Online learning with Erdős-Rényi SIDE-OBSERVATION GRAPHS

TOMAs.KOCAK@INRIA.FR, NEU.GERGELY@GMAIL.COM, AND MICHAL.VALKO@INRIA.FR

Problem illustration

- Select one of the actions (for example action 1):

- Nature generates Erdős-Rényi graph with parameter r_{t}

- Incur loss of the selected action
- Observe losses of the neighbors of the selected action

PROBLEM FORMALIZATION

Learning process

- N actions (nodes of a graph)
- T rounds:
- Environment (adversary) sets losses for actions
- Environment choses observation probability r_{t}
- Learner picks an action I_{t} to play
- Learner incurs the loss $\ell_{t, I_{t}}$ of the action I_{t}
- Learner observes loss $\ell_{t, j}$ with probability $r_{t} \forall j \neq i$

Goal of the learner

- Minimize cumulative regret R_{t} defined as

$$
R_{t}=\underbrace{\sum_{t=1}^{T} \ell_{t, I_{t}}}_{\text {learner }}-\underbrace{\min _{j \in[N]}\left[\sum_{t=1}^{T} \ell_{t, j}\right]}_{\text {bestaction }}
$$

Previous work

Previous papers:
(Mannor and Shamir, 2011; Alon et al., 2013; Kocák et al., 2014, 2016)

+ Can handle general (possibly adversarial) graphs
- Need to know the second neighborhood of selected action

Current paper:

+ Need to know only the first neighborhood of selected action - Can handle only Erdős Rényi graphs

No assumptions (general graph with the first neighborhood):

- Problem as hard as MAB problem (Cohen et al., 2016)
- Learner can ignore side observations

EXP3-RES ALGORITHM

- Compute exponential weights using loss estimates $\widehat{\ell}_{s, i}$

$$
w_{t, i}=\exp \left(-\eta_{t} \sum_{s=1}^{t-1} \widehat{\ell}_{s, i}\right)
$$

- Create a probability distribution such that $p_{t, i} \propto w_{t, i}$
- Play action I_{t} such that

$$
\mathbb{P}\left(I_{t}=i\right) p_{t, i}=\frac{w_{t, i}}{\sum_{j=1}^{N} w_{t, j}}
$$

- Create loss estimates $\ell_{t, i}$ using side observations
- Estimates compensate for incomplete observations
- Good loss approximation: $\mathbb{E}\left[\widehat{\ell}_{t, i}\right] \approx \ell_{t, i}$

LOSS ESTIMATES

Ideal (unbiased) loss estimate:
$\widehat{\ell}_{t, i}=\frac{\ell_{t, i} \mathbb{1}\left\{\text { loss } \ell_{t, i} \text { is observed }\right\}}{\mathbb{P}\left\{\text { loss } \ell_{t, i} \text { is observed }\right\}}=\frac{\ell_{t, i} O_{t, i}}{o_{t, i}}$
where
$\mathbb{P}\left(\right.$ loss $\ell_{t, i}$ is observed $)=\underbrace{p_{t, i}}_{I_{t}=i}+\underbrace{\left(1-p_{t, i}\right)}_{I_{t} \neq i} \underbrace{r_{t}}_{\text {side observation }}=o_{t, i}$
Problem:

- No access to $o_{t, i}$ (unknown r_{t})

Solution:

- Use other side observations to compensate for unknown r_{t}
- Design $G_{t, i}$ such that $\mathbb{E}\left[G_{t, i}\right] \approx \frac{1}{o_{t, i}}$
- Define low-biased loss estimates as

$$
\widehat{\ell}_{t, i}=\ell_{t, i} O_{t, i} G_{t, i}
$$

EMPIRICAL RESULTS

Figure 1: Comparison of algorithms for different amount of side information sequences (different sequences $\left.\left(r_{t}\right)_{t}^{T}\right)$

GEOMETRIC RESAMPLING

Independent random variables

- $\left\{R_{k}\right\}_{k=1}^{\infty}$ - Bernoulli random variables with parameter r_{t}
- $\left\{P_{k}\right\}_{k=1}^{\infty}$ - Bernoulli random variables with parameter $p_{t, i}$ Combining $\left\{R_{k}\right\}_{k=1}^{\infty}$ and $\left\{P_{k}\right\}_{k=1}^{\infty}$ we get

$$
\begin{aligned}
O_{k} & =P_{k}+\left(1-P_{k}\right) R_{k} \\
\mathbb{E}\left[O_{k}\right] & =p_{t, i}+\left(1-p_{t, i}\right) r_{t}=o_{t, i}
\end{aligned}
$$

- $\left\{O_{k}\right\}_{k=1}^{\infty}$ - Bernoulli random variables with parameter $o_{t, i}$

$$
G_{t, i}^{*}=\min \left\{k: O_{k}=1\right\}
$$

- $G_{t, i}^{*}$ - Geometric random variable with parameter $o_{t, i}$

$$
\mathbb{E}\left[G_{t, i}^{*}\right]=\frac{1}{o_{t, i}}
$$

Challenge:

- r_{t} is unknown for learner
- Access to $\left\{R_{k}\right\}_{k=1}^{\infty}$ is limited by number of actions
- $N-2$ samples (all actions except I_{t} and i)

Solution:

- Setting R_{k} to 1 for all $k>N-2$ (Introducing bias to $\left.G_{t, i}^{*}\right)$
- Bias is optimistic and controlled.
$G_{t, i}=\min \left\{\left\{k \leq N-2: O_{k}=1\right\} \cup\{N-1\}\right\}$

$\mathbb{E}\left[G_{t, i}\right]=\frac{1-\left(1-o_{t, i}\right)^{N-1}}{o_{t, i}}$

Limitations:

- Bias term $\left(1-o_{t, i}\right)^{N-1}$ appears in the regret bound

Assupmtion:

- Let $r_{t} \geq \log (T) /(2 N-2)$. Then bias term is negligible
$\left(1-o_{t, i}\right)^{N-1} \leq\left(1-r_{t}\right)^{N-1} \leq e^{-r_{t}(N-1)} \leq \frac{1}{\sqrt{T}}$

Theoretical guaranties

Theorem 1. Assume that $r_{t} \geq \log (T) /(2 N-2)$ for all t. Then, the expected regret of ExP3-RES satisfies

$$
\mathbb{E}\left[R_{T}\right] \leq 2 \sqrt{\left(N^{2}+\sum_{t=1}^{T} \frac{1}{r_{t}}\right) \log N}+\sqrt{T}=\widetilde{\mathcal{O}}\left(\sqrt{\frac{T}{\bar{r}}}\right)
$$

REMARK AND FUTURE WORK

- EXP3-RES performs almost as well as the algorithm (EXP3-R) which knows exact values of r_{t} at any time t

Open problems:

- Is there an algorithm for $r_{t}<\log (T) /(2 N-2)$?
- IS there a way to generalize the algorithm for different graph models?

References

Alon, N., Cesa-Bianchi, N., Gentile, C., and Mansour, Y. (2013). From bandits to experts: A tale of domination and independence. In Neural Information Processing Systems.
Cohen, A., Hazan, T., and Koren, T. (2016). Online learning with feedback graphs without the graphs. In International Conference on Machine Learning (to appear).
Kocák, T., Neu, G., and Valko, M. (2016). Online learning with noisy side observations. In International Conference on Artificial Intelligence and Statistics, pages 1186-1194.

Kocák, T., Neu, G., Valko, M., and Munos, R. (2014). Efficient learning by implicit exploration in bandit problems with side observations. In Neural Information Processing Systems, pages 613-621.

Mannor, S. and Shamir, O. (2011). From bandits to experts: On the value of side-observations. In Neural Information Processing Systems.

