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Problem definition Learning setting

Learning setting

In each time step t = 1, . . . ,T

I Environment (adversary):
I Privately assigns losses to actions
I Generates an observation graph

I Undirected / Directed
I Disclosed / Not disclosed

I Learner:

I Plays action It ∈ [N]
I Obtain loss `t,It of action played

I Observe losses of neighbors of It

I Graph: disclosed

I Performance measure: Total expected regret

RT = max
i∈[N]

E

[ T∑
t=1

(`t,It − `t,i)

]
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Problem definition Full information and Bandit setting

Full Information setting
I Pick an action (e.g. action A)
I Observe losses of all actions
I RT = Õ(

√
T )

Bandit setting
I Pick an action (e.g. action A)
I Observe loss of a chosen action
I RT = Õ(

√
NT )
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Problem definition Side observation - Undirected case

Side observation (Undirected case)
I Pick an action (e.g. action A)
I Observe losses of neighbors

Mannor and Shamir (ELP algorithm)
I Need to know graph
I Clique decomposition (c cliques)

I RT = Õ(
√

cT )

Alon, Cesa-Bianchi, Gentile, Mansour
I No need to know graph
I Independence set of α actions
I RT = Õ(

√
αT )
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Problem definition Side observation - Directed case

Side observation (Directed case)
I Pick an action (e.g. action A)
I Observe losses of neighbors

Alon, Cesa-Bianchi, Gentile, Mansour
I Exp3-DOM
I Need to know graph
I Need to find dominating set
I RT = Õ(

√
αT )

Our solution: Exp3-IX
I No need to know graph
I RT = Õ(

√
αT )
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Exp3 Algorithms in general

Exp3 algorithms in general

I Compute weights using loss estimates ˆ̀t,i .

wt,i = exp
(
−η

t−1∑
s=1

ˆ̀s,i

)

I Play action It such that

P(It = i) = pt,i =
wt,i
Wt

=
wt,i∑N
j=1 wt,j

I Update loss estimates (using observability graph)

How the algorithms approach to bias variance tradeoff?
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Bias variance tradeoff Different approaches

Bias variance tradeoff approaches

I Approach of previous algorithms – Mixing
I Bias sampling distribution pt over actions

I p′
t = (1− γ)pt + γst – mixed distribution

I st – probability distribution which supports exploration
I Loss estimates ˆ̀t,i are unbiased

I Approach of our algorithm – Implicit eXploration (IX)
I Bias loss estimates ˆ̀t,i

I Biased loss estimates =⇒ biased weights
I Biased weights =⇒ biased probability distribution

I No need for mixing
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Bias variance tradeoff ELP

Mannor and Shamir - ELP algorithm

I E[ˆ̀t,i ] = `t,i – unbiased loss estimates
I p′t,i = (1− γ)pt,i + γst,i – bias by mixing
I st = {st,1, . . . , st,N} – probability distribution over the action set

st = arg max
st

min
j∈[N]

st,j +
∑

k∈Nt,j

st,k

 = arg max
st

[
min
j∈[N]

qt,j

]

I qt,j – probability that loss of j is observed according to st

I Computation of st
I Graph needs to be disclosed
I Solving simple linear program

I Needs to know graph before playing an action
I Graphs can be only undirected
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Bias variance tradeoff Exp3-DOM

Alon, Cesa-Bianchi, Gentile, Mansour - Exp3-DOM

I E[ˆ̀t,i ] = `t,i – unbiased loss estimates
I p′t,i = (1− γ)pt,i + γst,i – bias by mixing
I st = {st,1, . . . , st,N} – probability distribution over the action set

st,i =

{
1
r if i ∈ R; |R| = r
0 otherwise.

I R – dominating set of r elements
I st – uniform distribution over R
I Needs to know graph beforehand
I Graphs can be directed
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Bias variance tradeoff Exp3-IX

Previous algorithms - loss estimates

ˆ̀t,i =

{
`t,i/ot,i if `t,i is observed

0 otherwise.

E[ˆ̀t,i ] =
`t,i
ot,i

ot,i + 0(1− ot,i) = `t,i

Exp3-IX - loss estimates

ˆ̀t,i =

{
`t,i/(ot,i + γ) if `t,i is observed

0 otherwise.

E[ˆ̀t,i ] =
`t,i

ot,i + γ
ot,i + 0(1− ot,i) = `t,i − `t,i

γ

ot,i + γ
≤ `t,i

I No mixing!

Efficient learning by implicit exploration in bandit problems with side observations SequeL - 14/27



Bias variance tradeoff Exp3-IX

Previous algorithms - loss estimates

ˆ̀t,i =

{
`t,i/ot,i if `t,i is observed

0 otherwise.

E[ˆ̀t,i ] =
`t,i
ot,i

ot,i + 0(1− ot,i) = `t,i

Exp3-IX - loss estimates

ˆ̀t,i =

{
`t,i/(ot,i + γ) if `t,i is observed

0 otherwise.

E[ˆ̀t,i ] =
`t,i

ot,i + γ
ot,i + 0(1− ot,i) = `t,i − `t,i

γ

ot,i + γ
≤ `t,i

I No mixing!

Efficient learning by implicit exploration in bandit problems with side observations SequeL - 14/27



Exp3 algorithms Analysis

Analysis of Exp3 algorithms in general

I Evolution of Wt+1/Wt

1
η

log Wt+1
Wt

=
1
η

log
(

1− η
N∑

i=1
pt,i ˆ̀t,i +

η2

2

N∑
i=1

pt,i(ˆ̀t,i)
2

)
,

N∑
i=1

pt,i ˆ̀t,i ≤
[

log Wt
η
− log Wt+1

η

]
+
η

2

N∑
i=1

pt,i(ˆ̀t,i)
2

I Taking expectation and summing over time

E

[ T∑
t=1

N∑
i=1

pt,i ˆ̀t,i

]
−E

[ T∑
t=1

ˆ̀t,k

]
≤ E

[
log N
η

]
+E

[
η

2

T∑
t=1

N∑
i=1

pt,i(ˆ̀t,i)
2

]

Efficient learning by implicit exploration in bandit problems with side observations SequeL - 15/27



Exp3-IX Regret bound

Regret bound of Exp3-IX

E

[ T∑
t=1

N∑
i=1

pt,i ˆ̀t,i

]
︸ ︷︷ ︸

A

− E

[ T∑
t=1

ˆ̀t,k

]
︸ ︷︷ ︸

B

≤ E
[

log N
η

]
+ E

[
η

2

T∑
t=1

N∑
i=1

pt,i(ˆ̀t,i)
2

]
︸ ︷︷ ︸

C

Lower bound of A (using definition of loss estimates)

E

[ T∑
t=1

N∑
i=1

pt,i ˆ̀t,i

]
≥ E

[ T∑
t=1

N∑
i=1

pt,i`t,i

]
− E

[
γ

T∑
t=1

N∑
i=1

pt,i

ot,i + γ

]

Lower bound of B (optimistic loss estimates: E[ˆ̀] < E[`])

−E

[ T∑
t=1

ˆ̀t,k

]
≥ −E

[ T∑
t=1

`t,k

]

Upper bound of C (using definition of loss estimates)

E

[
η

2

T∑
t=1

N∑
i=1

pt,i(ˆ̀t,i)
2

]
≤ E

[
η

2

T∑
t=1

N∑
i=1

pt,i

ot,i + γ

]
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Exp3-IX Regret bound

Regret bound of Exp3-IX

RT ≤
log N
η

+
(η

2 + γ
) T∑

t=1
E

[ N∑
i=1

pt,i
ot,i + γ

]

RT ≈ O


√√√√log N

T∑
t=1

E

[ N∑
i=1

pt,i
ot,i + γ

]
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Graph lemma Statement

Graph lemma

I Graph G with V (G) = {1, . . . , N}
I d−i – in-degree of vertex i
I α – independence set of G
I Turán’s Theorem + induction

N∑
i=1

1
1 + d−i

≤ 2α log
(

1 +
N
α

)
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Graph lemma Application of lemma

Discretization

p1 p̂1 p2 p̂2

0 1

1
M

N∑
i=1

pt,i
ot,i + γ

=
N∑

i=1

pt,i
pt,i +

∑
j∈N−

i
pt,j + γ

≤
N∑

i=1

p̂t,i
p̂t,i +

∑
j∈N−

i
p̂t,j

+ 2

Note: we set M = dN2/γe

N∑
i=1

p̂t,i
p̂t,i +

∑
j∈N−

i
p̂t,j
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Graph lemma Application of lemma

N∑
i=1

M

p̂t,i

M

p̂t,i +
∑

j∈N−
i

M

p̂t,j

=
N∑

i=1

∑
k∈Ci

1
1 + d−k

≤ 2α log
(

1 +
M + N
α

)

Example: let M = 10

0.1 0.2

0.1

0.10.3

0.2

1 2

1

13

2
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Analysis Regret bound

Exp3-IX regret bound

RT ≤
log N
η

+
(η

2 + γ
) T∑

t=1
E
[

2αt log
(

1 +
dN2/γe+ N

αt

)
+ 2
]

RT = Õ
(√

αT log(N)
)

Next step
Generalization of the setting
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Combinatorial setting Example

Example

content1 content2

e
1
,1

e
1,2

e
1,3

user1

news feed1 news feed2 news feed3
user1

content2
e1,1 e1,2 e1,3

I Play m out of N nodes (combinatorial structure)
I Obtain losses of all played nodes
I Observe losses of all neighbors of played nodes

Efficient learning by implicit exploration in bandit problems with side observations SequeL - 22/27



Combinatorial setting Example

Example

content1 content2

user1 user2

news feed1 news feed2 news feed3
user1

user2

content2

content2

e1,1 e1,2 e1,3

e2,1 e2,2 e2,3

I Play m out of N nodes (combinatorial structure)
I Obtain losses of all played nodes
I Observe losses of all neighbors of played nodes

Efficient learning by implicit exploration in bandit problems with side observations SequeL - 22/27



Combinatorial setting Example

Example

content1 content2

user1 user2 user3

news feed1 news feed2 news feed3
user1

user2

user3

content2

content2

content2

e1,1 e1,2 e1,3

e2,1 e2,2 e2,3

e3,1 e3,2 e3,3

I Play m out of N nodes (combinatorial structure)
I Obtain losses of all played nodes
I Observe losses of all neighbors of played nodes

Efficient learning by implicit exploration in bandit problems with side observations SequeL - 22/27



Combinatorial setting Example

Example

content1 content2
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Combinatorial setting Example

A B C

DEF

G H I

JKL

I Play action Vt ∈ S ⊂ {0, 1}N , ‖v‖1 ≤ m fro all v ∈ S
I Obtain losses VT

t `t

I Observe additional losses according to the graph
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FPL-IX Algorithm

FPL-IX algorithm

I Draw perturbation Zt,i ∼ Exp(1) for all i ∈ [N]

I Play “the best” action Vt according to total loss estimate L̂t−1
and perturbation Zt

Vt = arg min
v∈S

vT
(
ηt L̂t−1 − Zt

)
I Compute loss estimates

ˆ̀t,i = `t,iKt,i1{`t,i is observed}

I Kt,i : geometric random variable with

E [Kt,i ] =
1

ot,i + (1− ot,i)γ
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FPL-IX Regret bound

FPL-IX - regret bound

RT = Õ

m3/2

√√√√ T∑
t=1

αt

 = Õ
(

m3/2√αT
)
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Conclusion

Conclusion

I Introduction of Implicit eXploration idea
I New algorithm for simple actions

I Using implicit exploration idea
I Same regret bound as previous algorithm
I No need to know graph before an action is played
I Computationally efficient

I New combinatorial setting with side observations
I Algorithm for combinatorial setting

I Using implicit exploration idea
I No need to know graph before an action is played
I Computationally efficient
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Thank you!
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