiring only local smoothness assumptions is an
improvement since (i) it covers a larger class of functions, (ii) it only constrains f along the optimal
path of the covering tree which is a plausible property in an optimization scenario, and (iii) shows
that the optimization is actually easier than it was previously believed.

Assumption 1 (local smoothness w.r.t.P) For x? be a global maximizer, we denote by i?h be the
index of the only cell at depth h that contains x?. Then, there exist a global maximizer x? and two
constants ν > 0, ρ ∈ (0, 1) s.t.,

∀h ≥ 0,∀x ∈ Ph,i?h , f(x) ≥ f? − νρh.
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Note that this assumption is the same as the one of Grill et al. (2015). Multiple maximizers may
exist, but this assumption needs to be satisfied only by one of them.

As first observed by Auer et al. (2007), the difficulty of a GO should depend on the size of
near-optimal regions and on how fast they shrink. Auer et al. (2007) use a margin condition that
quantifies this difficulty by the volume of near-optimal regions. In this work, we use a similar notion
of near-optimality dimension instead. This notion is directly related to the partitioning.

Definition 1 (near-optimality dimension w.r.t.P) For any ν > 0, C > 1, and ρ ∈ (0, 1), we
define the near-optimality dimension of f with respect to P as

d(ν, C, ρ) , inf
{
d′ ∈ R+ : ∀h ≥ 0,Nh(3νρh) ≤ Cρ−d′h

}
,2

where Nh(ε) is the number of cells Ph,i such that supx∈Ph,i f(x) ≥ f? − ε.

Nh(3νρh) can be thought as the number of cells that any algorithm needs to sample in order to find
the maximum. A smaller d(ν, C, ρ) implies an easier optimization problem.

3. HCT under local smoothness with respect to P
Analyzing HOO under Assumption 1 is not trivial. A key lemma in the analysis of HOO (Lemma 3 by
Bubeck et al. 2011) that controls the variance of near-optimal cells is not true under local smooth-
ness assumptions as Assumption 1. Indeed, HOO could induce a very deep covering tree, while pro-
ducing too many nodes that are neither near-optimal nor sub-optimal. The concept of near-optimal
and sub-optimal nodes is then characterized by the sub-optimality gap of each node which measures
the distance between the local maximum of the node and the global maximum. Intuitively, nodes
that are neither near-optimal nor sub-optimal represent the nodes of whom the sub-optimality gap
is neither too large nor too small. To control the regret due to these nodes, Bubeck et al. (2011) use
global smoothness (weakly Lipschitz) assumption. Assumption 1 is weaker, only local, and does
not offer such comfort. If we want to control the regret due to these nodes without Lemma 3 of
Bubeck et al. (2011), one possible way is to control the depth of the covering tree to ensure that we
do not have too many of them. In particular, another algorithm known as HCT (Azar et al., 2014)
implies a controlled depth of the tree which allows it to be analyzed under Assumption 1 as opposed
to HOO. We now give a brief description of HCT and present a new analysis of it.

3.1. Description of HCT

The pseudocode of HCT (Algorithm 1) and two detailed snippets (Algorithm 2 and Algorithm 3)
describe the process of traversing the covering tree. The algorithm stores a finite subtree Tt at each
round t which is initialized by T0 = {(0, 1)}. Each cell is associated with a representative point
xh,i and the algorithm keeps track of some statistics regarding this point. One of these statistics is
the empirical mean reward µ̂h,i(t) which is the average on the first Th,i(t) rewards received when
querying xh,i. The HCT algorithm also keeps track of an upper confidence bound U -value for the
cell (h, i),

Uh,i(t) , µ̂h,i(t) + νρh + c

√
log(1/δ̃(t+))

Th,i(t)
,

2. This definition is slightly different from the original POO paper, where a coefficient 3 is present instead of 2 due to a
technical detail.

4



GENERAL PARALLEL OPTIMIZATION WITHOUT A METRIC

Input : K, ν > 0, ρ ∈ (0, 1), c > 0, tree partitioning {Ph,i}, confidence δ
Initialize: T1 ← {(0, 1), (1, 1), . . . , (1,K)}, U1,1(1)← · · · ← U1,K(1)← +∞
for t← 1 to n do

if t = t+ then
for (h, i) ∈ Tt do

Uh,i(t)← µ̂h,i(t) + νρh + c

√
log(1/δ̃(t+))

Th,i(t)

end
UpdateBackward(Tt, t)

end
(ht, it), Pt ← OptTraverse(Tt, t)
Evaluate xht,it and obtain rt
Tht,it(t)← Tht,it(t) + 1
Update µ̂ht,it(t)

Uht,it(t)← µ̂ht,it(t) + νρht + c

√
log(1/δ̃(t+))
Tht,it (t)

UpdateBackward(Pt, t)

τht(t)←
⌈
c2 log(1/δ̃(t+))

ν2
ρ−2ht

⌉
if Tht,it(t) ≥ τht(t) and (ht, it) is a leaf then

Expand((ht, it))

end
end

Algorithm 1: High confidence tree (HCT, Azar et al. 2014)

Input : a tree T , round t
Initialize: (h, i)← (0, 1); P ← {(0, 1)}; T0,1(t) = τ0(t) = 1
while (h, i) is not a leaf of T and Th,i(t) ≥ τh(t) do

j ← arg max
j∈{0,...,K−1}

{Bh+1,Ki−j(t)}

(h, i)← (h+ 1,Ki− j)
P ← P ∪ {(h, i)}

end
return (h, i) and P

Algorithm 2: OptTraverse

where t+ , 2dlog2(t)e, δ̃(t) , min{c1δ/t, 1/2}, and its corresponding B-value,

Bh,i(t) ,

 min

{
Uh,i(t), max

j∈{0,...,K−1}
{Bh+1,Ki−j(t)}

}
if (h, i) is an internal node,

Uh,i(t) otherwise,
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Input : a tree T , round t
note that Pt can also be considered as a tree, thus input of this function

for (h, i) ∈ T backward from each leaf of T do
if (h, i) is a leaf of T then

Bh,i(t)← Uh,i(t)

else

Bh,i(t)← min

{
Uh,i(t), max

j∈{0,...,K−1}
{Bh+1,Ki−j(t)}

}
end

end
Algorithm 3: UpdateBackward

which is designed to be a tighter upper confidence bound than the U -value. Here, c and c1 are two
constants, and νρh represents the resolution3 of the region Ph,i. Observe that Uh,i(t) and Bh,i(t)
are not updated at every round, but are constant on time intervals of the form [2k, 2k+1).

At each round t, the algorithm traverses the current covering tree along an optimistic path Pt
before choosing a point (OptTraverse function). This optimistic path Pt is obtained by repeatedly
selecting cells that have a larger B-value until a leaf or a node that is sampled less than a certain
number of times is reached. If a leaf is reached, then this leaf is sampled and expanded (i.e., we split
the leaf into K equal-sized regions and initialize their U -values to +∞); otherwise, the node that
is not sampled enough is re-sampled. All the B-values along the optimistic path are then updated
backwardly from the current node to the root (UpdateBackward function). More precisely, HCT
samples one node a certain number of times τh(t) in order to sufficiently reduce the uncertainty
before expanding it. Hence, τh(t) is defined such that the uncertainty over the rewards in Ph,i is
roughly equal to the resolution of the node,

τh(t) ,

⌈
c2 log(1/δ̃(t+))

ν2
ρ−2h

⌉
.

3.2. Analysis of HCT under a local metricless assumption

We now state our main theorem. We prove that HCT achieves an expected regret bound under As-
sumption 1 which matches the regret bound given by Azar et al. (2014) up to constants. Moreover,
compared to that result, the near-optimality dimension d featured in Theorem 2 is the one of Defi-
nition 1 that is defined with respect to the partitioning and not with respect to a metric. For a fixed
budget n, we introduce the notation HCT(ν, ρ) to refer to the instantiation of HCT parameterized by
ν, ρ, c = 2

√
1/(1− ρ) and δ = 1/n.

Theorem 2 Assume that function f satisfies Assumption 1. Then, setting δ , 1/n, the cumulative
regret of HCT(ν, ρ) after n function evaluations is upper bounded as

E[RHCT(ν,ρ)
n ] ≤ αC(log n)1/(d(ν,C,ρ)+2)n(d(ν,C,ρ)+1)/(d(ν,C,ρ)+2),

where α is a numerical constant and C is the constant associated to d(ν, C, ρ).

3. The term resolution refers to the maximum variation in the cell. If it is too large, then we need to shrink the volume,
thus increase the resolution.
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As a consequence, by simply applying the recommendation strategy that follows the distribution of
previous plays, we get the following simple-regret bound.

Corollary 3 The simple regret of HCT after n function evaluations under Assumption 1 satisfies

E[SHCT(ν,ρ)
n ] ≤ αC(log n)1/(d(ν,C,ρ)+2)n−1/(d(ν,C,ρ)+2).

We now sketch the proof. The full proof follows the analysis of Azar et al. (2014) and is detailed
in Appendix A. As mentioned above, HCT has a controlled depth. Indeed, given the threshold τh(t)
required at depth h, in Section A.2, we prove that the depth of the covering tree is bounded as stated
in the following lemma.

Lemma 4 The depth of the covering tree produced by HCT after n function evaluations satisfies

H(n) ≤ Hmax(n) ,

⌈
1

2(1− ρ)
log

(
nν2

c2ρ2

)⌉
·

Defining the mean reward µh,i , f(xh,i), we introduce a favorable event under which the mean
reward of all expanded nodes is within a confidence interval,

ξt ,

{
∀(h, i) ∈ Lt, |µ̂h,i(t)− µh,i| ≤ c

√
log(1/δ̃(t))/Th,i(t)

}
,

where Lt is the set of all possible nodes in trees of maximum depth Hmax(t).
We split the regret into two parts depending on whether ξt holds or not. In Appendix A.4, we

prove that the failing confidence term is with high probability bounded by
√
n. In the case when ξt

holds, we bound the regret in Appendix A.5 by treating separately the two parts, ∆ht,it and ∆̂t, of
the instantaneous regret ∆t,

∆t , f? − rt = f? − f(xht,it) + f(xht,it)− rt = ∆ht,it + ∆̂t.

Next, we bound ∆̂t by Azuma-Hoeffding concentration inequality (Azuma, 1967). Then, we bound
∆ht,it with the help of the following lemma, which is the major difference compared to the original
HCT analysis by Azar et al. (2014). In particular, the lemma states that if Assumption 1 is verified
then f? is upper-bounded by the U -value of any optimal node.

Lemma 5 Under Assumption 1 and under event ξt, we have that for any optimal node (h?, i?),
Uh?,i?(t) is an upper bound on f?.

Proof Since t+ ≥ t, we have

Uh?,i?(t) , µ̂h?,i?(t) + νρh
?

+ c

√
log(1/δ̃(t+))

Th?,i?(t)
≥ µ̂h?,i?(t) + νρh

?
+ c

√
log(1/δ̃(t))

Th?,i?(t)
·

Moreover, as we are under event ξt, we also have

µ̂h?,i?(t) + c

√
log(1/δ̃(t))

Th?,i?(t)
≥ f(xh?,i?).
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Therefore, Uh?,i?(t) ≥ f(xh?,i?) + νρh
? ≥ f?.

With the help of Lemma 5 (see Step 2 in Appendix A.5), we can then upper bound ∆ht,it as

∆ht,it ≤ 3c

√
log(2/δ̃(t))

Tht,it(t)
·

To bound the total regret of the all nodes selected, we divide them into two categories, depending
on whether their depth is smaller or equal than H (to be optimized later) or not.

For the nodes in depths h ≤ H , we use Lemma 5 again, now to show that OptTraverse only
selects nodes that have a parent which is (3νρht−1)-optimal. For the nodes for which h > H , we
bound the regret using the selection rule of HCT.

The sums of the regrets from the two categories are proportional and inversely proportional to
an increasing function of H . By finding the value of H for which the sum of the two terms reaches
its minimum and adding the regret coming from the situations where the favorable event does not
hold, gives us the following cumulative regret for HCT: With probability 1− δ,

RHCT(ν,ρ)
n ≤ O

(
(log(n/δ))1/(d(ν,C,ρ)+2)n(d(ν,C,ρ)+1)/(d(ν,C,ρ)+2)

)
.

However, the analysis of POO requires a bound on the expected regret of the underlying subrou-
tine. For that purpose, we simply set δ , 1/n and that gives us the statement of Theorem 2, and
consequently Corollary 3.

4. PCT that does not need to know the smoothness

In this section, we formally introduce a generic POO(A) algorithm, taking as input any algorithm
A = A(ν, ρ) requiring the smoothness parameters. We provide a simple regret upper bound for a
particular instantiation called PCT, for POO(HCT).

4.1. Generic parallel optimistic optimization

POO(A) (parallel optimistic optimization) is a meta-algorithm that uses any hierarchical optimiza-
tion algorithm A that knows the smoothness as a subroutine, originally proposed by Grill et al.
(2015) for A = HOO. In this algorithm, several instances of A are run in parallel, each one using a
different pair of parameters (ν, ρ) in a well-chosen grid G (defined in Line 4 of Algorithm 4). In the
end, POO(A) chooses the instance that has the largest empirical mean reward and returns one of the
points evaluated by this instance, chosen uniformly at random.

The pseudocode of POO(A) is shown in Algorithm 4. Additionally to the base algorithm itself,
it requires two parameters ρmax and νmax that determine the range of A(ν, ρ) instances that we can
compete with. However, these parameters can be set as a function of the number of evaluations
as explained in details in Appendix C of Grill et al. (2015), hence not mandatory in practice. An
important remark is that given a budget n of function evaluations, the number ofA instances N run
by POO(A) depends on n, and each instance is run for bn/N(n)c times. Due to the doubling scheme
used in Lines 2-10, note however that POO(A) does not need to know this total number of function
evaluations. Hence, if the base algorithm A is anytime, so is POO(A).
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Input : base algorithm A, νmax,ρmax, branching factor of the partitioning K
Initialization: Dmax ← lnK/ ln(1/ρmax), number of function evaluations n← 0, current number

of instances of A: N ← 1, S ← {(νmax, ρmax)}
while budget still available do

while N ≤ 1
2Dmax log(n/(log n)) do

for i← 1, . . . , N do
s←

(
νmax, ρmax

2N/(2i+1)
)

Initialize A(s) (if not already done before).
Continue running A(s) until it has given n

N rewards rs,1, . . . , rs,n/N .

Compute the average reward µ̂[s] = N
n

∑n/N
i=1 rs,i.

end
n← 2n, N ← 2N

end
Perform each A(s) once and update the average reward µ̂[s].
n← n+N

end
s? ← argmaxs∈S µ̂[s] return A point sampled u.a.r. from the points evaluated by A(s?)

Algorithm 4: POO(A) - parallel optimistic optimization with base algorithm A

4.2. Upper bound on the simple regret of PCT

Building on our new analysis of the HCT algorithm, we are able to provide theoretical guarantees for
the resulting POO(HCT) algorithm, that we refer to as PCT (parallel confidence tree). More precisely
we define PCT(δ) as POO run on top of HCT using confidence parameter δ.

Letting (ν?, C?, ρ?) be a triple of parameters for which Assumption 1 is true, we prove that PCT
achieves a regret that is comparable to the one obtained by c.

Theorem 6 Assume that the target function f satisfies Assumption 1 and ν? ≤ νmax and ρ? ≤
ρmax. For δ = N(n)/n with N(n) = d(1/2)Dmax log(n/ log n)e, the simple regret of PCT(δ) after
n function evaluations is bounded as

E[SPCT(δ)
n ] ≤ βDmax(νmax/ν

?)Dmax

(
((log2 n)/n)1/(d(ν

?,C?,ρ?)+2)
)
,

where β is a constant independent of νmax and ρmax.4

By Corollary 3, we know that the simple regret of HCT after n function evaluations run with
(ν?, C?, ρ?) is of order O

(
(log n/n)1/(d(ν

?,C?,ρ?)+2)
)
. As a consequence, the performance of PCT

is at most a
√

log n factor away from that of the best HCT instance.
Theorem 6 follows from Corollary 3 and Proposition 7 below. This wrapper result highlights

how cumulative regret guarantees for any base algorithm translate into simple regret guarantees for
the corresponding POO(A) algorithm. Its proof almost replicates the analysis of POO(HOO) by Grill
et al. (2015) and we provide it in Appendix B for the sake of completeness.

4. More generally, Theorem 6 holds for any ν ≤ νmax and ρ ≤ ρmax.
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Proposition 7 If for all (ν, ρ) the A(ν, ρ) algorithm has its cumulative regret bounded as

E
[
RA(ν,ρ)n

]
≤ αC(log n)1/(d(ν,C,ρ)+2)n(d(ν,C,ρ)+1)/(c+2), (1)

for any function f satisfying Assumption 1 with parameters (ν, C, ρ), then there exists a constant β
that is independent of νmax and ρmax such that

E
[
SPOO(A)
n

]
≤ βDmax(νmax/ν

?)Dmax

(
(log2 n)/n)1/(d(ν

?,C?,ρ?)+2)
)
,

for any function f satisfying Assumption 1 with parameters ν? ≤ νmax and ρ? ≤ ρmax.

5. General parallel optimization

The analysis of POO(A) proposed in Proposition 7 heavily relies on the fact that we control the cu-
mulative regret of algorithm A. POO indeed exploits this property when selecting s? as the instance
with largest empirical cumulative rewards. In this section, we propose a simple modification of
POO(A) that allows using as base algorithms any hierarchical optimization algorithms that would
only have simple regret guarantees.

The GPO(A) algorithm (general parallel optimization), whose pseudocode is shown in Algo-
rithm 5, mostly needs to modify the model selection strategy of POO. There are two natural can-
didates: (i) Lepski’s method which is a nested aggregation scheme (Lepski, 1992; Lepski and
Spokoiny, 1997; Locatelli et al., 2017; Locatelli and Carpentier, 2018) that requires a single op-
timum, thus not directly applicable to our case, and (ii) a cross-validation scheme that we use and
detail in the next. Given a total budget of n function evaluations, GPO(A) runs several instances
of A in parallel with parameters chosen in the same grid as that used by POO, each using the same
number of evaluations to output a recommendation x̃i. One half of the budget is then dedicated to
estimating the function values at those points, and the one with the highest estimated value is kept.

Input : base algorithm A, budget n, ρmax, νmax, K
Compute N = d(1/2)Dmax ln((n/2)/ ln(n/2))e the number of instances

for i← 1, . . . , N do
s←

(
νmax, ρmax

2N/(2i+1)
)

Run A(s) for bn/(2N)c time steps and output a recommendation x̃s
Get bn/(2N)c noisy evaluations of f(x̃s) and compute their average V [s]

end
s? ← arg maxs V [s]

return x̃s?
Algorithm 5: General parallel optimization (GPO)

In Theorem 8, we provide a general analysis of the GPO algorithm, showing that it attains an (order)-
optimal simple regret without knowing the parameter triple (ν?, C?, ρ?) provided that its base algo-
rithm does. As a consequence GPO(HCT) is an alternative to PCT with similar simple regret guaran-
tees.

Theorem 8 If for all (ν, ρ) the A(ν, ρ) algorithm has its simple regret bounded as

E
[
SA(ν,ρ)n

]
≤ αC

(
(log n/n)1/(d(ν,C,ρ)+2)

)
, (2)

10
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for any function f satisfying Assumption 1 with parameters (ν, ρ), then there exists a constant β
that is independent of νmax and ρmax such that

E
[
SGPO(A)
n

]
≤ βDmax(νmax/ν

?)Dmax

(
(log2 n)/n)1/(d(ν

?,C?,ρ?)+2)
)
,

for any function f satisfying Assumption 1 with parameters ν? ≤ νmax and ρ? ≤ ρmax.

Proof We start by fixing some notation. Recall thatN (that depends on n) is the number of instances
run in parallel. For j ∈ {1, . . . , N}, we let x̃j denote the point recommended by the instance
A(νmax, ρj) with ρj = ρ

2N/(2j+1)
max . Let (ri,j)1≤i≤n+ be the i.i.d. evaluations of f(x̃j) used during

the validation phase, with n+ , bn/(2N)c and µ̂n+,j = 1
n+

∑n+

i=1 ri,j be the estimated value of
f(x̃j) computed by the algorithm. We let

̂ = arg max
j

µ̂n+,j and ̃ = arg max
j

f(x̃j)

be the index of the empirical best and true best among the recommended point. We notice that for
any j, {ri,j−f(x̃j)}n+

i=1 is a bounded i.i.d. sequence with zero mean (conditionally to x̃j) thus using
Hoeffding’s inequality one can show that for all ∆ > 0,

P
[∣∣µ̂n+,j − f(x̃j)

∣∣ > ∆
]
≤ 2 exp

(
−2n+∆2

)
.

By integrating over ∆ ∈ [0, 1], we get

∀j ∈ {1, . . . , N}, E
[∣∣µ̂n+,j − f(x̃j)

∣∣] ≤ √π/2√
n+
· (3)

As in the analysis of POO, the instance  defined as

 , arg min
j≤N :ρj≥ρ?

[d(νmax, C
?, ρj)− d(ν?, C?, ρ?)]

shall play a crucial role. Indeed, inequality (2) is exactly what is needed in Appendix B.2 and Ap-
pendix B.3 of Grill et al. (2015) to control the simple regret of that instance in terms of (ν?, C?, ρ?).
Following the exact same steps, we can show that for some constant α,

E
[
S
A(νmax,ρ)

(n/2N)

]
≤ αDmax(νmax/ν

?)Dmax

(
(log2 n)/n)1/(d(ν

?,C?,ρ?)+2)
)
. (4)

We now turn our attention to the simple regret of GPO(A) after n function evaluations.

E
[
SGPO
n

]
= E

[
f? − f(x̃̂)

]
= E[f? − f(x̃)] + E

[
f(x̃)− f(x̃̃)

]
+ E

[
f(x̃̃)− f(x̃̂)

]
. (5)

The first term in (5) is equal to the simple regret of the instance  that uses n/N samples, which is
upper bounded in (4). The second term in (5) is always negative by definition of ̃ and the third term
can be rewritten as

E
[
f(x̃̃)− f(x̃̂)

]
= E

[
f(x̃̃)− µ̂n+,̃

]
+ E

[
µ̂n+,̃ − µ̂n+,̂

]
+ E

[
µ̂n+,̂ − f(x̃̂)

]
. (6)

where the first and the third term of (6) are both upper bounded by (
√
π/2)/

√
n+ using (3), and

the second term is always negative by definition of ̂. Putting things together yields

E
[
SGPO
n

]
≤ αDmax(νmax/ν

?)Dmax
(
(log2 n)/n

)1/(d(ν?,C?,ρ?)+2)
+O

(√
N√
n

)
·

The conclusion follows by observing that the second term in the right-hand side is negligible with
respect to the first.

11
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Figure 1: Benchmark functions5

6. Experimental illustrations

We run experiments on several test functions comparing the original POO along with several in-
stances of HOO and our new instantiation PCT along with HCT instances of different ρ values. In
these experiments, we set ρmax = 0.9, and we add Gaussian noise to the function evaluations with
a relatively small variance (σ = 0.1).

Artificial landscapes We test the algorithms on some functions from the artificial landscapes,
including (i) two functions with many local minima: Himmelblau function and Rastrigin function,
(ii) one valley-shaped function: Rosenbrock function, and (iii) Branin function (see Figure 1). Note
that the Rastrigin function shown is its 2D version. In our experiments, we use a Rastrigin function
in 5D.

In Figure 2, we plot the simple regret of the algorithms as a function of the number of evalua-
tions. All the results are averaged over 5000 runs and we plot the simple regret after 500 function
evaluations. Each instance of HOO or HCT would recommend a point picked uniformly at random
among those evaluated so that we have the same recommendation strategy as POO and PCT.

The first observation is that PCT does match the performance of some single HCT instances as
expected. We also notice that PCT has comparable performance w.r.t. POO in these plots, which
justifies the choice of using HCT as a subroutine for the POO meta-algorithm.

7. Discussion

We studied PCT, a new instantiation of POO on top of HCT. We proved that HCT is a plausible sub-
routine for POO by adapting the analysis of HCT under a new assumption w.r.t. a fixed partitioning.
We also proposed GPO, a general framework for making any hierarchical bandit algorithm that only
has a simple regret guarantee adaptive to unknown smoothness. However, whether it is possible
to weaken the assumptions of HOO in the same way as HCT while keeping similar regret guarantees
remains open.

5. Source: https://en.wikipedia.org/wiki/Test_functions_for_optimization
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Figure 2: Simple regret of POO and PCT run for different ρ values.
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Appendix A. Detailed regret analysis for HCT under Assumption 1

A.1. Preliminaries

We first fix some constants and introduce some additional notation that are needed for the proof of
Theorem 2.

• c1 , (ρ/(3ν))1/8, c , 2
√

1/(1− ρ)

• ∀1 ≤ h ≤ H(t) and t > 0, Ih(t) denotes the set of all nodes created by HCT at level h up to
step t

• ∀1 ≤ h ≤ H(t) and t > 0, I+h (t) denotes the subset of Ih(t) which contains only the internal
nodes

• At each step t, (ht, it) denotes the node selected by the algorithm.

• Ch,i , {t = 1, · · · , n : (ht, it) = (h, i)}

• C+h,i ,
⋃

j∈{0,...,K−1}
Ch+1,Ki−j

• th,i , maxt∈Ch,i t denotes the last time (h, i) has been selected

• t̃h,i , maxt∈C+h,i
t denotes the last time when one of its children has been selected

• th,i , min{t : Th,i(t) ≥ τh(t)} is the time when (h, i) is expanded

• For any t, let yt , (rt, xt) be a random variable, we define the filtration Ft as a σ-algebra
generated by (y1, . . . , yt).

Another important notion in HCT is the threshold τh on the number of pulls needed before a node at
level h can be expanded. The threshold τh is chosen such that the two confidence terms in Uh,i are
roughly equivalent, that is,

νρh ' c
√

log(1/δ̃(t+))

τh(t)
·

Therefore, we choose

τh(t) ,

⌈
c2 log(1/δ̃(t+))

ν2
ρ−2h

⌉
.

Since t+ is defined as 2dlog(t)e, we have t ≤ t+ ≤ 2t. In addition, log is an increasing function, thus
we have

c2

ν2
ρ−2h ≤ c2 log(1/δ̃(t))

ν2
ρ−2h ≤ τh(t) ≤ c2 log(2/δ̃(t))

ν2
ρ−2h, (7)

where the first inequality follows from the fact that 0 < δ̃(t) ≤ 1/2. We begin our analysis by
bounding the maximum depth of the trees constructed by HCT.
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A.2. Maximum depth of the tree (proof of Lemma 4)

Lemma 4 The depth of the covering tree produced by HCT after n function evaluations satisfies

H(n) ≤ Hmax(n) ,

⌈
1

2(1− ρ)
log

(
nν2

c2ρ2

)⌉
·

Proof The deepest tree that can be constructed by HCT is a linear one, where at each level one unique
node is expanded. In such case, |I+h (n)| = 1 and |Ih(n)| = K for all h < H(n). Therefore, we
have

n =

H(n)∑
h=0

∑
i∈Ih(n)

Th,i(n)

≥
H(n)−1∑
h=0

∑
i∈I+h (n)

Th,i(n)

≥
H(n)−1∑
h=0

∑
i∈I+h (n)

Th,i(th,i)

≥
H(n)−1∑
h=0

∑
i∈I+h (n)

τh(th,i) definition of th,i

≥
H(n)−1∑
h=0

c2

ν2
ρ−2h ineq. (7)

≥ (cρ)2

ν2
ρ−2H(n)H(n) since h ≤ H(n)− 1

≥ (cρ)2

ν2
ρ−2H(n).

By solving this expression, we obtain

H(n) ≤ 1

2
log

(
nν2

c2ρ2

)
/ log(1/ρ)

≤ 1

2(1− ρ)
log

(
nν2

c2ρ2

)
follows from log(1/ρ) ≥ 1− ρ

≤
⌈

1

2(1− ρ)
log

(
nν2

c2ρ2

)⌉
, Hmax(n).
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A.3. High-probability event

In Section 3.2, we described the favorable event ξt. We now define it precisely. We first define a set
Lt that contains all possible nodes in trees of maximum depth Hmax(t),

Lt ,
⋃

T :depth(T )≤Hmax(t)

Nodes(T )

and we recall the definition of the favorable event

ξt ,

∀(h, i) ∈ Lt, |µ̂h,i(t)− µh,i| ≤ c
√

log(1/δ̃(t))

Th,i(t)

·
Next, we prove that our favorable event holds with high probability.

Lemma 9 With c1 and c defined in Section A.1, for any fixed round t,

P[ξt] ≥ 1− 4δ

3t6
·

Proof Letting µ̂h,i,s denote the empirical mean reward of the first s noisy evaluations of f in xh,i,
we upper-bound the probability of the complementary event ξct as

P[ξct ] ≤
∑

(h,i)∈Lt

t∑
s=1

P

|µ̂h,i,s − µh,i| ≥ c
√

log(1/δ̃(t))

s

 union bound

≤
∑

(h,i)∈Lt

t∑
s=1

2 exp
(
−2c2 log(1/δ̃(t))

)
Chernoff-Hoeffding inequality

= 2 exp
(
−2c2 log(1/δ̃(t))

)
t|Lt|

= 2(δ̃(t))2c
2
t|Lt|

≤ 2(δ̃(t))2c
2
t2Hmax(t)+1

= 2(δ̃(t))2c
2
t2

⌈
1

2(1−ρ) log
(
nν2

c2ρ2

)⌉
+1 Lemma 4

≤ 8t(δ̃(t))2c
2

(
tν2

c2ρ2

) 1
2(1−ρ)

≤ 8t

(
δ

t
(ρ/(3ν))1/8)

8
1−ρ

)(
tν2(1− ρ)

4ρ2

) 1
2(1−ρ)

plugging in values of c and c1

= 8t

(
δ

t

) 8
1−ρ( ρ

3ν

) 1
1−ρ

t
1

2(1−ρ)

(
ν
√

1− ρ
2ρ

) 1
1−ρ

≤ 4

3
δt
−2ρ−13
2(1−ρ)

≤ 4δ

3t6
·
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A.4. Failing confidence bound

We decompose the regret of HCT into two terms depending on whether ξt holds. Let us define
∆t , f? − rt. Then, we decompose the regret as

RHCT
n =

n∑
t=1

∆t =
n∑
t=1

∆t1ξt +
n∑
t=1

∆t1ξct = Rξn +Rξ
c

n .

The failing confidence term Rξ
c

n is bounded by the following lemma.

Lemma 10 With c1 and c defined in Section A.1, when the favorable event does not hold, the regret
of HCT is with probability 1− δ/(5n2) bounded as

Rξ
c

n ≤
√
n.

Proof We split the term into rounds from 1 to
√
n and the rest,

Rξ
c

n =
n∑
t=1

∆t1ξct =

√
n∑

t=1

∆t1ξct +
n∑

t=
√
n+1

∆t1ξct .

The first term can be bounded trivially by
√
n since |∆t| ≤ 1. Next, we show that the probability

that the second term is non zero is bounded by δ/(5n2).

P

 n∑
t=
√
n+1

∆t1ξct > 0

 = P

 n⋃
t=
√
n+1

ξct


≤

n∑
t=
√
n+1

P[ξct ] union bound

≤
n∑

t=
√
n+1

δ

t6
Lemma 9

≤
∫ ∞
√
n

δ

t6
dt

=
δ

5n5/2

≤ δ

5n2
·

A.5. Proof of Theorem 2

Theorem 2 Assume that function f satisfies Assumption 1. Then, setting δ , 1/n, the cumulative
regret of HCT(ν, ρ) after n function evaluations is upper bounded as

E[RHCT(ν,ρ)
n ] ≤ αC(log n)1/(d(ν,C,ρ)+2)n(d(ν,C,ρ)+1)/(d(ν,C,ρ)+2),

where α is a numerical constant and C is the constant associated to d(ν, C, ρ).
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For the sake of simplicity, we denote d(ν, C, ρ) as d in the rest of this section. We study the regret
under events {ξt}t and prove that

RHCT(ν,ρ)
n ≤ 2

√
2n log(

4n2

δ
) + 3

(
23d+7νdKCρd

(1− ρ)2

) 1
d+2
(

log

(
2n

δ
8

√
3ν

ρ

)) 1
d+2

n
d+1
d+2

holds with probability 1− δ. We decompose the proof into 3 steps.

Step 1: Decomposition of the regret. We start by further decomposing the instantaneous regret
into two terms,

∆t = f? − rt = f? − f(xht,it) + f(xht,it)− rt = ∆ht,it + ∆̂t.

The regret of HCT when confidence intervals hold can thus be rewritten as

Rξn =

n∑
t=1

∆ht,it1ξt +

n∑
t=1

∆̂t1ξt ≤
n∑
t=1

∆ht,it1ξt +

n∑
t=1

∆̂t = R̃ξn + R̂ξn. (8)

We notice that the sequence {∆̂t}nt=1 is a bounded martingale difference sequence since E
[
∆̂t|Ft−1

]
=

0 and |∆̂t| ≤ 1. Thus, we apply the Azuma’s inequality on this sequence and obtain

R̂ξn ≤
√

2n log

(
4n2

δ

)
(9)

with probability 1− δ/(4n2).

Step 2: Preliminary bound on the regret of selected nodes and their parents. Now we proceed
with the bound of the first term R̃ξn. Recall that Pt is the optimistic path traversed by HCT at round
t. Let (h′, i′) ∈ Pt and (h

′′
, i
′′
) be the node which immediately follows (h′, i′) in Pt. By definition

of B-values and U -values, we have

Bh′,i′(t) ≤ max
j∈{0,...,K−1}

{
Bh′+1,Ki′−j(t)

}
= Bh′′ ,i′′ (t), (10)

where the last equality follows from the fact that the subroutine OptTraverse selects the node with
the largest B-value. By iterating the previous inequality along the path Pt until the selected node
(ht, it) and its parent (hpt , i

p
t ), we obtain

∀(h′, i′) ∈ Pt, Bh′,i′(t) ≤ Bht,it(t) ≤ Uht,it(t),

∀(h′, i′) ∈ Pt \ {(ht, it)}, Bh′,i′(t) ≤ Bhpt ,ipt (t) ≤ Uhpt ,ipt (t).
Since the root, which is an optimal node, is in Pt, there exists at least one optimal node (h?, i?) in
path Pt. As a result, we have

Bh?,i?(t) ≤ Uht,it(t), (11)

Bh?,i?(t) ≤ Uhpt ,ipt (t). (12)
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We now expand (11) on both sides under ξt. First, we have

Uht,it(t) , µ̂ht,it(t) + νρht + c

√
log(1/δ̃(t+))

Tht,it(t)
≤ f(xht,it) + νρht + 2c

√
log(1/δ̃(t+))

Tht,it(t)
(13)

and the same holds for the parent of the selected node,

Uhpt ,i
p
t
(t) ≤ f(xhpt ,i

p
t
) + νρh

p
t + 2c

√√√√ log(1/δ̃(t+))

Thpt ,i
p
t
(t)

·

By Lemma 5, we know that Uh?,i?(t) is a valid upper bound on f?. If an optimal node (h?, i?) is a
leaf, then Bh?,i?(t) = Uh?,i?(t) is also a valid upper bound on f?. Otherwise, there always exists a
leaf which contains the maximum for which (h?, i?) is its ancestor. Now, if we propagate the bound
backward from this leaf to (h?, i?) through (10), we have that Bh?,i?(t) is still a valid upper bound
on f?. Thus for any optimal node (h?, i?), at round t under ξt, we have

Bh?,i?(t) ≥ f?. (14)

We combine (14) with (11) and (13) to obtain

∆ht,it , f? − f(xht,it) ≤ νρht + 2c

√
log(1/δ̃(t+))

Tht,it(t)
·

The same result holds for its parent,

∆hpt ,i
p
t
, f? − f(xhpt ,i

p
t
) ≤ νρhpt + 2c

√√√√ log(1/δ̃(t+))

Thpt ,i
p
t
(t)

·

We now refine the two above expressions. The subroutine OptTraverse tells us that HCT only
selects a node when Th,i(t) < τh(t). Therefore, by definition of τht(t), we have

∆ht,it ≤ 3c

√
log(2/δ̃(t))

Tht,it(t)
· (15)

On the other hand, OptTraverse tells us that Thpt ,ipt (t) ≥ τhpt (t), thus

∆hpt ,i
p
t
≤ 3νρh

p
t ,

which means that every selected node has a parent which is (3νρht−1)-optimal.
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Step 3: Bound on the cumulative regret. We return to term R̃ξn and split it into different depths.
Let 1 ≤ H ≤ H(n) be a constant that we fix later. We have

R̃ξn ,
n∑
t=1

∆ht,it1ξt

≤
H(n)∑
h=0

∑
i∈Ih(n)

n∑
t=1

∆h,i1(ht,it)=(h,i)1ξt

≤
H(n)∑
h=0

∑
i∈Ih(n)

n∑
t=1

3c

√
log(2/δ̃(t))

Th,i(t)
1(ht,it)=(h,i) ineq. (15)

=

H∑
h=0

∑
i∈Ih(n)

n∑
t=1

3c

√
log(2/δ̃(t))

Th,i(t)
1(ht,it)=(h,i) +

H(n)∑
h=H+1

∑
i∈Ih(n)

n∑
t=1

3c

√
log(2/δ̃(t))

Th,i(t)
1(ht,it)=(h,i)

≤
H∑
h=0

∑
i∈Ih(n)

τh(th,i)∑
s=1

3c

√
log(2/δ̃(th,i))

s
+

H(n)∑
h=H+1

∑
i∈Ih(n)

Th,i(n)∑
s=1

3c

√
log(2/δ̃(th,i))

s

≤
H∑
h=0

∑
i∈Ih(n)

∫ τh(th,i)

1
3c

√
log(2/δ̃(th,i))

s
ds+

H(n)∑
h=H+1

∑
i∈Ih(n)

∫ Th,i(n)

1
3c

√
log(2/δ̃(th,i))

s
ds

≤
H∑
h=0

∑
i∈Ih(n)

6c

√
τh(th,i) log(2/δ̃(th,i)) +

H(n)∑
h=H+1

∑
i∈Ih(n)

6c

√
Th,i(n) log(2/δ̃(th,i))

= 6c


H∑
h=0

∑
i∈Ih(n)

√
τh(th,i) log(2/δ̃(th,i))︸ ︷︷ ︸

(a)

+

H(n)∑
h=H+1

∑
i∈Ih(n)

√
Th,i(n) log(2/δ̃(th,i))︸ ︷︷ ︸

(b)

.

We bound separately the terms (a) and (b). Since th,i ≤ n, we have

(a) ≤
H∑
h=0

∑
i∈Ih(n)

√
τh(n) log(2/δ̃(n)) ≤

H∑
h=0

|Ih(n)|
√
τh(n) log(2/δ̃(n)).

Notice that the covering tree is K-ary and therefore |Ih(n)| ≤ K|Ih−1(n)|. Recall that HCT only
selects a node (ht, it) when its parent is 3νρht−1-optimal. Therefore, by definition of the near-
optimality dimension,

|Ih(n)| ≤ |KIh−1(n)| ≤ KCρ−d(h−1),
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where d is the near-optimality dimension. As a result, for term (a), we obtain that

(a) ≤
H∑
h=0

KCρ−d(h−1)
√
τh(n) log(2/δ̃(n))

=

H∑
h=0

KCρ−d(h−1)

√
c2 log(2/δ̃(n))

ν2
ρ−2h log(2/δ̃(n)) ineq. (7)

= KCρd
c log(2/δ̃(n))

ν

H∑
h=0

ρ−h(d+1).

Consequently, we bound (a) as

(a) ≤ KCρd
c log

(
2/δ̃(n)

)
ν

ρ−H(d+1)

1− ρ · (16)

We proceed to bound the second term (b). By the Cauchy-Schwarz inequality,

(b) ≤

√√√√√ H(n)∑
h=H+1

∑
i∈Ih(n)

log
(

2/δ̃
(
th,i
))√√√√√ H(n)∑

h=H+1

∑
i∈Ih(n)

Th,i(n) ≤

√√√√√n

H(n)∑
h=H+1

∑
i∈Ih(n)

log
(

2/δ̃
(
th,i
))
,

where we trivially bound the second square-root factor by the total number of pulls. Now consider
the first square-root factor. Recall that the HCT algorithm only selects a node when Th,i(t) ≥ τh(t)
for its parent. We therefore have Th,i(t̃h,i) ≥ τh(t̃h,i) and the following sequence of inequalities,

n =

H(n)∑
h=0

∑
i∈Ih(n)

Th,i(n)

≥
H(n)−1∑
h=0

∑
i∈I+h (n)

Th,i(n)

≥
H(n)−1∑
h=0

∑
i∈I+h (n)

Th,i(t̃h,i) t̃h,i well defined for i ∈ I+h (n)

≥
H(n)−1∑
h=0

∑
i∈I+h (n)

τh(t̃h,i)

≥
H(n)−1∑
h=H

∑
i∈I+h (n)

τh(t̃h,i)

=

H(n)−1∑
h=H

∑
i∈I+h (n)

c2 log(1/δ̃(t̃+h,i)))

ν2
ρ−2h
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H(n)−1∑
h=H

∑
i∈I+h (n)

c2 log(1/δ̃(t̃+h,i)))

ν2
ρ−2h

≥
H(n)−1∑
h=H

∑
i∈I+h (n)

c2 log(1/δ̃(t̃+h,i)))

ν2
ρ−2H

=
c2ρ−2H

ν2

H(n)−1∑
h=H

∑
i∈I+h (n)

log(1/δ̃(t̃+h,i)))

=
c2ρ−2H

ν2

H(n)−1∑
h=H

∑
i∈I+h (n)

log(1/δ̃(
[
max(th+1,2i−1, th+1,2i)

]+
)) since t̃h,i = max(th+1,2i−1, th+1,2i)

=
c2ρ−2H

ν2

H(n)−1∑
h=H

∑
i∈I+h (n)

log(1/δ̃(max(t
+
h+1,2i−1, t

+
h+1,2i))) ∀t1, t2, [max(t1, t2)]

+ = max(t+1 , t
+
2 )

=
c2ρ−2H

ν2

H(n)−1∑
h=H

∑
i∈I+h (n)

max(log(1/δ̃(t
+
h+1,2i−1)), log(1/δ̃(t

+
h+1,2i)))

≥ c2ρ−2H

ν2

H(n)−1∑
h=H

∑
i∈I+h (n)

log(1/δ̃(t
+
h+1,2i−1)) + log(1/δ̃(t

+
h+1,2i))

2

=
c2ρ−2H

ν2

H(n)∑
h=H+1

∑
i∈I+h−1(n)

log(1/δ̃(t
+
h,2i−1)) + log(1/δ̃(t

+
h,2i))

2
change of variables

=
c2ρ−2H

2ν2

H(n)∑
h=H+1

∑
i∈I+h (n)

log(1/δ̃(t
+
h,i)).

In the above derivation, the last equality relies on the fact that for any h > 0, I+h (n) covers all the
internal nodes at level h and therefore its children cover Ih+1(n). We thus obtain

H(n)∑
h=H+1

∑
i∈I+h (n)

log(1/δ̃(t
+
h,i)) ≤

2ν2ρ2Hn

c2
· (17)

On the other hand, we have

(b) ≤

√√√√√n

H(n)∑
h=H+1

∑
i∈Ih(n)

log(2/δ̃(th,i)) ≤

√√√√√n

H(n)∑
h=H+1

∑
i∈Ih(n)

2 log(1/δ̃(th,i))

≤

√√√√√n

H(n)∑
h=H+1

∑
i∈Ih(n)

2 log(1/δ̃(t
+
h,i)), since th,i ≤ t+h,i.
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By plugging (17) into above expression, we get

(b) ≤ 2νρHn

c
· (18)

Now if we combine (18) with (16), we bound R̃ξn as

R̃ξn ≤ 6ν

[
KCρd

c2 log(2/δ̃(n))

ν2
ρ−H(d+1)

1− ρ + 2ρHn

]
· (19)

We choose H to minimize the above bound by equalizing the two terms in the sum and obtain

ρH =

(
KCρdc2 log(2/δ̃(n))

2n(1− ρ)ν2

) 1
d+2

, (20)

which after being plugged into (19) gives

R̃ξn ≤ 24ν

(
KCρdc2 log(2/δ̃(n))

2(1− ρ)ν2

) 1
d+2

n
d+1
d+2 . (21)

Finally, combining (21), (9), and Lemma 10, we obtain

RHCT
n ≤ √n+

√
2n log(

4n2

δ
) + 24ν

(
2KCρd

(1− ρ)2ν2

) 1
d+2
(

log

(
2n

δ
8

√
3ν

ρ

)) 1
d+2

n
d+1
d+2

=
√
n+

√
2n log(

4n2

δ
) + 3

(
23d+7νdKCρd

(1− ρ)2

) 1
d+2
(

log

(
2n

δ
8

√
3ν

ρ

)) 1
d+2

n
d+1
d+2

≤ 2

√
2n log(

4n2

δ
) + 3

(
23d+7νdKCρd

(1− ρ)2

) 1
d+2
(

log

(
2n

δ
8

√
3ν

ρ

)) 1
d+2

n
d+1
d+2

with probability 1− δ.

Appendix B. General analysis of POO

We prove Proposition 7 in this section. The analysis of POO originally proposed by Grill et al. (2015)
consists in two main parts, that can be adapted to any base algorithm satisfying assumption (1) on
its cumulative regret. In the following, we assume that ν? ≤ νmax and ρ? ≤ ρmax.

The first part of the analysis consists in proving that there exists a parameter ρ such that
(νmax, ρ) ∈ G and the instanceA(νmax, ρ) has its simple regret bounded in terms of the true param-
eters (ν?, ρ?). One important ingredient is the following lemma, which upper bounds the difference
between the near-optimality dimension d(νmax, C, ρ) and d(ν?, C?, ρ?) for ρ > ρ?.

Lemma 11 (Appendix B.1 of Grill et al. 2015) Under Assumption 1, for any choice of ρ? and ρ
s.t. 0 < ρ? < ρ < 1, we have

d(νmax, C, ρ)− d(ν?, C?, ρ?) ≤ logK

(
1

log(1/ρ)
− 1

log(1/ρ?)

)
.
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Lemma 11 endorses the choice of grid G = {(νmax, ρ
2N/(2i+1)
max )i}, which ensures that

ρ , arg min
ρi≥ρ?

[d(νmax, Ci, ρi)− d(ν?, C?, ρ?)].

satisfies d(νmax, C, ρ)−d(ν?, C?, ρ?) ≤ Dmax/N , whereC is associated to ρ. A close examination
of Appendix B.2 and B.3 of Grill et al. (2015) shows that under the assumption

logE
[
S
A(νmax,ρ)
t

]
≤ logα+

logC(νmax, ρ)

d(νmax, C, ρ) + 2
− log(t/ log t)

d(νmax, C, ρ) + 2
, (22)

the simple regret of A(νmax, ρ) can also be related to (ν?, C?, ρ?): for some constant α′,

E
[
S
A(νmax,ρ)
t

]
≤ α′Dmax(νmax/ν

?)Dmax

(
(log2 t)/t)1/(d(ν

?,C?,ρ?)+2)
)

(23)

under assumption described by (1) on the cumulative regret of the base algorithms. Note that (22)
holds as the recommendation rule ensures that E[St] = E[Rt]/t.

The second part of the analysis controls the simple regret of POO(A) by showing that the error
made when choosing s? 6= (νmax, ρ) is negligible. We highlight that for this part, having cumulative
regret guarantees is crucial. Denoting by (xi,j)1≤i≤n/N the successive points selected by algorithm
j and (ri,j)1≤i≤n/N the reward observed, the final output of POO(A) can be written

x̂ = xI,̂ where I ∼ U({1, . . . , n/N}) and ̂ = arg max
j

µ̂j

with µ̂j = (N/n)
∑n/N

i=1 ri,j . One can also define ̃ = arg maxj µj with µj = N
n

∑n/N
i=1 f(xi,j) and

 to be the index of the instance such that ρ = ρ. First, some concentration results (see Appendix
B.4 of Grill et al. 2015) show that for all j, E[|µ̂j − µj |] ≤ C/

√
n/N . The simple regret can then

be upper bounded as

E
[
SPOO(A)
n

]
= E[f? − f(x̂)] = E

f? − N

n

n/N∑
i=1

f(xi,̂)

 = E
[
f? − µ̂

]
= E[f? − µ] + E

[
µ − µ̃

]
+ E

[
µ̃ − µ̂̃

]
+ E

[
µ̂̃ − µ̂̂

]
+ E

[
µ̂̂ − µ̂

]
The second and fourth terms in this sum are negative by definition of j̃ and ĵ respectively, while the
third and last terms are O(

√
N/n) using the concentration result mentioned above. As for the first

term, one has

E[f? − µ] =
N

n
E

[
T∑
t=1

(f? − ri,)
]

=
N

n
E
[
R
A(νmax,ρ)
n/N

]
= E

[
S
A(νmax,ρ)
n/N

]
,

where again the recommendation rule matters. Using the upper bound (23) obtained in the first part
of the analysis permits to conclude by noting that the first term is actually the leading term.
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