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PROBLEM ILLUSTRATION

• Select one of the actions (for example action 1):

Action 1

Action 2

Action 3Action 4

Action 5

Action 6

• Nature generates Erdős-Rényi graph with parameter rt

rt

rt

rt

`t,1

`t,2

`t,3?

`t,4

?

• Incur loss of the selected action

• Observe losses of the neighbors of the selected action

PROBLEM FORMALIZATION

Learning process

• N actions (nodes of a graph)

• T rounds:

• Environment (adversary) sets losses for actions

• Environment choses observation probability rt
• Learner picks an action It to play

• Learner incurs the loss `t,It of the action It
• Learner observes loss `t,j with probability rt ∀j 6= i

Goal of the learner

• Minimize cumulative regret Rt defined as

Rt =
T∑

t=1

`t,It︸ ︷︷ ︸
learner

− min
j∈[N ]

[
T∑

t=1

`t,j

]
︸ ︷︷ ︸

best action

EMPIRICAL RESULTS
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(a) Static sequence (rt)
T
t , rt = 0
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(b) Static sequence (rt)
T
t , rt = 0.06 ≈

log(T )/(2N − 2)
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(c) Changing sequence (rt)
T
t with uniformly

distributed rt on [0, 0.2]
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(d) Sequence (rt)Tt generated as a random walk
on [0, 0.1]
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(e) Sequence (rt)
T
t generated as a random walk

on [0, 1]
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(f) Total regret for different values of static
(rt)

T
t

Figure 1: Comparison of algorithms for different amount of side information sequences (different sequences (rt)Tt )

PREVIOUS WORK
Previous papers:
(Mannor and Shamir, 2011; Alon et al., 2013; Kocák et al., 2014, 2016)

+ Can handle general (possibly adversarial) graphs
− Need to know the second neighborhood of selected action

Current paper:
+ Need to know only the first neighborhood of selected action
− Can handle only Erdős Rényi graphs

No assumptions (general graph with the first neighborhood):
• Problem as hard as MAB problem (Cohen et al., 2016)
• Learner can ignore side observations

EXP3-RES ALGORITHM

• Compute exponential weights using loss estimates ̂̀s,i
wt,i = exp

(
−ηt

t−1∑
s=1

̂̀
s,i

)

• Create a probability distribution such that pt,i ∝ wt,i

• Play action It such that

P(It = i)pt,i =
wt,i∑N
j=1 wt,j

• Create loss estimates `t,i using side observations

• Estimates compensate for incomplete observations

• Good loss approximation: E[̂̀t,i] ≈ `t,i
LOSS ESTIMATES
Ideal (unbiased) loss estimate:

̂̀
t,i =

`t,i1{loss `t,i is observed}
P{loss `t,i is observed}

=
`t,iOt,i

ot,i
where

P(loss `t,i is observed) = pt,i︸︷︷︸
It=i

+(1− pt,i)︸ ︷︷ ︸
It 6=i

rt︸︷︷︸
side observation

= ot,i

Problem:

• No access to ot,i (unknown rt)

Solution:

• Use other side observations to compensate for unknown rt

• Design Gt,i such that E [Gt,i] ≈ 1
ot,i

• Define low-biased loss estimates as

̂̀
t,i = `t,iOt,iGt,i

GEOMETRIC RESAMPLING

Independent random variables

• {Rk}∞k=1 - Bernoulli random variables with parameter rt

• {Pk}∞k=1 - Bernoulli random variables with parameter pt,i

Combining {Rk}∞k=1 and {Pk}∞k=1 we get

Ok = Pk + (1− Pk)Rk

E [Ok] = pt,i + (1− pt,i)rt = ot,i

• {Ok}∞k=1 - Bernoulli random variables with parameter ot,i

G∗t,i = min{k : Ok = 1}

• G∗t,i - Geometric random variable with parameter ot,i

E
[
G∗t,i

]
=

1

ot,i

Challenge:

• rt is unknown for learner

• Access to {Rk}∞k=1 is limited by number of actions

• N − 2 samples (all actions except It and i)

Solution:

• Setting Rk to 1 for all k > N − 2 (Introducing bias to G∗t,i)

• Bias is optimistic and controlled.

Gt,i = min {{k ≤ N − 2 : Ok = 1} ∪ {N − 1}}

E [Gt,i] =
1− (1− ot,i)N−1

ot,i

Limitations:

• Bias term (1− ot,i)N−1 appears in the regret bound

Assupmtion:

• Let rt ≥ log(T )/(2N − 2). Then bias term is negligible

(1− ot,i)N−1 ≤ (1− rt)N−1 ≤ e−rt(N−1) ≤
1√
T

THEORETICAL GUARANTIES

Theorem 1. Assume that rt ≥ log(T )/(2N − 2) for all t. Then, the
expected regret of EXP3-RES satisfies

E [RT ] ≤ 2

√√√√(N2 +
T∑

t=1

1

rt

)
logN +

√
T = Õ

(√
T

r

)

REMARK AND FUTURE WORK

• EXP3-RES performs almost as well as the algorithm
(EXP3-R) which knows exact values of rt at any time t

Open problems:
• Is there an algorithm for rt < log(T )/(2N − 2)?

• IS there a way to generalize the algorithm for different
graph models?
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