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Motivation Example

Example
Fishing spots

Every day:

I Choose fishing spot (at the beginning of the day)

I Maximize total number of fish caught

This example is motivated by an example of Wu et al. 2015
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Problem representation Previous representation

Problem representation
Previous representation, introduced by Mannor and Shamir 2011

I Actions are nodes of directed unweighted graph

I Playing action reveals losses ct,j of neighbors j ∈ N(It)

ct,j = `t,j

Online learning with noisy side observations SequeL - 2/17
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Problem representation Problem representation in our work

Problem representation
Problem representation in our paper
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I Actions are nodes of directed weighted graph.

I Playing action reveals noisy losses ct,j of neighbors j ∈ N(It).
I Smaller weight st,(It,j) → bigger noise

ct,j = st,(It,j)`t,j + (1− st,(It,j))ξt,j
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Framework Description goals

Framework
Description and goals

Learning process

I N actions (nodes of a graph)

I T rounds:
I Environment sets losses for actions
I Environment choses a graph structure (not disclosed)
I Learner picks an action It to play
I Learner incurs the loss `t,It of the action It
I Learner observes graph
I Learner observes noisy losses ct,j of the neighbors j ∈ N(It)

Goal of the learner
Minimizing cumulative regret

Rt =

T∑
t=1

`It︸ ︷︷ ︸
Learner

− min
j∈[N ]

[
T∑
t=1

`j

]
︸ ︷︷ ︸

Best action
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Regret bounds Unweighted graphs

Regret bounds - special cases
Unweighted graphs

Edgeless graph (Bandit problem)

I No side observations

I Regret bound of Õ(
√
NT )

Complete graph (Full information)

I All side observations

I Regret bound of Õ(
√
T )

General unweighted graph
(Mannor and Shamir 2011)

I Some side observations

I Regret bound of Õ(
√
αT )

I α - independence number

Edgeless graph

- Played action

- Unobserved action

I Size of the largest independence set
I Not connected nodes

I Example above: α = 5

√
NT ≥

√
αT ≥

√
T
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Exp3 type algorithms General template

Exp3 type algorithm template

In every round:

I Compute exponential weights using loss estimates ˆ̀
s,i

wt,i = exp

(
−ηt

t−1∑
s=1

ˆ̀
s,i

)
I Create a probability distribution such that pt,i ∝ wt,i
I Play action It such that

P(It = i) = pt,i =
wt,i∑N
j=1 wt,j

I Create loss estimates ˆ̀
t,i (using observability graph)

I Loss estimates define the algorithm
I Loss estimates compensate for lack of side observations

Online learning with noisy side observations SequeL - 6/17

Question:
What are “good” loss estimates?
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Exp3 type algorithms Loss estimates

Loss estimates

Desired property of loss estimates:

I Good loss approximation (unbiased estimates)

E
[
ˆ̀
t,i

]
≈ `t,i

Loss estimates

ˆ̀
t,i =

ct,i∑N
j=1 st,(j,i)pt,j
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Desired property of loss estimates:
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Exp3 type algorithms Loss estimates

Loss estimates
First attempt

ˆ̀
t,i =

st,(It,i)`t,i + (1− st,(It,j))ξt,i∑N
j=1 st,(j,i)pt,j

Pros:

I Unbiased estimates (good approximation of real losses)

Cons:

I Unreliable observations are included (small weights)

I Large variance of estimates

I No theoretical guaranties!
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Exp3 type algorithms Second attempt

Loss estimates
Second attempt - thresholding (Exp3-IXt algorithm)
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I Small weights are not reliable

Loss estimates for thresholded weights:

ˆ̀
t,i =

ct,iI{st,(It,i) ≥ ε}∑N
j=1 st,(j,i)pt,jI{st,(j,i) ≥ ε}
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Exp3 type algorithms Second attempt

Loss estimates
Second attempt - Exp3-IXt algorithm

ˆ̀
t,i =

ct,iI{st,(It,i) ≥ ε}∑N
j=1 st,(j,i)pt,jI{st,(j,i) ≥ ε}

Theorem (Regret bound of Exp3-IXt)

When tuned properly, Exp3-IXt has regret bound of

E [Rt] = Õ

(√
α(ε)

ε2
T

)

α(ε) - independence number of thresholded graph

I Delete all the edges with weight smaller than ε

I Compute independence number (ignoring weights)
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Exp3 type algorithms Second attempt

Effective independence number

Effective independence number (setting ε to optimal value)

α∗ = min
ε∈[0,1]

α(ε)

ε2

Regret bound of Exp3-IXt

For optimal value of ε, Exp3-IXt has regret bound of

E [Rt] = Õ
(√

α∗T
)
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Exp3 type algorithms Second attempt

Effective independence number

α∗ can be much smaller then N

Example: complete graph with uniformly distributed weights

U(0, 1) weights

Online learning with noisy side observations SequeL - 12/17
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Exp3 type algorithms Second attempt

Effective independence number

α∗ can be much smaller then N

Example: complete graph with uniformly distributed weights

U(c, 1) weights
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Exp3 type algorithms Second attempt

Effective independence number

Question: How do we set ε?

Answer: Finding optimal ε is hard

I Necessary to know whole graph

I Computing α(ε) is NP hard
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Exp3 type algorithms Third attempt

Loss estimates
Third attempt - Exp3-WIX algorithm

ˆ̀
t,i =

st,(It,i)

[
st,(It,i)`t,i + (1− st,(It,j))ξt,i

]∑N
j=1 s

2

t,(j,i)pt,j

Properties of the estimates

I Unbiased estimates

I Smaller variance. Multiplying by st,(It,i):
I Pulls estimate towards zero when weight is small
I Decreasing variance of noise
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Exp3 type algorithms Third attempt

Weighted graph
Third attemp - regret bound of Exp3-WIX algorithm

Theorem (Regret bound of Exp3-WIX)

When tuned properly, Exp3-WIX algorithm has regret bound of

E [Rt] = Õ
(√

α∗T
)

I Advantages over Exp3-IXt algorithm
I No thresholding (using all side observations)
I Algorithm does not need to know the best ε (NP-hard)
I Regret bound of order

√
α∗T
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Experiments Empirical performance

Experiments
Empirical performance

I Exp3 - basic algorithm which ignores all side observations
I Exp3-IXt - thresholded algorithm (needs to set ε)
I Exp3-WIX - proposed algorithm
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Conclusion

Conclusion

I New setting with noisy side observations

I Introduction of effective independence number α∗

I Exp3-WIX algorithm for the setting
I Does not need to threshold
I Does not need to know whole graph
I Regret bound of order

√
α∗T

I Open questions:
I Is the effective independence number “right quantity?”
I Is there a matching lower-bound for Exp3-WIX?

I Upper-bound of Exp3-WIX matches lower-bound for some cases
(e.g., bandits, full information, setting of Mannor and Shamir
2011)

I Related lower-bound (Wu et al. 2015) for a stochastic setting
with Gaussian noise

Rt = Ω

(√
α

ε2
T

)
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Thank you!
Tomorrow session: Poster 10
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