Finding the bandit in agraph: Sequential search-and-stop
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BACKGROUND OFFLINE SEARCH-AND-STOP

Sequential search-and-stop problem

= ([n],£) is a fixed DAG.
Setting: At each round, hider randomly located at some vertex of G.
Goal: Search it.

Constraint: Can examine a vertex only if all in-neighbors already exam-

ined (precedence constraints).

Remark: Can stop current search and go to next round, even if hider was
not found.

Instance example:

. precedence constraints

. selected search s

Bl - performed search s[W]

% : random hider W € {e;, i € [n]}, w* =
(& : random cost C € [0,1]", ¢c* 2 E[C]

At each round ¢, (W4, Cy) Y Pw @ Pe.

Semi-bandit feedback: W, ; and C; ; revealed for each examined vertex .

Purpose: Design policy m maximizing the expected number of hiders found
within budget B

TB 1

2. 2 Wil

t 1 €84 [Wt

Fp(m) 2 E

T = random round at which remaining budget becomes negative.

Evaluation: Expected regret

Rp(m) & Fg — Fg(n).

Vectors w*, c* are given as input.

J(s) = ZZ : Szzg 23;_11 w;) , J(s) =T = msin J(s).

J(s) = ratio between expected cost paid and expected number
of hiders found, on a single round, selecting search s.

Proposition (based on [2) Stationary strategy m* =
is quasi-optimal: £ B(m*) < Fjp, < 1.

(s*,8",...)

Consequence:

As) 2 £ e (1-20

TB Sl QB/Cmin.
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Cmin = lower bound on expected cost payed for a round.

Remark: J(s) also = expected cost paid to find a single hider,
following strategy (s,s,...).

How to minimize J7

CONTRIBUTIONS
New budgeted bandit setting: Non linear, order dependent.

Offline oracle design: Quasi-optimal, efficient, online-adapted.

Online setting: Variance-based algorithm, upper/lower bounds.

MOTIVATIONS

Online advertising

©

Diagnostics Troubleshooting
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5 some sequence
of actions that
generates a

conversion from the
K user. /

\\\\\

5 some medical B some

test revealing the malfunctioning
pathology in the component in the
patient. device [3].

Fixed support

How to minimize J over orderings?

*

Definition (density). p(A) £ Ziea s

ZieA C;

Proposition (order property). If p(a) > p(b), then
J(ab) < J(ba).

Definition (Sidney’s decomposition [1]|). AiUAxU--- A, =
Vi € |k], A; = maxzimum density search in G(A; L --- L Ag).

n] s.t.

Example:

: density p

Theorem. The optimal ordering is consistent with the Sidney’s de-
composition.
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Fixed order

Assume the optimal ordering s is known.
What is the optimal search s*7

Proposition (support property). If p(z) > p(y) , then
J(xy) > min{J (x),

J (xyz)}

Theorem. The minimizer of J is of the form s = (s1,...,8:).

Generalization to ) w; # 1

Assume only estimates (w,c) € RZ of w*,c* are available.
Idea: Replace J by J.
Advantage:

J(s;w,c)” < J(s;wh,c) = J(s),

and c<c”

if w>w"

Theorem. The minimizer of J¥ is of the form s* = (s1,...,5;).
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ONLINE SEARCH-AND-STOP

24 ( } > Vectors w*, c* are unknown.
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Algorithm CUCB-V for sequential search-and-stop

Input: G.
fort=1..00 do
select s; = ORACLE (W, ¢, G) = argmin J T (- ;wy, ¢y).

perform s;[W,]|.
collect feedback: update counters and empirical averages.
end for

A .
A7J,min — lIlf.
SF#S*: 1€s

A(s) > 0.
Theorem (upper bound).

Rp(mcucs-v) =

14+ (J*+n) 07? J*n n
nlogTBZ J*2A +( — )10g<J*Ai min)

In addition,

sup Rp(m) =

O(\/_ (1+ )\/TglogTB)
where sup over all possible sequential search-and-stop problems
with fized cpin and J*.

Theorem (lower bound). On some sequential search-and-stop
problem, the optimal online policy m satisfies

EXPERIMENTS
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