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Abstract
We consider the problem where an agent wants to find a hidden object that is randomly located in some

vertex of a directed acyclic graph (DAG) according to a fixed but possibly unknown distribution. The agent
can only examine vertices whose in-neighbors have already been examined. In scheduling theory, this problem
is denoted by 1|prec|

∑
wjCj (Graham et al., 1979). However, in this paper we address a learning setting

where we allow the agent to stop before having found the object and restart searching on a new independent
instance of the same problem. The goal is to maximize the total number of hidden objects found under
a time constraint. The agent can thus skip an instance after realizing that it would spend too much time
on it. Our contributions are both to the search theory and multi-armed bandits. If the distribution is known,
we provide a quasi-optimal greedy strategy with the help of known computationally efficient algorithms for
solving 1|prec|

∑
wjCj under some assumption on the DAG. If the distribution is unknown, we show how to

sequentially learn it and, at the same time, act near-optimally in order to collect as many hidden objects as
possible. We provide an algorithm, prove theoretical guarantees, and empirically show that it outperforms the
naïve baseline.

1 Introduction
We study the problem where an object, called hider, is randomly located in one vertex of a directed acyclic graph
(DAG), and where an agent wants to find it by sequentially selecting vertices one by one, and examining them
at a (possibly random) cost. The agent has a strong constraint: its search must respect precedence constraints
imposed by the DAG, i.e., a vertex can be examined only if all its in-neighbors have already been examined. The
goal of the agent is to minimize the expected total search cost incurred before finding the hider. This problem is
a single machine scheduling problem (Lín, 2015), where a set of n jobs [n] , {1, . . . , n} have to be processed on a
single machine that can process at most one job at a time. Once a job processing is started, it must continue
without interruption until the processing is complete. Each job j has a cost cj > 0, representing its processing
time, and a weight wj ≥ 0, representing its importance; here, wj is the probability that j contains the hider. The
goal is to find a schedule that minimizes

∑n
j=1 wjCj , representing the expected cost suffered by the agent for

finding the hider, where Cj is the completion time of job j.
The standard scheduling notation (Graham et al., 1979) denotes this problem as 1|prec|

∑
wjCj , and it was

already shown to be NP-hard (Lawler, 1978; Lenstra and Rinnooy Kan, 1978). On the positive side, several
polynomial-time α-approximations exist, depending on the assumption we take on the DAG (see e.g., the recent
survey of Prot and Bellenguez-Morineau, 2017). For instance, the case of α = 2 can be dealt without any
additional assumption. On the other hand, there is an exact O(n log n)-time algorithm when the partially ordered
set (poset) defined by the DAG is a series-parallel order (Lawler, 1978). More generally, when the poset has
fractional dimension of at most f , there is a polynomial-time approximation with α = 2− 2/f (Ambühl et al.,
2011). In this work, we assume the DAG is such that an exact polynomial-time algorithm is available, for example,
we can take two-dimensional poset (Ambühl and Mastrolilli, 2009).

The problem is also well known in search theory (Stone, 1976; Fokkink et al., 2016), one of the original
disciplines of operations research. Here, the search space is a DAG. We thus fall within the network search setting
(Kikuta and Ruckle, 1994; Gal, 2001; Evans and Bishop, 2013). When the DAG is an out-tree, the problem
reduces to the expanding search problem introduced by Alpern and Lidbetter (2013).

The case of unknown distribution of the hider is usually studied within the field of search games, i.e., a
zero-sum game where the agent picks the search, and plays against the hider, with search cost as payoff (Alpern
and Gal, 2006; Alpern et al., 2013; Hohzaki, 2016). In our work, we deal with an unknown hider distribution by
extending the stochastic setting to the sequential case, where at each round t, the agent faces a new, independent
instance of the problem. The challenge is the need to learn the distribution through repeated interactions with
the environment. Each instance, the agent has to perform a search based on the instances observed during the
previous rounds. Furthermore, contrary to the typical search setting, the agent can additionally decide whether it
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wishes to abandon the search on the current instance and start a new one in the next round, even if the hider was
not found. The goal of the agent is to collect as many hiders as possible, using a fixed budget B. This may be
particularly useful, when the remaining vertices have large costs and it would not be cost-effective to examine
them.

As a result, the hider may not be found in each round and the agent has to make a trade-off between exhaustive
searches, which lead to a good estimation (exploration) and efficient searches, which leads to a good benefit/cost
ratio (exploitation). The sequential exploration-exploitation trade-off is well studied in multi-armed bandits (MAB,
Cesa-Bianchi and Lugosi, 2006) and has been applied to many fields including mechanism design (Mohri and
Munoz, 2014), search advertising (Tran-Thanh et al., 2014) and personalized recommendation (Li et al., 2010).
Our setting can thus be seen as an instance of stochastic combinatorial semi-bandits (Cesa-Bianchi and Lugosi,
2006, 2012; Gai et al., 2012; Gopalan et al., 2014; Kveton et al., 2015; Combes et al., 2015a; Wang and Chen,
2017; Valko, 2016). For this reason, we refer to a vertex j ∈ [n] as an arm. We shall see, however, that this
particular semi-bandit problem is challenging, first because the offline objective is not easy to optimize, and
second, because it does not directly satisfy the standard key assumptions as monotonicity and non-negativity
when using optimistic estimates. Moreover, due to the budget constraint, it is also an instance of budgeted bandit,
also known as bandits with knapsacks (Badanidiyuru et al., 2013), in the case of single resource and infinite
horizon. We thus evaluate the performance of a learning policy with the (classical) notion of expected (cumulative
budgeted) regret. It measures the expected difference, in term of cumulative reward collected within the budget
constraint B, between the learning policy and an oracle policy that knows a priori the exact parameters of the
problem.

Motivations There are several motivations behind this setting. The decision-theoretic troubleshooting problem
of giving a diagnosis for several devices having a malfunctioning component, and coming sequentially to the
agent, is one example. Precedence constraints arise naturally in many troubleshooting applications, where there
are restrictions imposed to the agent on the order of component tests, see e.g., Jensen et al., 2001. Moreover,
allowing the agent to stop gives a new alternative to the so-called service call (Heckerman et al., 1995; Jensen
et al., 2001) in order to deal with non-cost-effective vertices: Instead of giving a high cost to an extra action that
will automatically find the fault in the device, we give it a zero cost, but do not reward such diagnostic failure.
This way, we do not need to estimate any call-service cost, which could be useful, for example, when a new device
is sent to the user if the diagnostic fails, with a cost that depends on a disutility for the user: loss of personal
data, device reconfiguration, etc. Maximizing the number of hiders found is then analogous to maximizing the
number of successful diagnoses.

Another motivation comes from online advertisement. There are several different actions that might generate
a conversion from a user, such as sending one or several emails, displaying one or several ads on a website, buying
keywords on search engines, etc. We assume that some precedence constraints are imposed between actions and
that a conversion will occur if some sequence of actions is made, for instance, first, display an ad, then send the
first email, and finally the second one. As a consequence, the conversion is “hidden”, the precedence constraints
restrict our access to it, and the agent aims at finding it. However, for some users, finding the correct sequence
might be too expensive and it might be more interesting to abandon that specific user to focus on more promising
ones.

Related settings Finally, there are several settings related to ours. One of them is stochastic probing (Gupta
and Nagarajan, 2013), which differs in the fact that each arm can contain a hider, independently from each other.
Another one is the framework of optimal discovery (Bubeck et al., 2013), widely studied in machine learning.

Our contributions One of our main contributions is a stationary offline policy (i.e., an algorithm that solves
the problem when the distribution is known), for which we prove the approximation guarantees and adapt it
in order to fit the online problem. In particular, we prove it is quasi-optimal, and use the exact algorithm
for 1|prec|

∑
wjCj to prove its computational efficiency. Next, we provide a solution when the distribution is

unknown to the agent, based on combinatorial upper confidence bounds (CUCB) algorithm (Chen et al., 2016), and
UCB-variance (UCB-V) of Audibert et al. (2009). Dealing with variance estimates allows us to sharp the bound on
the expected cumulative regret, compared to the simple use of CUCB. We also propose a new method (that can be
of independent interest) to avoid the usual 1/c2min term in the expected regret bound (Tran-Thanh et al., 2012;
Ding et al., 2013; Xia et al., 2016a,b; Watanabe et al., 2017), where cmin is the minimal expected cost paid over a
single round.

2 Background
In this paper, we typeset vectors in bold and indicate components with indices, i.e., a = (a1, . . . , an) ∈ Rn.
Furthermore, we indicate randomness by underlining the relevant symbols (Hemelrijk, 1966).
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We formalize in this section the setting we consider. We denote a finite DAG by G , ([n], E), where [n] is its
set of vertices, or arms, and E is its set of directed edges. For more generality, we assume arm costs are random
and mutually independent. We denote cj ∈ [0, 1], with expectation cj , E

[
cj
]
> 0, the cost of arm j. We thus

have c = E [c] ∈ (0, 1]n. We also assume that one specific vertex, called hider, is chosen at random, independently
from c, accordingly to some fixed categorical (or multivariate Bernoulli) distribution parametrized by vector w
satisfying1 ∑n

i=1 wi = 1 and wi ∈ [0, 1]. We remind that w ∼ Bernoulli(w) if, given i ∈ [n] and with probability
wi, wi = 1 and wj = 0 for all j 6= i. Let D denote the joint distribution of (c,w).

For an (ordered) subset A of [n], we denote by Ac, the complementary of A in [n], and |A| its cardinality.
Moreover, if x ∈ Rn, we let xA ,

∑
i∈A xi. Let G〈A〉 be the sub-DAG in G induced by A ⊂ [n], i.e. the DAG

with A as vertex set, and with (i, j) is an arc in G〈A〉 if and only if (i, j) ∈ E . We call support of an ordered
arm set a = (a1, . . . , ak) the corresponding non-ordered set. If x,y ∈ Rn, we write x ≥ y (resp., x ≤ y) if
x − y ∈ Rn+ (resp., y − x ∈ Rn+). We let a[j] , (a1, a2, . . . , aj) for j ≤ |a|. In addition, we let a[w] , a[j]

if there is j such that waj = 1, and a[w] , a otherwise. For two disjoint ordered arm sets a and b, we let
ab = (a1, a2, . . . , a|a|, b1, b2, . . . , b|b|) be the concatenation of a and b.

We assume that G allows a polynomial-time algorithm (w.r.t.n), denoted Schedul, for the problem of
1|prec|

∑
wjCj with precedence constraints given by G, i.e., for minimizing

d(s) ,
|s|∑
i=1

wsics[i] =

|s|∑
i=1

wsi

i∑
j=1

csj

over linear extensions2 s = (s1, . . . , sn) of the poset defined by G (that we call G-linear extensions). d(s) represents
the expected cost E

[
cs[w]

]
to pay for finding the hider, by searching arm s1 first and paying cs1 , then s2 by

paying cs2 if ws1 = 0, and so on until the hider is found (i.e., the last arm x searched is such that wx = 1).
We define a search in G as an ordering s = (s1, . . . , sk) of different arms such that for all i ∈ [k], predecessors

of si in G are included in {s1, . . . , si−1} (a search is a prefix of a G-linear extension). We denote SG (or simply S)
the set of searches in G. Support of a search is called initial set.

2.1 Protocol
The search problem we focus on is sequential. We consider an agent, also called a learning algorithm or a policy
that knows G but that does not know D. At each round t, an independent sample (ct,wt) is drawn from D. The
aim of the agent is to search the hider (i.e., the arm x such that wtx = 1) by constructing a search on G. Since the
hider may be located at some arm that doesn’t belong to the search, it is not necessarily found over each round.

The search to be used by the agent can be computed based on all its previous observations, i.e., all the costs
of explored vertices (and only those) and all the locations where the hider has been found or not. Obviously,
the search cannot depend on non-observed quantities. For example, the agent may estimate w and c in order
to choose the search accordingly. Each time an arm j is searched, the feedback wtj and ctj is given to the agent.
Since several arms can be searched over one round, this problem falls into the family of stochastic combinatorial
semi-bandits. The agent can keep searching until its budget, B, runs out. B is a positive number and does not
need to be known to the agent in advance. The goal of the agent is to maximize the overall number of hiders
found under the budget constraint.

The setting described above allows the agent to modify its behavior depending on the feedback it received
during the current round. However, by independence assumption between random variables, the only feedback
susceptible to modify the search the agent chose at the beginning of a round t is the observation of wti = 1 for
some arm i. Even if nothing prevents the agent from continuing “searching” some arms after having seen such an
event, it would not increase the number of hiders found (there is no more hider to find), while this would still
decrease the remaining budget, and therefore it would have a pure exploratory purpose. Knowing this, an oracle
policy that knows exactly D thus selects a search s at the beginning of round t, and then performs the search that
follows s until either wti = 1 is observed or s is exhausted (i.e., no arms are left in s). Therefore, the performed
search is in fact s[wt]. We thus restrict ourselves to an agent that selects a search s at the beginning of each
round t and then performs s[wt] over this round. As a consequence, the selected search s is computed based on
observations collected during previous rounds t− 1, t− 2, . . . , denoted Ht, that we refer to as history.

Following Stone (1976), we refer to our problem as sequential search-and-stop. We now detail the overall
objective for this problem: the agent wants to follow a policy π, that selects a search st at round t (this choice
can be random as it may depend on the past observations Ht, as well as possible randomness from the algorithm),

1i.e., w belongs to the simplex of Rn
2A linear extension of a poset is a total ordering consistent with the poset, i.e., if a is before b in the poset, then it is in a linear

extension.
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while maximizing the expected overall reward

FB(π) , E

τB−1∑
t=1

wtst[wt]

 = E

τB−1∑
t=1

∑
i∈st[wt]

wti

,
where τB is the random round at which the remaining budget becomes negative; i.e., if Bt , B −

∑t
u=1 c

u
su[wt],

BτB−1 ≥ 0 and BτB < 0. We evaluate the performance of a policy using the expected (cumulative budgeted) regret
with respect to F ?B , the maximum value of FB (among all possible oracle policies that know D and B), defined as

RB(π) , F ?B − FB(π).

Example 1. One may wonder if there exist cases where it is interesting for the agent to stop the search earlier.
Consider for instance the simplest non-trivial case with two arms and no precedence constraint. The costs are
deterministically chosen to be ε and 1 and the location of the hider is chosen uniformly at random. An optimal
search will always sample first the arm with ε < 1 cost. If it also samples the other, then the hider will be found
with an expected cost of ε+ 1

2 . However, if the agent always stops the search after the first arm, and reinitializes
on a new instance by doing the same, the overall cost to find one hider is

∞∑
t=1

(1

2

)t
tε = 2ε < ε+

1

2
, for ε <

1

2
·

Therefore, stopping searches, even if the location of the hider is known, can be better than always trying to find it.

3 Offline oracle
In this section, we provide an algorithm for sequential search-and-stop when parameters w and c are given to the
agent. We show that a simple stationary policy (i.e., the same search s? is selected at each round) can obtain
almost the same expected overall reward as F ?B . We will denote by Oracle, an algorithm that takes w, c, and G
as input and outputs s?. This offline oracle will eventually be used by the agent for the online problem, i.e., when
parameters are unknown. Indeed, at round t, the agent can approximate s? by the output st of Oracle (w̃t, c̃t,G),
where w̃t, c̃t can be any guesses/estimates of the true parameters. Importantly, depending on the policy followed
by the agent, w̃t may not stay in the simplex anymore. We will thus build Oracle such that an “acceptable”
output is given for any input (w̃, c̃) ∈

(
Rn+
)2.

3.1 Objective design
A standard paradigm for designing a stationary approximation of the offline problem in budgeted multi-armed
bandits is the following: s? has to minimize the ratio between the expected cost paid and the expected reward
gain, over a single round, selecting s?. We thus define, for s ∈ S,

J (s) ,
d (s) + (1− ws)cs

ws
=

|s|∑
i=1

csi
(
1− ws[i−1]

)
ws

,

that is equal to E
[
cs[w]

]
E
[
ws[w]

]−1

. Notice that we allow J to be equal to +∞ (when ws = 0). We use the
convention J(∅) = +∞, because there is no interest in choosing an empty search for a round. We define the
optimal values of J on S as

J? , min
s∈S

J(s), S? , argmins∈SJ(s).

In Proposition 1, we provide guarantees on the stationary policy.

Proposition 1. If π? is the offline policy selecting s? ∈ S? at each round t, then

B − n
J?

≤ FB(π?) ≤ F ?B ≤
B + n

J?
·

A proof is given in Appendix B and follows the one provided for Lemma 1 of Xia et al. (2016b). Intuitively,
Proposition 1 states that the optimal overall expected reward that can be gained (i.e., the maximum expected
number of hiders found) is approximately B

J? (we assume that B � n). This is quite intuitive, since this quantity
is actually the ratio between the overall budget and the minimum expected cost paid to find a single hider. Indeed,
one can consider the related problem of minimizing the overall expected cost paid, over several rounds, to find a
single hider. It can be expressed as an infinite-time horizon Markov decision process (MDP) with action space S
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and two states: whether the hider is found (which is the terminal state) or not. The goal is to choose a strategy
s1, s2, . . . , st, . . ., minimizing

J
(
s1, s2, . . .

)
, E

[
τ∑
t=1

ctst[wt]

]

=

∞∑
t=1

(
wst (cs1 + · · ·+ cst−1) + d

(
st
)) t−1∏

u=1

(1− wsu) ,

where the stopping time τ is the first round at which the hider is found. The Bellman equation is

J
(
s1, s2, s3, . . .

)
= d(s1) + (1− ws1)

(
cs1 + J (s2, s3, . . .)

)
,

from which we can deduce that there exists an optimal stationary strategy (Sutton and Barto, 1998) such that
st = s for all t ∈ N∗. Therefore, we can minimize J (s, s, . . . ) = J(s) that gives the optimal value of J?.

As we already mentioned, Oracle aims at taking inputs (w̃, c̃) ∈
(
Rn+
)2. The first straightforward way to do

is to consider

J (s; w̃, c̃) ,
|s|∑
i=1

c̃si
(
1− w̃s[i−1]

)
w̃s

·

However, notice that with the definition above, J (·; w̃, c̃) could output negative values (if w̃[n] > 1), which is
not desired, because the agent would then be enticed to search arms with a high cost. We thus need to design a
non-negative extension of J to (w̃, c̃) ∈

(
Rn+
)2. One way is to replace

(
1− w̃s[i−1]

)
by w̃(s[i−1])c , another is to

consider J (s; w̃, c̃)
+
, where x+ , max {0, x}. There is a significant advantage of considering the second way,

even if it is less natural than the first one, which is that3 for (w̃, c̃) ∈
(
Rn+
)2,

J (s; w̃, c̃)
+ ≤ J (s; w, c) = J(s),

if w̃ ≥ w and c̃ ≤ c. This property is known to be useful for analysis of many stochastic combinatorial semi-bandit
algorithms (see e.g., Chen et al., 2016). Thus, we choose for Oracle the minimization of the surrogate J (·; w̃, c̃)

+.

3.2 Algorithm and theoretical guarantees
We now provide Oracle in Algorithm 1 and claim that it minimizes J (·; w̃, c̃)

+ over S in Theorem 1. Notice that
Oracle needs to call the polynomial-time algorithm Schedul (w̃, c̃,G), that minimizes the objective function

d (s; w̃, c̃) ,
|s|∑
i=1

w̃si c̃s[i]

over G-linear extensions s. Then, Algorithm 1 only computes the maximum value index of a list of size n that
takes linear time. To give an intuition, s? follows the ordering given by Schedul (w̃, c̃,G), and stops at some
point when it becomes more interesting to start a fresh new instance.

Algorithm 1 Oracle
Input: w̃, c̃ and G.

s , Schedul (w̃, c̃,G).
i? , argmini∈[n]J (s[i]; w̃, c̃)

+ (ties broken arbitrarily).
Output: the search s? , s[i?].

Theorem 1. For every (w̃, c̃) ∈
(
Rn+
)2, Algorithm 1 outputs a search minimizing J (·; w̃, c̃)

+ over S.

We provide a proof of Theorem 1 in Appendix A. It mixes known concepts of scheduling theory, such as Sidney
decompositions (Sidney, 1975), with new results about our objective function, such as the following property: If
xy,xyz ∈ S with ρ(z) ≥ ρ(y), then

J+(xy) ≥ min
{
J+(x), J+(xyz)

}
.

3Notice this is not exactly a monotonicity property stated here, because we compare to a single point (w, c).
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4 Online search-and-stop
We consider in this section the additional challenge where the distribution D is unknown and the agent must learn
it, while minimizing RB(π) over sampling policies π, where B is a fixed budget. Recall that a policy π selects a
search st at the beginning of round t, using previous observations Ht, and then performs the search st[wt] over
the round. We will consider the problem as a variant of stochastic combinatorial bandits (Gai et al., 2012). The
feedback received by an agent at round t is random, as usual in bandits, because it depends on st. However, in
our case, it also depends on wt, and thus it is not measurable w.r.t.Ht. More precisely, (wti, c

t
i) is observed only

for arms i ∈ st[wt]. Notice that since wt is a one-hot vector, the agent can always deduce the value of wti for all
i ∈ st. As a consequence, we will maintain two types of counters for all arms i ∈ [n] and all t ≥ 1:

T ti,w ,
t∑

u=1

I{i ∈ su},

T ti,c ,
t∑

u=1

I{i ∈ su[wu]}.

(1)

With the convention 1/0 = +∞, the corresponding empirical averages are then defined as

wti ,
t∑

u=1

I{i ∈ su}wui
T ti,w

,

cti ,
t∑

u=1

I{i ∈ su[wu]}cui
T ti,c

·

(2)

We propose an approach, similar to UCB-V of Audibert et al. (2009), based on CUCB by Chen et al. (2016), called
CUCBV, that uses a variance estimation of w in addition to the empirical average. Notice that the variance of wi
for an arm i is wi(1−wi). In addition, since wi is binary, the empirical variance of wi after t rounds is w

t
i(1−wti).

For every round t and every edge i ∈ [n], we define

ċti ,

(
ct−1
i −

√
0.5ζ log(t)

T t−1
i,c

)+

, and

ẅti , min

{
wt−1
i +

√
2ζwt−1

i (1− wt−1
i ) log(t)

T t−1
i,w

+
3ζ log(t)

T t−1
i,w

, 1

}
,

where we choose the exploration factor to be ζ , 1.2 (notice that we could take any ζ > 1 as shown by Audibert
et al., 2009). We provide the policy πCUCBV that we consider in Algorithm 2.

Algorithm 2 Combinatorial upper confidence bounds with variance estimates (CUCBV) for sequential search-and-
stop
Input: G.
Initialization: Set all counters T 0

i,w and T 0
i,c to 0 and empirical averages w0

i and c0i , for all i ∈ [n].
for t = 1..∞ do
select st given by Oracle

(
ẅt, ċt,G

)
.

perform st[wt].
collect feedback and update counters and empirical average according to (1) and (2).

end for

4.1 Analysis
Notice that since an arm i ∈ st is pulled (and thus cti is revealed to the agent) with probability 1− wtst[i−1] over
round t, we fall into the setting of probabilistically triggered arms w.r.t. costs, described by Chen et al. (2016) and
Wang and Chen (2017). Thus we could rely on these prior results. However, the main difficulty in our setting
is that we also need to deal with probabilities wti , that the agent actually observes for every arm i in st, either
because it actually pulls arm i, or because it deduces the value from other pulls of round t. In particular, if we
follow the analysis of Chen et al. (2016) and Wang and Chen (2017), the double sum in the definition of J leads
to expected regret bound that is quite large. Indeed, assuming that all costs are deterministically equal to 1, if we
suffer an error of δ when approximating each wi, then the global error can be as large as

∑n
i=1

∑i−1
j=1 δ = O(n2δ),
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contrary to just O(nδ) for the approximation error w.r.t. costs, that is more common in classical combinatorial
semi-bandits. Thus, here we rather combine this work with the variance estimates of wti . Often, this does not
provide a significant improvement over UCB in terms of expected cumulative regret (otherwise we could do the
same for the costs), but since in our case, the variance is of order 1/n, the gain is non-negligible.4 We let cmin > 0
be any deterministic lower bound on the set

{
csu[wu], u ≥ 1

}
. Furthermore, we let

TB , d2B/cmine

and for any search s, we define the gap of s as

∆ (s) , ws

(
J(s)

J?
− 1

)

=
1

J?

|s|∑
i=1

csi

1−
i−1∑
j=1

wsj

− |s|∑
i=1

wsi ≥ 0,

that represents the local regret of selecting a sub-optimal search s at some round. In addition, for each arm i ∈ [n],
we define

∆i,min , inf
s/∈S?: i∈s

∆ (s) > 0.

We provide bounds for the expected cumulative regret of πCUCBV in Theorem 2. The first bound is D-dependent,
and is characterized by wi and ∆i,min, i ∈ [n]. Its main term scales logarithmically w.r.t.B. The second bound
is true for any value of wi and ∆i,min. We only provide the leading term in B, neglecting the other ones and
removing the universal multiplicative constants. Explicit statements can be found in Appendix C.

Theorem 2. The expected cumulative regret of CUCBV is bounded as

RB(πCUCBV) . n
(

1+
n

J?

)2∑
i∈[n]

wi
∆i,min

log TB

and RB(πCUCBV) .
√
n
(

1+
n

J?

)√
TB log TB .

The proof is in Appendix C. Recall the main challenge comes from the estimation of w and not from c. Our
analysis uses triggering probability groups and the reverse amortization trick of Wang and Chen (2017) for dealing
with costs. However, for hider probabilities, only the second trick is necessary.5 We use it not only to deal with
the slowly concentrating confidence term for the estimates of each arm i, but also to completely amortize the
additional fast-rate confidence term due to variance estimation coming from the use of Bernstein’s inequality.
However, the analysis of Wang and Chen (2017) only considers the deterministic horizon. In our case, we need to
deal with a random-time horizon. For that, notice that their regret upper bounds that hold in expectation are
obtained by splitting the expectation into two parts. The first part is filtered with a high-probability event on
which the regret grows as the logarithm of the random horizon and the second one filtered with a low-probability
event, on which we bound the regret by a constant. Since the log function is concave, we can upper bound the
expected regret by a term growing as the logarithm of the expectation of the random horizon, with Jensen’s
inequality. Finally, we upper bound the expectation of the random horizon to get the rate of log(TB).

4.2 Tightness of our regret bounds
Since we succeeded to reduce the dependence on n in the expected regret with confidence bounds based on
variance estimates, we can now ask whether this dependence in Theorem 2 is tight. We stress that our solution to
sequential search-and-stop is computationally efficient. In particular, both the offline oracle optimization and the
computation of the optimistic search st in the online part are tractable.

Whenever rewards are not arbitrary correlated (as is the case in our setting), we can potentially exploit these
correlations in order to reduce the regret’s dependence on n even further. This could be done by choosing a tighter
confidence region such as a confidence ellipsoid (Degenne and Perchet, 2016), or a KL-confidence ball (Combes
et al., 2015b), instead of coordinate-wise confidence intervals. Unfortunately, these do not lead to computationally
efficient algorithms. Notice that given an infinite computational power, our dependence on n is not tight. In
particular, there is an extra

√
n factor in our gap-free bound (see Theorem 3). It is an open question whether a

better efficient policy exists.
To show that we are only a

√
n factor away, in the following theorem we provide a class of sequential search-

and-stop problems (parametrized by n and B) on which the regret bound provided in Theorem 2 is tight up to a√
n factor (and a logarithmic one).
4The error δ is thus scaled by the standard deviation, of order 1/

√
n, giving a global error of O(n1.5δ). We therefore recover the

factor n1.5 given in Theorem 2.
5When we select search s, we all feedback wi, i ∈ s is received with probability 1, so triggering probability groups are not useful.
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Figure 2: Regret for sequential search-and-stop. Left: n = 10. Right: n = 20.

Theorem 3. For simplicity, let us assume that n is even and that B is a multiple of n. For any optimal online
policy π, there is a sequential search-and-stop problem with n arms and budget B such that

−4 +
1

28

√
B

n
≤ RB(π) .

√
B log

(
B

n

)
·

For the proof, we consider a DAG composed of two disjoint paths (Figure 1), with all costs deterministically
set to 1 and with the hider located either at an

2
or bn

2
. This information is given to the agent. We then reduced

this setting to a two-arm bandit over at least B/n rounds. The complete proof is in Appendix E.

b1 b2 b3 bn
2−1 bn

2

a1 a2 a3 an
2−1 an

2

path a

path b

Figure 1: The DAG considered in Theorem 3

Notice that bounds provided in Theorem 3 decrease with n. This is because, in the sequential search-and-stop
problem, the increasing dependence on n is counterbalanced by the fact that the number of rounds is of order
B/n, and that J? is of order n.

5 Experiments
In this section, we present experiments for sequential search-and-stop. We compare our CUCBV with two baselines.
The first one is CUCB (Kveton et al., 2015), i.e., the selected search is given by Oracle

(
ẇt, ċt,G

)
, where

∀i ∈ [n], ẇti , min

{
wt−1
i +

√
0.5ζ log(t)

T t−1
i,w

, 1

}
·

The second is known as ε-greedy, that acts greedily with probability 1− ε (exploitation), meaning that the agent
selects the search given by Oracle

(
wt, ct,G

)
, and with probability ε (exploration), the agent selects a random

search of size n (we uniformly select the next arm among available arms to continue the search until the hider is
found). Notice that in the exploration step, we could potentially choose a non-complete search, by, for example,
also taking a random stopping time. We chose not to do that since the ε-greedy would explore less this way in the
exploration step. In experiments, we vary ε as 0.005, 0.01, and 0.02. We run simulations for all the algorithms
without precedence constraints, i.e., when the DAG is an edgeless graph (or, equivalently, a dummy ’root’ node is
connected to everything). Notice that in this case, a search can be any ordered subset of arms (thus, the set of
possible searches is of cardinality n!). This restriction does not remove complexity from the online problem, but
rather from the offline one, so even in that case, the online problem is challenging. We take parameters w and c
chosen uniformly at random in the simplex and [0, 1]n conditionally that S? contains a search of size 10. We take
ζ = 1.2. We plot the expected cumulative regret curves for CUCB, CUCBV, and ε-greedy for different values of ε, all

8



averaged over 100 simulations. In Figure 2, left, we take n = 10, and right, we take n = 20. We use a Bernoulli
distribution for the cost ci with means ci. In the first case (Figure 2, left), we notice that both CUCB and CUCBV
give similar results, both better than the ε-greedy approach and that this difference appears already for small
budget value B. In the second case (Figure 2, right), since the number of arms considered doubles, we need to
consider a larger budget to notice the difference between the algorithms. We note that since the optimal search is
not complete, the difference between CUCB and CUCBV is significant, since the former explores too much, and is
even worse than ε-greedy, while the latter makes use of the low variance of each wi (of order 1/n) to constrain its
exploration in order to reach a better expected regret rate. In both cases, we found that ε-greedy with ε = 0.01
gives a lower expected regret compared to ε-greedy with twice the ε (0.02) and the half of it (0.005). Additional
experiments are given in Appendix F.

6 Conclusion and future work
We presented sequential search-and-stop problem and provided a stationary offline solution. We gave theoretical
guarantees on its optimality and proved that it is computationally efficient. We also considered the learning
extension of the problem where the distribution of the hider and the cost are not known. We gave CUCBV, an
upper-confidence bound approach, tailored to our case and provide expected regret guarantees with respect to
the optimal policy. There are several possible extensions. We could consider several hiders rather than just
one. Another would be to explore the Thomson sampling (Chapelle and Li, 2011; Agrawal and Goyal, 2012;
Komiyama et al., 2015; Wang and Chen, 2018) in the learning case. However, the choice of the prior to use is not
straightforward. For instance we can assign Beta prior for each arm, or consider a Dirichlet prior on the whole
arm set. The Dirichlet seems appropriate because a draw w̃ from this prior is in the simplex. The main drawback
however is the difficulty of efficiently updating such prior to get the posterior, because in the case when the hider
is not found, the one-hot vector is not received entirely.
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A Proof of Theorem 1
Theorem 1. For every (w̃, c̃) ∈

(
Rn+
)2, Algorithm 1 outputs a search minimizing J (·; w̃, c̃)

+ over S.

Here, we might abbreviate J (·; w̃, c̃)
+ into J+, and J (·; w̃, c̃) into J , keeping in mind that our results will be

valid for all (w̃, c̃) ∈
(
Rn+
)2. To prove Theorem 1 we first define the concept of density, well know in scheduling

and search theory.

Definition 1 (Density). The density is the function defined on A ∈ P([n]) by ρ(A) , w̃A/c̃A, and ρ (∅) = 0.

Density of A ⊂ [n] can be understood as the quality/price ratio of that set of arms: the quality is the overall
probability of finding the hider in it, while the price is the total cost to fully explore it. Without precedence
constraint, the so-called Smith’s rule of ratio (Smith, 1956) gives that x minimizes d (·; w̃, c̃) over linear orders
(i.e., permutations of [n]) if and only if6 ρ(x1) ≥ · · · ≥ ρ(xn). Sidney (1975) generalized this principle to any
precedence constraint with the concept of Sidney decomposition. Recall that an initial set is the support of a
search.

Definition 2 (Sidney decomposition). A Sidney decomposition (X1, X2, . . . , Xk) is an ordered partition of [n]
such that for all i ∈ [k], Xi is an initial set of maximum density in G〈Xi t · · · tXk〉.

Notice that the Sidney decomposition defines a more refined poset on [n], with the extra constraint that an element
of Xi must be processed before those of Xj for i < j. Any G-linear extension that is also a linear extension of this
poset is said to be consistent with the Sidney decomposition. The following theorem was proved by Sidney (1975):

Theorem 4 (Sidney, 1975). Every minimizer of d (·; w̃, c̃) over G-linear extensions is consistent with some Sidney
decomposition. Moreover, for every Sidney decomposition (X1, . . . , Xk), there is a minimizer of d (·; w̃, c̃) over
G-linear extensions consistent with (X1, . . . , Xk).

Notice that Theorem 4 does not provide a full characterization of minimizers of d (·; w̃, c̃) over G-linear extensions,
but only a necessary condition. Nothing is stated about how to chose the ordering inside each Xi’s, and this
highly depends on the structure of G (Lawler, 1978; Ambühl and Mastrolilli, 2009; Ambühl et al., 2011). We are
now ready to prove Theorem 1, thanks to Lemma 1, of which the proof is given in Appendix A.1.

Lemma 1. For any Sidney decomposition (X1, . . . , Xk), there exists i ≤ k and a search with support X1t· · ·tXi

that minimizes J+.

Proof of Theorem 1. We know from first statement of Theorem 4 that s , Schedul (w̃, c̃,G) given in Algorithm 1
is consistent with some Sidney decomposition (X1, . . . , Xk). Let i ≤ k and x minimizing J+ of support X1t· · ·tXi

given by Lemma 1. Let s = s1s2 with s1 being the restriction of s to X1 t · · · tXi (and thus s2 is its restriction to
Xi+1 t · · · tXk ). Let’s prove that s1 is also a minimizer of J+ by showing J+ (s1) ≤ J+ (x), thereby concluding
the proof. Since 0 ≤ d (xs2; w̃, c̃)− d (s1s2; w̃, c̃) = d (x; w̃, c̃)− d (s1; w̃, c̃), we have

d (s1; w̃, c̃) + (1− w̃X1t···tXi)c̃X1t···tXi
w̃X1t···tXi

≤ d (x; w̃, c̃) + (1− w̃X1t···tXi)c̃X1t···tXi
w̃X1t···tXi

,

i.e., J (s1) ≤ J (x), and because x 7→ x+ is increasing on R, we have J+ (s1) ≤ J+ (x).

The proof of Lemma 1 also uses Sidney’s Theorem 4, but this time the second statement. However, although
it provides a crucial analysis, with fixed support, concerning the order to choose for minimizing d (·; w̃, c̃) and
therefore J (·; w̃, c̃)

+, nothing is said about the support to choose. Thus, to prove Lemma 1, we also need the
following Proposition 2, that gives the key support property satisfied by J+.

Proposition 2 (Support property). If xy,xyz ∈ S with ρ(z) ≥ ρ(y), then

J+(xy) ≥ min
{
J+(x), J+(xyz)

}
.

Proof. If J(xyz) < 0, J+(xyz) = 0 ≤ J+(xy). We thus suppose J(xyz) ≥ 0. Since J(z) ≤ 1
ρ(z)

,

0 ≤ J(xyz) =
J(xy)w̃xy

w̃xyz
+
w̃zJ(z)− w̃xyc̃z

w̃xyz
≤ J(xy)w̃xy

w̃xyz
+
w̃z(1− w̃xy)

ρ(z)w̃xyz
· (3)

6One can see that
∑

{i,j}∈I(σ), i<j c̃si c̃sj (ρ(si)− ρ(sj)) is the variation of d when swapping a linear order s by a permutation σ,
where I(σ) the set of inversions in σ.
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Suppose that 1− w̃xy ≥ 0. If J(x) ≥ J(xy), then

J(xy) ≥ 1

w̃y
(J(xy)w̃xy − J(x)w̃x) =

|y|∑
i=1

c̃yi
(
1− w̃x − w̃y[i−1]

)
w̃y

≥ 1− w̃xy

ρ (y)
· (4)

Thus, we have,

J(xyz)− J(xy) ≤J(xy)w̃xy

w̃xyz
+
w̃z(1− w̃xy)

ρ(z)w̃xyz
− J(xy) using (3).

=
−w̃zJ(xy)

w̃xyz
+
w̃z(1− w̃xy)

ρ(z)w̃xyz

≤ w̃z

w̃xyz

(
−(1− w̃xy)

ρ (y)
+

1− w̃xy

ρ(z)

)
≤ 0 using (4), and then ρ(z) ≥ ρ(y).

Finally, if 1− w̃xy ≤ 0, by (3), we have that 0 ≤ J(xyz) ≤ J(xy)w̃xy

w̃xyz
≤ J(xy).

Example 2. Now, as a preview, we can actually derive easily the proof of Lemma 1 when there is no precedence
constraints, the idea in the general case being very similar. Let (X1, . . . , Xk) be a Sidney decomposition. Then, if
xi,1, . . . , xi,ji are arms of Xi, we have

ρ(x1,1) = · · · = ρ(x1,j1) ≥ · · · ≥ ρ(xk,1) = · · · = ρ(xk,jk).

Let s? be a minimum-size minimizer of J+ of support S. Assume S is not of the form given by Lemma 1, and
let x be the first, for the order (x1,1, . . . , x1,j1 , . . . , xk,1, . . . , xk,jk), in some Xi\S while S ∩ (Xi t · · · tXk) 6= ∅.
By Proposition 2, we keep the optimality by either adding x to s? (which contradict the minimality of |s?|), or by
removing the suffix defined on S ∩ (Xi t · · · tXk), giving a support satisfying conclusion of Lemma 1.

A.1 Proof of Lemma 1
Lemma 1. For any Sidney decomposition (X1, . . . , Xk), there exists i ≤ k and a search with support X1t· · ·tXi

that minimizes J+.

Before proving Lemma 1, we state some preliminaries about initial sets of the DAG G.

Proposition 3. A is an initial set in G if and only if for all a ∈ A, the predecessors of a in G are also in A.

Proof. The direct sense is clear. Suppose now that for all a ∈ A, the predecessors of a in G are also in A.
Consider a = (a1, . . . , a|A|) a linear extension of G〈A〉. Then it is a search, and predecessors of any ai in G are in
{a1, . . . , ai−1}∪Ac, thus in {a1, . . . , ai−1} by assumption. Therefore, a is a search in G and A is an initial set.

Let us recall that L ⊂ P([n]) is a lattice if X,Y ∈ L ⇒ (X ∩ Y ∈ L and X ∪ Y ∈ L).

Proposition 4. The set of initial sets in G is a lattice.

Proof. Let X and Y be two initial sets in G. If x ∈ X ∪ Y (respectively x ∈ X ∩ Y ), then predecessors of x are
included in predecessors of X or (respectively and) the predecessors of Y , i.e., in X or (respectively and) Y , so in
X ∪ Y (respectively X ∩ Y ).

Even if we do not use the following proposition,7 we provide it nonetheless, since it illustrates how to handle
density ρ.

Proposition 5. The set of initial sets of maximum density in G is a lattice.

Proof. We use the fact that for a, b ≥ 0 and a′, b′ > 0, a+b
a′+b′ ≤ max

{
a
a′ ,

b
b′

}
, with equality if and only if a

a′ = b
b′ ·

Indeed, if X and Y are two initial sets of maximum density in G, then

w̃X
c̃X

=
w̃X + w̃Y
c̃X + c̃Y

=
w̃X∩Y + w̃X∪Y
c̃X∩Y + c̃X∪Y

≤ max

{
w̃X∪Y
c̃X∪Y

,
w̃X∩Y
c̃X∩Y

}
·

X ∩ Y and X ∪ Y are initial sets. Therefore, by maximality, max
{
w̃X∪Y
c̃X∪Y

, w̃X∩Yc̃X∩Y

}
≤ w̃X

c̃X
. Since the equality holds,

it needs to be the case that w̃X∪Y
c̃X∪Y

= w̃X∩Y
c̃X∩Y

= w̃X
c̃X
·

7Theorem 4 does need this proposition.
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Proof of Lemma 1. Let j be the largest integer such that there is a search minimizing J+ of the form x1 · · ·xja
with xi of support Xi for all i ∈ [j], and a of support A. Let s be such search, with |s| being the smallest possible.
By Theorem 4, we know there exists a minimizer of the form xj+1y of d (x1 · · ·xj · ; w̃, c̃) over G〈Xj+1tA〉-linear
extensions, with xj+1 of support Xj+1. Xj+1 ∩A is an initial set of G〈Xj+1 t · · · tXk〉, therefore

ρ(Xj+1 ∩A) ≤ ρ(Xj+1) = ρ ((Xj+1 ∩A) t (Xj+1\A)) ≤ ρ(Xj+1\A),

and thus ρ(A) ≤ ρ(Xj+1) ≤ ρ(Xj+1\A). If we let b be a search of G〈(Xj+1\A) tXj+2 t · · · tXk〉 with support
Xj+1\A, then by Proposition 2, associated with d (x1 · · ·xjxj+1y; w̃, c̃) ≤ d (x1 · · ·xjab; w̃, c̃), we have that

J+(s) ≥ min
{
J+(x1 · · ·xj), J+(x1 · · ·xjab)

}
≥ min

{
J+(x1 · · ·xj), J+(x1 · · ·xjxj+1y)

}
,

contradicting either the definition of j or the minimality of |s|.

B Proof of Proposition 1
Proposition 1. If π? is the offline policy selecting s? ∈ S? at each round t, then

B − n
J?

≤ FB(π?) ≤ F ?B ≤
B + n

J?
·

Proof. If we let B0 = B, then for any offline policy π, if we denote by st the search selected by π at round t
(we saw that an optimal policy selects at the begining of a round a search and then performs it), and if we let
Bt = B −

∑t
u=1 c

u
su[wt] be the remaining budget at time t,

FB(π) =

∞∑
t=1

E

[∑
i∈st

I
{
Bt ≥ 0, wti = 1

}]
≤
∞∑
t=1

E

[∑
i∈st

I
{
Bt−1 ≥ 0, wti = 1

}]
(5)

=

∞∑
t=1

E

[∑
i∈st

I
{
Bt−1 ≥ 0

}
wi

]
(6)

=

∞∑
t=1

E
[
I
{
Bt−1 ≥ 0

}
wst
]

=

∞∑
t=1

E
[
I
{
Bt−1 ≥ 0

}d(st) + (1− wst)cst

J(st)

]

≤
∞∑
t=1

E
[
I
{
Bt−1 ≥ 0

}d(st) + (1− wst)cst

J?

]

=
1

J?
E

[ τB∑
t=1

(d(st) + (1− wst)cst)

]
(7)

=
1

J?
E

[ τB∑
t=1

cst[wt]

]

≤ 1

J?
E

τB−1∑
t=1

ctst[wt] + c
τB
sτB [wt]


≤ B + n

J?
, (8)

where (5) uses Bt ≥ 0 ⇒ Bt−1 ≥ 0, (6) is obtained by conditioning on previously sampled arms, (7) uses the
random round τB such that BτB−1 ≥ 0 and BτB < 0, and (8) uses the definition of BτB−1 and cti ≤ 1. Now, for
the lower bound, we have that

FB(π?) ≥
∞∑
t=1

E

[∑
i∈s?

I
{
Bt−1 ≥ n, wti = 1

}]
(9)

=

∞∑
t=1

E
[
I
{
Bt−1 ≥ n

}
ws?
]

(10)

=
1

J?
E

[
τ∑
t=1

cts?[wt]

]
(11)
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≥ B − n
J?

, (12)

where (9) uses Bt−1 ≥ n⇒ Bt ≥ 0, (10) uses the same derivation as previously, (11) uses τ , the random round
such that Bτ−1 ≥ n and Bτ < n, and (12) is by definition of Bτ .

C Proof of Theorem 2
Theorem 2. The expected cumulative regret of CUCBV is bounded as

RB(πCUCBV) . n
(

1+
n

J?

)2∑
i∈[n]

wi
∆i,min

log TB

and RB(πCUCBV) .
√
n
(

1+
n

J?

)√
TB log TB .

We let β(t) , inf1<α≤3 min
{

log(t)
log(α) , t

}
t−

ζ
α . In the proof of Theorem 2, we make several uses of the following

concentration inequalities that use the same peeling argument for their proof as Theorem 1 of Audibert et al.
(2009) applied to original anytime inequalities.

Fact 1 (Theorem 1 of Audibert et al., 2009). Let (xt) be iid centered random variables with common support
[0, 1] with common support [0, 1], xt , 1

t (x
1 + · · ·+ xt) and let vt , 1

t

∑t
u=1

(
xt − xu

)2, then
P

[
∃u ≤ t, xu >

√
2vuζ log(t)

u
+

3ζ log(t)

u

]
≤ 2β(t).

Fact 2 (Hoeffding, 1963; Azuma, 1967). Let (xt) be a martingale difference sequence with common support [0, 1],
and let xt , 1

t (x
1 + · · ·+ xt), then

P

[
∃u ≤ t, xu >

√
ζ log(t)

2u

]
≤ β(t).

Fact 3 (Bernstein inequality). Let (xt) be a martingale difference sequence with common support [0, 1], σ2 , V (xt),
and let xt , 1

t (x
1 + · · ·+ xt), then

P

[
∃u ≤ t, xu >

√
2σ2ζ log(t)

u
+
ζ log(t)

3u

]
≤ β(t).

Before we dive into the proof of Theorem 2, we first state a lemma that gives a high-probability control on the
error that is made when estimating wi.

Lemma 2. P
[
ẅt−1
i − wi >

√
8ζwi(1−wi) log(t)

T t−1
i,w

+ 13.3ζ log(t)

T t−1
i,w

]
≤ 2β(t).

Proof. Let

r ,
8ζ log(t)

T t−1
i,w

+ 2

√√√√(√7ζ log(t)

T t−1
i,w

)2

+
2ζwi(1− wi) log(t)

T t−1
i,w

,

δ ,

√
8ζwi(1− wi) log(t)

T t−1
i,w

+
13.3ζ log(t)

T t−1
i,w

, and

ε (u) ,

√
8wi(1− wi)ζ log (t)

u
+

2ζ log(t)

3u
·

We have that

P
[
ẅt−1
i − wi > δ

]
= P

[
min

{
wt−1
i +

√
2ζwt−1

i (1− wt−1
i ) log(t)

T t−1
i,w

+
3ζ log(t)

T t−1
i,w

, 1

}
− wi > δ

]
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≤ P

[
wt−1
i +

√
2ζwt−1

i (1− wt−1
i ) log(t)

T t−1
i,w

+
3ζ log(t)

T t−1
i,w

− wi > δ

]

≤ P

[
wt−1
i +

√
2ζ (wi(1− wi) + δ/2) log(t)

T t−1
i,w

+
3ζ log(t)

T t−1
i,w

− wi > δ

]
+ P

[
wt−1
i (1− wt−1

i ) > wi(1− wi) + δ/2
]
.

Since wt−1
i (1− wt−1

i ) = wt−1
i − 2wiw

t−1
i + w2

i −
(
wi − wt−1

i

)2
,

P
[
wt−1
i (1− wt−1

i ) ≥ wi(1− wi) + δ/2
]
≤ P

[
wt−1
i − 2wiw

t−1
i + w2

i ≥ wi(1− wi) + δ/2
]
.

For the first term, notice that √
2ζ (wi(1− wi) + δ/2) log(t)

T t−1
i,w

+
3ζ log(t)

T t−1
i,w

≤ δ/2.

Indeed, this holds because δ is greater than r, the greatest root of second-degree polynomial

X2/4− 4ζ log(t)

T t−1
i,w

X +

(
3ζ log(t)

T t−1
i,w

)2

− 2ζwi(1− wi) log(t)

T t−1
i,w

·

Hence, P
[
ẅt−1
i − wi > δ

]
is bounded by

P
[
wt−1
i − wi > δ/2

]
+ P

[
wt−1
i − 2wiw

t−1
i + w2

i > wi(1− wi) + δ/2
]

≤ P

[
wt−1
i − wi >

ε
(
T t−1
i,w

)
2

]
+ P

[
wt−1
i − 2wiw

t−1
i + w2

i > wi(1− wi) +
ε
(
T t−1
i,w

)
2

]
since ε

(
T t−1
i,w

)
≤ δ

≤ P

[
∃u ≤ t, 1

u

u∑
v=1

wvi − wi >
ε (u)

2

]
+ P

[
∃u ≤ t, 1

u

u∑
v=1

(wvi − wi)
2 − wi(1− wi) >

ε (u)

2

]
≤ 2β(t),

where the last inequality uses Bernstein’s inequality (Fact 3) twice, noticing that

V

(
1

u

u∑
v=1

(wvi − wi)
2

)
≤ wi(1− wi).

Proof of Theorem 2. We start with showing a lower bound on the expected reward of any policy π,

FB(π) ≥
∑
t≥1

E
[
I
{
Bt−1 ≥ n

}
wst
]

(13)

=
∑
t≥1

E
[
I
{
Bt−1 ≥ n, st ∈ S?

}
wst
]

+
∑
t≥1

E
[
I
{
Bt−1 ≥ n, st /∈ S?

}
wst
]

=
1

J?

∑
t≥1

E
[
I
{
Bt−1 ≥ n, st ∈ S?

} (
d(st) + (1− wst)cst

)]
+

1

J?

∑
t≥1

E
[
I
{
Bt−1 ≥ n, st /∈ S?

}(
d(st) + (1− wst)cst

)]
−
∑
t≥1

E
[
I
{
Bt−1 ≥ n, st /∈ S?

}
∆
(
st
)]

=
1

J?

∑
t≥1

E
[
I
{
Bt−1 ≥ n

}(
d(st) + (1− wst)cst

)]
−
∑
t≥1

E
[
I
{
Bt−1 ≥ n, st /∈ S?

}
∆
(
st
)]

≥ B − n
J?

−
∑
t≥1

E
[
I
{
Bt−1 ≥ n, st /∈ S?

}
∆
(
st
)]
, (14)
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with (13) obtained as (9) and (10), and (14) as (12). Therefore, since F ?B ≤ (B + n)/J? by Proposition 1, we
have that

RB(π)− 2n

J?
≤
∑
t≥1

E
[
I
{
Bt−1 ≥ n, st /∈ S?

}
∆
(
st
)]
≤
∑
t≥1

E
[
I
{
Bt ≥ 0

}
∆
(
st
)]

= E

τB−1∑
t=1

∆
(
st
).

At this part of the analysis, the know techniques (Xia et al., 2016a,b) are based on the following variant of
Hoeffding’s inequality, in order to bound τB by TB with high probability.

Fact 4 (Hoeffding, 1963; Flajolet and Jaillet, 2015). Let x1, . . . , xt be the random variables with common support
[0, 1] and such that there exists a ∈ R with ∀u ∈ [t], E

[
xu|x1, . . . , xu−1

]
≥ a. Let xt , 1

t (x
1 + · · ·+ xt), then

∀ε ≥ 0 , P
[
xt − a ≤ −ε

]
≤ e−2ε2t.

Indeed, this would decompose the expected regret into a term E
[∑TB

t=1 ∆ (st)
]
, and another of order

e−cminB/c2min. Although the second term decreases exponentially fast to 0 when B → ∞, the dependence
on 1/c2min is undesirable and artificial. Therefore, we bound E [τB ] directly instead.

E [τB ] = 1 + E

∑
t≥1

I
{
Bt ≥ 0

} = 1 +
∑
t≥1

P

[
B − tcmin + tcmin ≥

t∑
u=1

csu[wu]

]

≤ TB + 1 +
∑

t≥TB+1

exp

(
−2(B − tcmin)2

t

)
(15)

≤ TB + 1 +
∑

t≥TB+1

exp

(
−c2mint

2

)
(16)

≤ TB + 1 +
2

c2min

exp

(
c2min

2
− c2min(TB + 1)

2

)
(17)

≤ TB + 1 +
2

c2min

exp (−cminB), (18)

where (15) makes use of Fact 4, (16) is obtained because 2(B − tcmin)2 ≥ c2mint
2/2 for t ≥ 2B/cmin and we get

(17) since 1/(1− e−c2min/2) ≤ 2ec
2
min/2/c2min.

Finally, we use Jensen’s inequality in the expected regret bound with the random time horizon τB − 1. More
precisely, we bound E

[∑τB−1
t=1 ∆ (st)

]
that has a factor E [log (τB)], but since log is a concave function, we have

E [log (τB)] ≤ log (E [τB ]), and this last term is of order of log(TB).

C.1 Bound on ∆ (st)

Since st minimizes J
(
·; ẅt, ċt

)+, then J (st; ẅt, ċt
)+ ≤ J (s?; ẅt, ċt

)+. Therefore,
∆
(
st
)

=
1

J?

 |st|∑
i=1

csti
(
1− wst[i−1]

)
− J?wst


=

1

J?

 |st|∑
i=1

csti
(
1− wst[i−1]

)
− J?ẅtst

+ ẅtst − wst

=
1

J?

 |st|∑
i=1

csti
(
1− wst[i−1]

)
− J

(
s?; ẅt, ċt

)+
ẅtst

+
J
(
s?; ẅt, ċt

)+ − J?
J?

ẅtst + ẅtst − wst

≤ 1

J?

 |st|∑
i=1

csti
(
1− wst[i−1]

)
− J

(
st; ẅt, ċt

)+
ẅtst

+
J
(
s?; ẅt, ċt

)+ − J?
J?

ẅtst + ẅtst − wst

≤ 1

J?

|st|∑
i=1

(
csti
(
1− wst[i−1]

)
− ċtsti

(
1− ẅtst[i−1]

))
+
J
(
s?; ẅt, ċt

)+ − J?
J?

ẅtst + ẅtst − wst

=
1

J?

 |st|∑
i=1

(
csti − ċ

t
sti

) (
1− wst[i−1]

)
+

|st|∑
i=1

ċtsti

(
ẅtst[i−1] − wst[i−1]

)
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+
J
(
s?; ẅt, ċt

)+ − J?
J?

ẅtst + ẅtst − wst

≤ 1

J?

 |st|∑
i=1

(
csti − ċ

t
sti

) (
1− wst[i−1]

)
+ (n+ J?)

(
ẅtst − wst

)+
J
(
s?; ẅt, ċt

)+ − J?
J?

ẅtst

= ∆c

(
st
)

+ ∆w

(
st
)

+
J
(
s?; ẅt, ċt

)+ − J?
J?

ẅtst ,

where

∆c

(
st
)
,

1

J?

|st|∑
i=1

(
csti − ċ

t
sti

) (
1− wst[i−1]

)
and

∆w

(
st
)
,
n+ J?

J?

(
ẅtst − wst

)
.

We now define events

At ,

{
∀i ∈ st,

13.3ζ log(t)

T t−1
i,w

≤ J?∆ (st)

2n(n+ J?)

}
,

Mt ,
{
ẅt ≥ w, ċt ≤ c

}
,

N t
c ,

{
∀i ∈ st, ci − ċti ≤

√
2ζ log(t)

T t−1
i,c

}
,

and

N t
w ,

{
∀i ∈ st, ẅt−1

i − wi ≤
√

8ζwi(1− wi) log(t)

T t−1
i,w

+
13.3ζ log(t)

T t−1
i,w

}
·

Using Lemma 5 of Chen et al. (2016) , with Jensen’s inequality, we have that

E

τB−1∑
t=1

∆
(
st
)
I
{
¬At

} ≤ ∑
i∈[n]

E

32 log(τB + n)n(n+ J?)
(

1 + log
(

n
∆i,min

))
J?


≤
∑
i∈[n]

32 log(E [τB ] + n)n(n+ J?)
(

1 + log
(

n
∆i,min

))
J?

,

Moreover, E
[∑τB−1

t=1 ∆ (st)
]
is bounded by ∆E [τB ] for st with gap ∆ (st) smaller than some ∆ and bounded

using previous inaquality for other st (with 1
∆i,min

≤ 1
∆ ). Maximizing over ∆ then gives that ∆E [τB ] =

a log(E [τB ] + n)
(
1 + log( n∆ )

)
with a = 32n2

(
n+J?

J?

)
. Thus ∆E [τB ] ≥ a log (E [τB ] + n) and 1

∆ ≤
E[τB]

a log(E[τB]+n)
·

We finally get

E

τB−1∑
t=1

∆
(
st
)
I
{
¬At

} ≤ 64n2

(
n+ J?

J?

)
log(E [τB ] + n)

(
1 + log

(
E [τB ]

32n
(
n+J?

J?

)
log (E [τB ] + n)

))
·

By Hoeffding’s inequality (Fact 2), and Theorem 1 of Audibert et al. (2009, Fact 1), we have thatMt holds with
probability at least 1− 3nβ(t). N t

c holds with probability at least 1− nβ(t) by Hoeffding’s inequality (Fact 2),
and N t

w holds with probability at least 1− 2nβ(t) by Lemma 2. Thus,

E

τB−1∑
t=1

∆
(
st
) (

I
{
¬Mt

}
+ I
{
¬N t

c

}
+ I
{
¬N t

w

}) ≤ n

J?

∑
t>0

log t

log(1.1)
6nt−

1.2
1.1

≤ 7613
n2

J?
.

Suppose nowMt, N t
w, N t

c , and At hold. Moreover, we suppose that {∆ (st) > 0} holds (if it doesn’t, then the
local regret is nul). We have that J

(
s?; ẅt, ċt

)+ ≤ J? thanks toMt. Thus,

∆
(
st
)
≤ ∆w

(
st
)

+ ∆c

(
st
)
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≤ −∆
(
st
)

+ 2∆w

(
st
)

+ 2∆c

(
st
)

=
2

J?

∑
i∈st

(n+ J?) ·
(
ẅti − wi −

J?∆ (st)

2 |st| (n+ J?)

)
+ 2∆c

(
st
)

≤ 2

J?

∑
i∈st

(n+ J?) ·min

{√
8ζwi(1− wi) log(t)

T t−1
i,w

+
13.3ζ log(t)

T t−1
i,w

− J?∆ (st)

2n(n+ J?)
, 1

}
+ 2∆c

(
st
)

≤ 2

J?

∑
i∈st

(n+ J?) ·min

{√
8ζwi(1− wi) log(t)

T t−1
i,w

, 1

}

+
2

J?

∑
i∈[|st|]

min

{√
2ζ log(t)

T t−1
sti,c

, 1

}(
1− wst[i−1]

)
. (19)

C.2 Use of Wang and Chen (2017) results
From this point, since

(
1− wst[i−1]

)
is the probability of getting cost feedback from arm i, the analysis given by

Theorem 1 of Wang and Chen (2017) takes care of the second term, while the analysis of their Theorem 4 takes
care of the first. We restate their results in Theorem 6 and 5, respectively. We want to use these results with Bt
being the intersection of events assumed to hold, and with Mi = ∆i,min. On the one hand, we apply second result
of each theorem, for the first with

λ =
2(n+ J?)

J?
and Λ2

i =
8ζwi(1− wi)

1.5

and for the second with
λ =

2

J?
and Λ2

i =
2ζ

1.5
·

We thus get

E

τB−1∑
t=1

∆
(
st
) ≤ 1

J?
(
71
√
n(J? + n) + 31n

)√
E [τB ] log(E [τB ])

+ 64n2

(
n+ J?

J?

)
log(E [τB ])

(
1 + log

(
E [τB ]

32
(
n+J?

J?

)
log(E [τB ])

))

+
π2n2

3J?

⌈
log2

(
E [τB ]

18 log (E [τB ])

)⌉+

+
8n (1 + n+ J?)

J?

+ 7613
n2

J?
.

On the other hand, we can multiply (19) by 4, to get that 2∆ (st) is bounded by A+B, where

A =
8(n+ J?)

J?

∑
i∈st

min

{√
8ζwi(1− wi) log(t)

T t−1
i,w

, 1

}
− sup
i∈st

∆i,min

and

B =
8

J?

∑
i∈[|st|]

min

{√
2ζ log(t)

T t−1
sti,c

, 1

}(
1− wst[i−1]

)
− sup
i∈st

∆i,min.

We then apply first result of each theorem, for A with

λ =
4(n+ J?)

J?
and Λi =

8ζwi(1− wi)
1.5

and for B with
λ =

4

J?
and Λi =

2ζ

1.5
·

We thus finally get

E

E[τB]∑
t=1

∆
(
st
) ≤ 1

J?2

∑
i∈[n]

(
2048ζwi(1− wi)n(J? + n)2

∆i,min
+

6144ζn

∆i,min

)
log(E [τB ])
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+
1

J?

∑
i∈[n]

32 log(E [τB ])n(n+ J?)

(
1 + log

(
n

∆i,min

))

+
π2n

3J?

∑
i∈[n]

⌈
log2

(
8n

J?∆i,min

)⌉+

+
8n+ 4n(n+ J?)

J?

+ 7613
n2

J?
.

Final results hold with the bound obtained on E [τB ] in (18).

D Wang and Chen (2017) results
We built on the results of Wang and Chen (2017) for combinatorial multi-armed bandits with probabilistically
triggered arms (CMAB-T). In particular, Wang and Chen (2017) give expected regret bounds under specific
assumptions that our setting satisfies. In CMAB-T, at each round t, the agent selects some action st and a
random subset of arms is triggered. The corresponding feedback is given to the agent which then goes to the next
round. We denote by σ(st), the set of arms that have a positive probability of being triggered if st is selected,
and σ(st) ⊂ σ(st) the random subset of arms i that are actually triggered and for which we maintain a counter
T ti. We restate two results of Wang and Chen (2017) that hold under following assumptions. Notice that we
generalize their results to a random horizon and then use Jensen’s inequality. For a round t ≥ 1, we let Bt be any
event. We let M ∈ (0,∞)n and for an action s, M s = supi∈σ(s)Mi. We let τ a (possibly random) round, and
Λ ∈ Rn+. Hst and λ are non-negative numbers, Hst (deterministically) depends on st. We write st be the action
chosen at round t.

Theorem 5. Suppose that ∀s,∀i ∈ σ(s), P [i ∈ σ(s)] = 1. If for all t, under event Bt,

Hst ≤
∑

i∈σ(st)

λmin

{
2Λi

√
1.5 log(t)

T t−1
i

, 1

}
,

then

E

[
τ−1∑
t=1

(
2Hst −M st

)
I
{
Bt
}]
≤
∑
i∈[n]

E
[

48nΛ2
iλ

2 log(τ)

Mi

]
+ 2λn ≤

∑
i∈[n]

48nΛ2
iλ

2 log(E [τ ])

Mi
+ 2λn and

E

[
τ∑
t=1

HstI
{
Bt
}]
≤ 14λ ‖Λ‖2

√
nE [τ ] log(E [τ ]) + 2λn.

Theorem 6. If for all t, under event Bt, Hst ≤
∑
i∈σ(st) P [i ∈ σ(st)]λmin

{
2Λi
√

1.5 log(t)

T t−1
i

, 1
}
, then

E

[
τ−1∑
t=1

(
2Hst −M st

)
I
{
Bt
}]
≤
∑
i∈[n]

576nΛ2
iλ

2 log(E [τ ])

Mi
+
∑
i∈[n]

⌈
log2

(
2λn

Mi

)⌉+

× π2λn

6
+ 4nλ and

E

[
τ−1∑
t=1

HstI
{
Bt
}]
≤ 12λ ‖Λ‖2

√
nE [τ ] log(E [τ ]) + n

⌈
log2

(
E [τ ]

18 log(E [τ ])

)⌉+

× π2λn

6
+ 2nλ.

E Proof of Theorem 3
Theorem 3. For simplicity, let us assume that n is even and that B is a multiple of n. For any optimal online
policy π, there is a sequential search-and-stop problem with n arms and budget B such that

−4 +
1

28

√
B

n
≤ RB(π) .

√
B log

(
B

n

)
·
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Figure 1: The DAG considered in Theorem 3

Proof. Let 0 < ε < 1/4. We consider a DAG composed of two disjoint paths (Figure 1), both with n/2 nodes. We
denote the two paths by a and b. We deterministically set all the costs to 1, wi = 0 for i /∈

{
an

2
, bn

2

}
. All this

information is given to the agent. Notice that this does not make the problem harder.
Now consider two distributions D1 and D2 defined by

D1 : wan
2
,

1

2
+ ε, wbn

2
,

1

2
− ε and D2 : wan

2
,

1

2
− ε, wbn

2
,

1

2
+ ε.

Notice that an optimal online policy does not modify its behavior during a round t, since after having seen wti = 1,
continuing searching would only give information about cost distribution which is known by the problem definition,
and no additional information about the rewards. Therefore, there is an optimal policy that selects some search s
and perform s[wt] over round t. Observe that s? = ab for D1 and s? = ba for D2. We have J? = 3

4n− εn ≥
1
2n

for both D1 and D2.
We now show that we can restrict ourselves to policies that take searches in {ab,ba}.

• First, an optimal online policy does not select a search that would not include at least one of the leaves{
an

2
, bn

2

}
for a round. Therefore, it has a full information on w. Indeed, such a search is noninformative

and does not bring any reward while having a cost.

• Second, for a policy π that does not select a search in {ab,ba} for some round t, we construct π′ that acts
like π except for this round t where it selects ab if π would see the leaf an

2
first, and ba otherwise, i.e., if π

would first see the leaf bn
2
. Now compare both policies on the same realization of w1,w2, . . . . We claim that

the global reward of π′ is never smaller than that of π. By symmetry, assume that π sees an
2
first within

round t and thus π′ selects ab.

– If wtan
2

= 1 or
(
wtbn

2

= 1 and π visits bn
2
within round t

)
, both policies obtain the same reward of 1

within round t, but π′ pays less than π.

– If wtbn
2

= 1 and π does not visit bn
2
within round t, π gains 0 and pays at least n/2, whereas π′ gains 1

and pays n within round t. Thus, the budget of π compared to π′ is augmented by at most n/2, with
which it can increase its reward by at most 1.

The overall reward of π′ remains higher than that of π for both cases.

A direct consequence of the restriction to {ab,ba} is that cmin = n/2, giving the upper bound in Theorem 3
by invoking the result of Theorem 2.

Now for a policy π using searches from {ab,ba}, we have

FB(π) =

∞∑
t=1

E

[∑
i∈st

I
{
Bt ≥ 0, wti = 1

}]
≤
∞∑
t=1

E

[∑
i∈st

I
{
Bt−1 ≥ 0, wti = 1

}]
=
∑
t≥1

E
[
I
{
Bt−1 ≥ 0, st ∈ S?

}
wst
]

+
∑
t≥1

E
[
I
{
Bt−1 ≥ 0, st /∈ S?

}
wst
]

=
1

J?

∑
t≥1

E
[
I
{
Bt−1 ≥ 0, st ∈ S?

} (
d(st) + (1− wst)cst

)]
+

1

J?

∑
t≥1

E
[
I
{
Bt−1 ≥ 0, st /∈ S?

}(
d(st) + (1− wst)cst

)]
−
∑
t≥1

E
[
I
{
Bt−1 ≥ 0, st /∈ S?

}
∆
(
st
)]

=
1

J?

∑
t≥1

E
[
I
{
Bt−1 ≥ 0

}(
d(st) + (1− wst)cst

)]
−
∑
t≥1

E
[
I
{
Bt−1 ≥ 0, st /∈ S?

}
∆
(
st
)]

≤ B + n

J?
−
∑
t≥1

E
[
I
{
Bt−1 ≥ 0, st /∈ S?

}
∆
(
st
)]
.
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As a result we get

RB(π) = F ?B − FB(π) ≥ B − n
J?

− B + n

J?
+
∑
t≥1

E
[
I
{
Bt−1 ≥ 0, st /∈ S?

}
∆
(
st
)]

= −2n

J?
+
∑
t≥1

E
[
I
{
Bt−1 ≥ 0, st /∈ S?

}
∆
(
st
)]
·

Since we restrict π to take a search in {ab,ba}, we have a single gap (the same for D1 and D2)

∆ =
n
2

(
1
2 − ε

)
+ n

(
1
2 + ε

)
n
2

(
1
2 + ε

)
+ n

(
1
2 − ε

) − 1 =
1.5 + ε

1.5− ε
− 1 =

2ε

1.5− ε
≥ 4ε

3
· (20)

Furthermore we can bound the number of rounds from below by B/n. To proceed we use high-probability Pinsker
inequality (Tsybakov, 2009, Lemma 2.6).

Fact 5 (high-probability Pinsker inequality). Let P and Q be probability measures on the same measurable space,
and let A be an event. Then

P (A) +Q(¬A) ≥ 1

2
exp (−KL (P‖Q)),

where KL is the Kullback-Leibler divergence.

We let R1,B(π) be the regret of π for distribution D1 and similarly, R2,B(π) for D2. If P1 and P2 denote the
probability when random variable are samples from D1 and D2 respectively, we have

max {R1,B(π), R2,B(π)} ≥ R1,B(π) +R2,B(π)

2

≥ −2n

J?
+

∆

2

B/n∑
t=1

(
P1

[
Bt−1 ≥ 0, st = ba

]
+ P2

[
Bt−1 ≥ 0, st = ab

])
≥ −2n

J?
+
ε

3

B/n∑
t=1

exp
(
−KL

(
D⊗t1 ‖D

⊗t
2

))
(21)

= −2n

J?
+
ε

3

B/n∑
t=1

exp (−tKL (D1‖D2)),

where (21) is due to Fact 5 and (20). Then,

KL (D1‖D2) =

(
1

2
+ ε

)
log

( 1
2 + ε
1
2 − ε

)
+

(
1

2
− ε
)

log

( 1
2 − ε
1
2 + ε

)
≤ 2ε

( 1
2 + ε
1
2 − ε

)
− 2ε

( 1
2 − ε
1
2 + ε

)
=

4ε2

1
4 − ε2

≤ 64

3
ε2 (because log(x) ≤ x− 1).

Thus, with J? ≥ n
2 , we have

max {R1,B(π), R2,B(π)} ≥ −4 +
ε

3

B/n∑
t=1

exp

(
−64

3
tε2

)
≥ −4 +

ε
(

1− exp
(
− 64

3
Bε2

n

))
3
(
exp

(
64
3 ε

2
)
− 1
)

≥ −4 +
1− exp

(
− 64

3
Bε2

n

)
64ε

≥ −4 + min

{
1

128ε
, εB

6n

}
.

Taking ε =
√

(6n)/(128B), the lower bound becomes

max {R1,B(π), R2,B(π)} ≥ −4 +

√
B

768n
≥ −4 +

1

28

√
B

n
·
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F Additional experiments
We show here further experiments that underline a strong asymptotic difference between CUCBV and CUCB. The
setting is the same as in the experiments in Section 5, but this time we fix n = 10 and vary the size of an optimal
search. In particular, we let the size of the optimal search be 1 in Figure 3, left, and 10 in Figure 3, right. Notice,
that in this experiment, when there is an optimal search of size 1, both algorithms suffer a quite large expected
regret compared to the case where there is an optimal search of size 10. This suggests that the problem is simpler
in the first case. On the other hand, in both cases, CUCB and CUCBV are quite comparable for a low budget, but a
significant difference arises for higher budget values.
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Figure 3: Regret for sequential search-and-stop. Left: |s?| = 1. Right: |s?| = 10.
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