ONLINE LEARNING WITH ERDŐS-RÉNYI SIDE-OBSERVATION GRAPHS

TOMAS.KOCAK@INRIA.FR, NEU.GERGELY@GMAIL.COM, AND MICHAL.VALKO@INRIA.FR

PROBLEM ILLUSTRATION

• **Select one of the actions** (for example action 1):

PREVIOUS WORK

Previous papers:

(Mannor and Shamir, 2011; Alon et al., 2013; Kocák et al., 2014, 2016)

- + Can handle general (possibly adversarial) graphs
- Need to know the second neighborhood of selected action
 Current paper:
- + Need to know only the first neighborhood of selected action
- Can handle only Erdős Rényi graphs

No assumptions (general graph with the first neighborhood):

- Problem as hard as MAB problem (Cohen et al., 2016)
- Learner can ignore side observations

GEOMETRIC RESAMPLING

Independent random variables

- $\{R_k\}_{k=1}^{\infty}$ Bernoulli random variables with parameter r_t
- $\{P_k\}_{k=1}^{\infty}$ Bernoulli random variables with parameter $p_{t,i}$

Combining $\{R_k\}_{k=1}^{\infty}$ and $\{P_k\}_{k=1}^{\infty}$ we get

 $O_k = P_k + (1 - P_k)R_k$ $\mathbb{E}[O_k] = p_{t,i} + (1 - p_{t,i})r_t = o_{t,i}$

• ${O_k}_{k=1}^{\infty}$ - Bernoulli random variables with parameter $o_{t,i}$

 $G_{k+1}^* = \min\{k \cdot O_{k-1}\}$

• Nature generates Erdős-Rényi graph with parameter r_t

• Incur loss of the selected action

• **Observe losses** of the neighbors of the selected action

PROBLEM FORMALIZATION

Learning process

- *N* actions (nodes of a graph)
- *T* rounds:
 - Environment (adversary) **sets losses** for actions

EXP3-RES ALGORITHM

• Compute exponential weights using loss estimates $\hat{\ell}_{s,i}$

$$w_{t,i} = \exp\left(-\eta_t \sum_{s=1}^{t-1} \widehat{\ell}_{s,i}\right)$$

- Create a probability distribution such that $p_{t,i} \propto w_{t,i}$
- **Play action** *I*_t such that

$$\mathbb{P}(I_t = i)p_{t,i} = \frac{w_{t,i}}{\sum_{j=1}^N w_{t,j}}$$

- Create loss estimates $\ell_{t,i}$ using side observations
 - Estimates compensate for incomplete observations
 - Good loss approximation: $\mathbb{E}[\hat{\ell}_{t,i}] \approx \ell_{t,i}$

LOSS ESTIMATES

Ideal (unbiased) loss estimate:

$$\widehat{\ell}_{t,i} = \frac{\ell_{t,i} \mathbbm{1}\{ \text{loss } \ell_{t,i} \text{ is observed} \}}{\mathbb{P}\{ \text{loss } \ell_{t,i} \text{ is observed} \}} = \frac{\ell_{t,i} O_{t,i}}{o_{t,i}}$$
 where

$$\mathbb{P}(\text{loss } \ell_{t,i} \text{ is observed}) = p_{t,i} + (1 - p_{t,i}) \qquad r_t \qquad = o_{t,i}$$

$$J_{t,i} = \min\{k : O_k = 1\}$$

• $G_{t,i}^*$ - Geometric random variable with parameter $o_{t,i}$

 $\mathbb{E}\left[G_{t,i}^*\right] = \frac{1}{o_{t,i}}$

Challenge:

- r_t is unknown for learner
- Access to $\{R_k\}_{k=1}^{\infty}$ is limited by number of actions
 - N 2 samples (all actions except I_t and i)

Solution:

- Setting R_k to 1 for all k > N 2 (Introducing bias to $G_{t,i}^*$)
 - Bias is optimistic and controlled.

 $G_{t,i} = \min \{\{k \le N - 2: O_k = 1\} \cup \{N - 1\}\}$

$$\mathbb{E}[G_{t,i}] = \frac{1 - (1 - o_{t,i})^{N-1}}{o_{t,i}}$$

Limitations:

• Bias term $(1 - o_{t,i})^{N-1}$ appears in the regret bound

Assupmtion:

- Environment choses observation probability r_t
- Learner **picks an action** *I*_t to play
- Learner **incurs the loss** ℓ_{t,I_t} of the action I_t
- Learner **observes loss** $\ell_{t,j}$ with probability $r_t \forall j \neq i$

Goal of the learner

• Minimize cumulative regret *R_t* defined as

Problem:

• No access to $o_{t,i}$ (unknown r_t)

Solution:

- Use other side observations to compensate for unknown r_t
- Design $G_{t,i}$ such that $\mathbb{E}[G_{t,i}] \approx \frac{1}{o_{t,i}}$
- Define low-biased loss estimates as

 $\widehat{\ell}_{t,i} = \ell_{t,i} O_{t,i} G_{t,i}$

• Let $r_t \ge \log(T)/(2N-2)$. Then bias term is negligible

$$(1 - o_{t,i})^{N-1} \le (1 - r_t)^{N-1} \le e^{-r_t(N-1)} \le \frac{1}{\sqrt{T}}$$

THEORETICAL GUARANTIES

Theorem 1. Assume that $r_t \ge \log(T)/(2N-2)$ for all t. Then, the expected regret of EXP3-RES satisfies

$$\mathbb{E}[R_T] \le 2\sqrt{\left(N^2 + \sum_{t=1}^T \frac{1}{r_t}\right)\log N} + \sqrt{T} = \widetilde{\mathcal{O}}\left(\sqrt{\frac{T}{\overline{r}}}\right)$$

EMPIRICAL RESULTS

REMARK AND FUTURE WORK

• EXP3-RES performs almost as well as the algorithm (EXP3-R) which knows exact values of r_t at any time t

Open problems:

- Is there an algorithm for $r_t < \log(T)/(2N-2)$?
- IS there a way to generalize the algorithm for different graph models?

REFERENCES

Alon, N., Cesa-Bianchi, N., Gentile, C., and Mansour, Y. (2013).From bandits to experts: A tale of domination and independence. In *Neural Information Processing Systems*.

Cohen, A., Hazan, T., and Koren, T. (2016). Online learning with feedback graphs without the graphs. In *International Conference on Machine Learning (to appear)*.

Kocák, T., Neu, G., and Valko, M. (2016). Online learning with noisy side observations. In *International Conference on Artificial Intelligence and Statistics*, pages 1186–1194.

Kocák, T., Neu, G., Valko, M., and Munos, R. (2014). Efficient learning by implicit exploration in bandit problems with side observations. In *Neural Information Processing Systems*, pages 613–621.

Mannor, S. and Shamir, O. (2011). From bandits to experts: On the value of side-observations. In *Neural Information Processing Systems*.