Finding the bandit in a graph: Sequential search-and-stop

PIERRE PERRAULT^{1,2}, VIANNEY PERCHET^{2,3}, MICHAL VALKO¹

¹SEQUEL TEAM, INRIA LILLE ²CMLA, ENS PARIS-SACLAY ³CRITEO RESEARCH

BACKGROUND **OFFLINE SEARCH-AND-STOP ONLINE SEARCH-AND-STOP** Sequential search-and-stop problem Vectors $\mathbf{w}^{\star}, \mathbf{c}^{\star}$ are unknown. Vectors $\mathbf{w}^{\star}, \mathbf{c}^{\star}$ are given as input. $\mathcal{G} = ([n], \mathcal{E})$ is a fixed DAG. **Setting**: At each round, **hider** randomly located at some vertex of \mathcal{G} . $J(\mathbf{s}) \triangleq \frac{\sum_{i=1}^{|\mathbf{s}|} c_{s_i}^{\star} \left(1 - \sum_{j=1}^{i-1} w_{s_j}^{\star}\right)}{\sum_{i=1}^{|s|} w^{\star}}, \quad J(\mathbf{s}^{\star}) = J^{\star} \triangleq \min_{\mathbf{s}} J(\mathbf{s}).$ $N_{\mathbf{w},i,t-1} \triangleq \sum_{u=1}^{t-1} \mathbb{I}\{i \in \mathbf{s}_u\}, \quad \bar{w}_{i,t-1} \triangleq \frac{\sum_{u=1}^{t-1} \mathbb{I}\{i \in \mathbf{s}_u\} W_{i,u}}{N_{\mathbf{w},i,t-1}},$ **Goal**: Search it. Constraint: Can examine a vertex only if all in-neighbors already exam- $N_{\mathbf{c},i,t-1} \triangleq \sum_{i=1}^{t-1} \mathbb{I}\{i \in \mathbf{s}_u[\mathbf{W}_u]\}, \quad \bar{c}_{i,t-1} \triangleq \frac{\sum_{u=1}^{t-1} \mathbb{I}\{i \in \mathbf{s}_u[\mathbf{W}_u]\}C_{i,u}}{N_{\mathbf{c},i,t-1}}.$ ined (precedence constraints). $J(\mathbf{s}) = \mathbf{ratio}$ between **expected cost paid** and **expected number** of hiders found, on a single round, selecting search s. **Remark**: Can **stop** current **search** and go to next round, even if hider was **Proposition** (based on [2]). Stationary strategy $\pi^* = (\mathbf{s}^*, \mathbf{s}^*, \dots)$ not found. $c_{i,t} \triangleq \left(\overline{c}_{i,t-1} - \sqrt{\frac{0.5\zeta \log t}{N_{\mathbf{c},i,t-1}}} \right),$ is quasi-optimal: $\frac{B-n}{I^{\star}} \leq F_B(\pi^{\star}) \leq F_B^{\star} \leq \frac{B+n}{I^{\star}}$. **Instance example**: **Consequence**: $w_{i,t} \triangleq \min\left\{ \bar{w}_{i,t-1} + \sqrt{\frac{2\zeta \bar{w}_{i,t-1}(1 - \bar{w}_{i,t-1})\log t}{N_{w,i,t-1}}} + \frac{3\zeta \log t}{N_{w,i,t-1}}, 1 \right\}$ $R_B(\pi) \simeq \sum_{t=1}^{T_B} \Delta(\mathbf{s}_t), \quad \text{where}$ Algorithm CUCB-V for sequential search-and-stop $\Delta(\mathbf{s}) \triangleq \frac{1}{J^{\star}} \sum_{i=1}^{|\mathbf{s}|} c_{s_i}^{\star} \left(1 - \sum_{j=1}^{i-1} w_{s_j}^{\star} \right) - \sum_{i=1}^{|\mathbf{s}|} w_{s_i}^{\star} \ge 0.$

At each round t, $(\mathbf{W}_t, \mathbf{C}_t) \stackrel{iid}{\sim} \mathbb{P}_{\mathbf{W}} \otimes \mathbb{P}_{\mathbf{C}}$.

Semi-bandit feedback: $W_{i,t}$ and $C_{i,t}$ revealed for each examined vertex *i*.

Purpose: Design policy π maximizing the expected number of hiders found within **budget** B

 $F_B(\pi) \triangleq \mathbb{E} \left[\sum_{t=1}^{\tau_B - 1} \sum_{i \in \mathbf{s}_t [\mathbf{W}_t]} W_{i,t} \right],$

 τ_B = random round at which remaining budget becomes negative.

Evaluation: Expected regret

 $R_B(\pi) \triangleq F_B^{\star} - F_B(\pi).$

CONTRIBUTIONS

New budgeted bandit setting: Non linear, order dependent. **Offline oracle design**: Quasi-optimal, efficient, online-adapted.

Online setting: Variance-based algorithm, upper/lower bounds.

MOTIVATIONS

```
T_B \triangleq 2B/c_{\min}.
```

 $c_{\min} \triangleq$ lower bound on expected cost payed for a round.

Remark: J(s) also = expected cost paid to find a single hider, following strategy (s, s, ...).

How to minimize J?

Fixed support

How to minimize J over orderings?

Definition (density). $\rho(A) \triangleq \frac{\sum_{i \in A} w_i^*}{\sum_{i \in A} c_i^*}$.

Proposition (order property). If $\rho(\mathbf{a}) \ge \rho(\mathbf{b})$, then

 $J(\mathbf{ab}) \leq J(\mathbf{ba}).$

Definition (Sidney's decomposition [1]). $A_1 \sqcup A_2 \sqcup \cdots \sqcup A_k = [n] \ s.t.$ $\forall i \in [k], A_i = maximum \ density \ search \ in \ \mathcal{G}\langle A_i \sqcup \cdots \sqcup A_k \rangle.$

Example:

Input: \mathcal{G} . for $t = 1..\infty$ do select $\mathbf{s}_t = \text{ORACLE}(\mathbf{w}_t, \mathbf{c}_t, \mathcal{G}) = \arg\min J^+(\cdot; \mathbf{w}_t, \mathbf{c}_t).$ perform $\mathbf{s}_t[\mathbf{W}_t]$. collect feedback: update counters and empirical averages. end for

$$\Delta_{i,\min} \triangleq \inf_{\mathbf{s}\neq\mathbf{s}^{\star}: i\in\mathbf{s}} \Delta(\mathbf{s}) > 0.$$

Theorem (upper bound).

 $R_B(\pi_{\rm CUCB-V}) =$

$$\mathcal{O}\left(n\log T_B \sum_{i\in[n]} \frac{1+(J^{\star}+n)^2 \sigma_i^2}{J^{\star^2} \Delta_{i,\min}} + \frac{(J^{\star}+n)}{J^{\star}} \log\left(\frac{n}{J^{\star} \Delta_{i,\min}}\right)\right).$$

In addition,

$$\sup R_B(\pi) = \mathcal{O}\left(\sqrt{n}\left(1 + \frac{n}{J^*}\right)\sqrt{T_B \log T_B}\right),\,$$

where sup over all possible sequential search-and-stop problems with fixed c_{\min} and J^{\star} .

Theorem (lower bound). On some sequential search-and-stop problem, the optimal online policy π satisfies

	path a \longrightarrow	
	path b \longrightarrow	
XPEF	RIMENTS	
×	104	
1.0	• CUCB	
	• CUCB-V	, i i i i i i i i i i i i i i i i i i i
pun 0.8	CUCB-KLTHOMPSONSAMPLING	
rs found	CUCB-KLTHOMPSONSAMPLING	
hiders found 9.0	CUCB-KL THOMPSONSAMPLING	
8.0 hiders found	CUCB-KL THOMPSONSAMPLING	

Analysis and Manufacturing, 15(4):321-333. [4] Wang, Q. and Chen, W. (2017). Improving regret bounds for combinatorial semi-bandits with probabilistically triggered arms and its applications. In Neural Information Processing Systems. [5] Audibert, J. Y., Munos, R., and Szepesvári, C. (2009). Explorationexploitation tradeoff using variance estimates in multi-armed bandits. The-

oretical Computer Science, 410(19):1876-1902.

Theorem. The minimizer of J^+ is of the form $\mathbf{s}^* = (s_1, \ldots, s_i)$.

