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Background

Sequential search-and-stop problem

G = ([n], E) is a fixed DAG.

Setting: At each round, hider randomly located at some vertex of G.

Goal: Search it.

Constraint: Can examine a vertex only if all in-neighbors already exam-
ined (precedence constraints).

Remark: Can stop current search and go to next round, even if hider was
not found.

Instance example:

: precedence constraints
: selected search s
: performed search s[W]
: random hider W ∈ {ei, i ∈ [n]}, w? , E [W]
: random cost C ∈ [0, 1]n, c? , E [C]

At each round t, (Wt,Ct)
iid∼ PW ⊗ PC.

Semi-bandit feedback: Wi,t and Ci,t revealed for each examined vertex i.

Purpose: Design policy π maximizing the expected number of hiders found
within budget B

FB(π) , E

τB−1∑
t=1

∑
i∈st[Wt]

Wi,t

 ,
τB = random round at which remaining budget becomes negative.

Evaluation: Expected regret

RB(π) , F ?B − FB(π).

Contributions
New budgeted bandit setting: Non linear, order dependent.

Offline oracle design: Quasi-optimal, efficient, online-adapted.

Online setting: Variance-based algorithm, upper/lower bounds.

Motivations
Online advertising Diagnostics Troubleshooting

some sequence
of actions that
generates a

conversion from the
user.

some medical
test revealing the
pathology in the

patient.

some
malfunctioning

component in the
device [3].
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Offline search-and-stop

Vectors w?, c? are given as input.

J(s) ,

∑|s|
i=1 c

?
si

(
1−

∑i−1
j=1 w

?
sj

)
∑|s|

i=1 w
?
si

, J(s?) = J? , min
s
J(s).

J(s) = ratio between expected cost paid and expected number
of hiders found, on a single round, selecting search s.

Proposition (based on [2]). Stationary strategy π? = (s?, s?, . . . )
is quasi-optimal: B−n

J? ≤ FB(π?) ≤ F ?
B ≤ B+n

J? .

Consequence:

RB(π) '
TB∑
t=1

∆ (st) , where

∆ (s) , 1
J?

∑|s|
i=1 c

?
si

(
1−

∑i−1
j=1 w

?
sj

)
−
∑|s|

i=1 w
?
si ≥ 0.

TB , 2B/cmin.

cmin , lower bound on expected cost payed for a round.

Remark: J(s) also = expected cost paid to find a single hider,
following strategy (s, s, . . . ).

How to minimize J?

Fixed support

How to minimize J over orderings?

Definition (density). ρ(A) ,
∑

i∈A w?
i∑

i∈A c?i
.

Proposition (order property). If ρ(a) ≥ ρ(b), then

J(ab) ≤ J(ba).

Definition (Sidney’s decomposition [1]). A1tA2t· · ·tAk = [n] s.t.
∀i ∈ [k], Ai = maximum density search in G〈Ai t · · · tAk〉.

Example:

A1

A2

A3

A4

A5

+ −
: density ρ

Theorem. The optimal ordering is consistent with the Sidney’s de-
composition.

Fixed order

Assume the optimal ordering s is known.

What is the optimal search s??

Proposition (support property). If ρ(z) ≥ ρ(y) , then

J(xy) ≥ min {J (x) , J (xyz)}

Theorem. The minimizer of J is of the form s? = (s1, . . . , si).

Generalization to
∑

wi 6= 1

Assume only estimates (w, c) ∈ R2
+ of w?, c? are available.

Idea: Replace J by J+.

Advantage:

J (s;w, c)+ ≤ J (s;w?, c?) = J(s),

if w ≥ w? and c ≤ c? .

Theorem. The minimizer of J+ is of the form s? = (s1, . . . , si).

Online search-and-stop

Vectors w?, c? are unknown.

Nw,i,t−1 ,
t−1∑
u=1

I{i ∈ su}, w̄i,t−1 ,

∑t−1
u=1 I{i ∈ su}Wi,u

Nw,i,t−1
,

Nc,i,t−1 ,
t−1∑
u=1

I{i ∈ su[Wu]}, c̄i,t−1 ,

∑t−1
u=1 I{i ∈ su[Wu]}Ci,u

Nc,i,t−1
·

ci,t ,

(
c̄i,t−1 −

√
0.5ζ log t

Nc,i,t−1

)+

,

wi,t , min

{
w̄i,t−1 +

√
2ζw̄i,t−1(1− w̄i,t−1) log t

Nw,i,t−1
+

3ζ log t

Nw,i,t−1
, 1

}
.

Algorithm CUCB-V for sequential search-and-stop
Input: G.
for t = 1..∞ do

select st = Oracle (wt, ct,G) = arg min J+ ( · ;wt, ct).
perform st[Wt].
collect feedback: update counters and empirical averages.

end for

∆i,min , inf
s6=s?: i∈s

∆ (s) > 0.

Theorem (upper bound).

RB(πCUCB-V) =

O

n log TB
∑
i∈[n]

1+(J?+n)
2
σ2
i

J?2∆i,min

+
(J?+n)

J?
log

(
n

J?∆i,min

) .

In addition,

supRB(π) = O
(√
n
(

1+
n

J?

)√
TB log TB

)
,

where sup over all possible sequential search-and-stop problems
with fixed cmin and J?.

Theorem (lower bound). On some sequential search-and-stop
problem, the optimal online policy π satisfies

−4 +
1

28

√
B

n
≤ RB(π) = O

(√
B log

(
B

n

))
.

path a

path b
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