Efficient learning by implicit exploration in bandit problems with side observations

Tomáš Kocák, Gergely Neu, Michal Valko, Rémi Munos
SequeL team, INRIA Lille - Nord Europe, France

```
SequeL - INRIA Lille
SequeL seminar
```


Example 1

Example 1

Example 1

Example 1

Example 2

Example 2

Example 2

Example 2

Learning setting

In each time step $t=1, \ldots, T$

- Environment (adversary):
- Privately assigns losses to actions
- Generates an observation graph

Learning setting

In each time step $t=1, \ldots, T$

- Environment (adversary):
- Privately assigns losses to actions
- Generates an observation graph
- Undirected / Directed

Learning setting

In each time step $t=1, \ldots, T$

- Environment (adversary):
- Privately assigns losses to actions
- Generates an observation graph
- Undirected / Directed
- Disclosed / Not disclosed

Learning setting

In each time step $t=1, \ldots, T$

- Environment (adversary):
- Privately assigns losses to actions
- Generates an observation graph
- Undirected / Directed
- Disclosed / Not disclosed
- Learner:
- Plays action $I_{t} \in[N]$
- Obtain loss $\ell_{t, l_{t}}$ of action played
- Observe losses of neighbors of I_{t}

Learning setting

In each time step $t=1, \ldots, T$

- Environment (adversary):
- Privately assigns losses to actions
- Generates an observation graph
- Undirected / Directed
- Disclosed / Not disclosed
- Learner:
- Plays action $I_{t} \in[N]$
- Obtain loss $\ell_{t, l_{t}}$ of action played
- Observe losses of neighbors of I_{t}
- Graph: disclosed

Learning setting

In each time step $t=1, \ldots, T$

- Environment (adversary):
- Privately assigns losses to actions
- Generates an observation graph
- Undirected / Directed
- Disclosed / Not disclosed
- Learner:
- Plays action $I_{t} \in[N]$
- Obtain loss $\ell_{t, l_{t}}$ of action played
- Observe losses of neighbors of I_{t}
- Graph: disclosed
- Performance measure: Total expected regret

$$
R_{T}=\max _{i \in[N]} \mathbb{E}\left[\sum_{t=1}^{T}\left(\ell_{t, l_{t}}-\ell_{t, i}\right)\right]
$$

Full Information setting

- Pick an action (e.g. action A)
- Observe losses of all actions
- $R_{T}=\widetilde{\mathcal{O}}(\sqrt{T})$

Bandit setting

- Pick an action (e.g. action A)
- Observe loss of a chosen action
- $R_{T}=\widetilde{\mathcal{O}}(\sqrt{N T})$
(E)

(A)
(B)

F

Side observation (Undirected case)

- Pick an action (e.g. action A)
- Observe losses of neighbors

Side observation (Undirected case)

- Pick an action (e.g. action A)
- Observe losses of neighbors

Mannor and Shamir (ELP algorithm)

- Need to know graph
- Clique decomposition (c cliques)
- $R_{T}=\widetilde{\mathcal{O}}(\sqrt{c T})$

Side observation (Undirected case)

- Pick an action (e.g. action A)
- Observe losses of neighbors

Mannor and Shamir (ELP algorithm)

- Need to know graph
- Clique decomposition (c cliques)
- $R_{T}=\widetilde{\mathcal{O}}(\sqrt{c T})$

Alon, Cesa-Bianchi, Gentile, Mansour

- No need to know graph
- Independence set of α actions
- $R_{T}=\widetilde{\mathcal{O}}(\sqrt{\alpha T})$

Side observation (Directed case)

- Pick an action (e.g. action A)
- Observe losses of neighbors

Side observation (Directed case)

- Pick an action (e.g. action A)
- Observe losses of neighbors

Alon, Cesa-Bianchi, Gentile, Mansour

- Exp3-DOM
- Need to know graph
- Need to find dominating set
- $R_{T}=\widetilde{\mathcal{O}}(\sqrt{\alpha T})$

Side observation (Directed case)

- Pick an action (e.g. action A)
- Observe losses of neighbors

Alon, Cesa-Bianchi, Gentile, Mansour

- Exp3-DOM
- Need to know graph
- Need to find dominating set
- $R_{T}=\widetilde{\mathcal{O}}(\sqrt{\alpha T})$

Our solution: Exp3-IX

- No need to know graph
- $R_{T}=\widetilde{\mathcal{O}}(\sqrt{\alpha T})$

Exp3 algorithms in general

- Compute weights using loss estimates $\hat{\ell}_{t, i}$.

$$
w_{t, i}=\exp \left(-\eta \sum_{s=1}^{t-1} \hat{\ell}_{s, i}\right)
$$

- Play action I_{t} such that

$$
\mathbb{P}\left(I_{t}=i\right)=p_{t, i}=\frac{w_{t, i}}{W_{t}}=\frac{w_{t, i}}{\sum_{j=1}^{N} w_{t, j}}
$$

- Update loss estimates (using observability graph)

Exp3 algorithms in general

- Compute weights using loss estimates $\hat{\ell}_{t, i}$.

$$
w_{t, i}=\exp \left(-\eta \sum_{s=1}^{t-1} \hat{\ell}_{s, i}\right)
$$

- Play action I_{t} such that

$$
\mathbb{P}\left(I_{t}=i\right)=p_{t, i}=\frac{w_{t, i}}{W_{t}}=\frac{w_{t, i}}{\sum_{j=1}^{N} w_{t, j}}
$$

- Update loss estimates (using observability graph)

How the algorithms approach to bias variance tradeoff?

Bias variance tradeoff approaches

- Approach of previous algorithms - Mixing
- Bias sampling distribution \mathbf{p}_{t} over actions
- $\mathbf{p}_{t}^{\prime}=(1-\gamma) \mathbf{p}_{t}+\gamma \mathbf{s}_{t}$ - mixed distribution
- \mathbf{s}_{t} - probability distribution which supports exploration
- Loss estimates $\hat{\ell}_{t, i}$ are unbiased
- Approach of our algorithm - Implicit eXploration (IX)
- Bias loss estimates $\hat{\ell}_{t, i}$
- Biased loss estimates \Longrightarrow biased weights
- Biased weights \Longrightarrow biased probability distribution
- No need for mixing

Mannor and Shamir - ELP algorithm

- $\mathbb{E}\left[\hat{\ell}_{t, i}\right]=\ell_{t, i}$ - unbiased loss estimates
- $p_{t, i}^{\prime}=(1-\gamma) p_{t, i}+\gamma s_{t, i}-$ bias by mixing
- $\mathbf{s}_{t}=\left\{s_{t, 1}, \ldots, s_{t, N}\right\}-$ probability distribution over the action set

$$
\mathbf{s}_{t}=\underset{\mathbf{s}_{t}}{\arg \max }\left[\min _{j \in[N]}\left(s_{t, j}+\sum_{k \in N_{t, j}} s_{t, k}\right)\right]=\arg \max _{\mathbf{s}_{t}}\left[\min _{j \in[N]} q_{t, j}\right]
$$

- $q_{t, j}$ - probability that loss of j is observed according to \mathbf{s}_{t}

Mannor and Shamir - ELP algorithm

- $\mathbb{E}\left[\hat{\ell}_{t, i}\right]=\ell_{t, i}$ - unbiased loss estimates
- $p_{t, i}^{\prime}=(1-\gamma) p_{t, i}+\gamma s_{t, i}$ - bias by mixing
- $\mathbf{s}_{t}=\left\{s_{t, 1}, \ldots, s_{t, N}\right\}-$ probability distribution over the action set

$$
\mathbf{s}_{t}=\underset{\mathbf{s}_{t}}{\arg \max }\left[\min _{j \in[N]}\left(s_{t, j}+\sum_{k \in N_{t, j}} s_{t, k}\right)\right]=\underset{\mathbf{s}_{t}}{\arg \max }\left[\min _{j \in[N]} q_{t, j}\right]
$$

- $q_{t, j}$ - probability that loss of j is observed according to \mathbf{s}_{t}
- Computation of s_{t}
- Graph needs to be disclosed
- Solving simple linear program
- Needs to know graph before playing an action
- Graphs can be only undirected

Alon, Cesa-Bianchi, Gentile, Mansour - Exp3-DOM

- $\mathbb{E}\left[\hat{\ell}_{t, i}\right]=\ell_{t, i}$ - unbiased loss estimates
- $p_{t, i}^{\prime}=(1-\gamma) p_{t, i}+\gamma s_{t, i}$ - bias by mixing
- $\mathbf{s}_{t}=\left\{s_{t, 1}, \ldots, s_{t, N}\right\}-$ probability distribution over the action set

$$
s_{t, i}= \begin{cases}\frac{1}{r} & \text { if } i \in R ;|R|=r \\ 0 & \text { otherwise }\end{cases}
$$

- R-dominating set of r elements
- \mathbf{s}_{t} - uniform distribution over R
- Needs to know graph beforehand
- Graphs can be directed

Previous algorithms - loss estimates

$$
\hat{\ell}_{t, i}= \begin{cases}\ell_{t, i} / o_{t, i} & \text { if } \ell_{t, i} \text { is observed } \\ 0 & \text { otherwise }\end{cases}
$$

$$
\mathbb{E}\left[\hat{\ell}_{t, i}\right]=\frac{\ell_{t, i}}{o_{t, i}} o_{t, i}+0\left(1-o_{t, i}\right)=\ell_{t, i}
$$

Previous algorithms - loss estimates

$$
\hat{\ell}_{t, i}= \begin{cases}\ell_{t, i} / o_{t, i} & \text { if } \ell_{t, i} \text { is observed } \\ 0 & \text { otherwise }\end{cases}
$$

$$
\mathbb{E}\left[\hat{\ell}_{t, i}\right]=\frac{\ell_{t, i}}{o_{t, i}} o_{t, i}+0\left(1-o_{t, i}\right)=\ell_{t, i}
$$

Exp3-IX - loss estimates
$\hat{\ell}_{t, i}= \begin{cases}\ell_{t, i} /\left(o_{t, i}+\gamma\right) & \text { if } \ell_{t, i} \text { is observed } \\ 0 & \text { otherwise } .\end{cases}$

$$
\mathbb{E}\left[\hat{\ell}_{t, i}\right]=\frac{\ell_{t, i}}{o_{t, i}+\gamma} o_{t, i}+0\left(1-o_{t, i}\right)=\ell_{t, i}-\ell_{t, i} \frac{\gamma}{o_{t, i}+\gamma} \leq \ell_{t, i}
$$

- No mixing!

Analysis of Exp3 algorithms in general

- Evolution of W_{t+1} / W_{t}

$$
\frac{1}{\eta} \log \frac{W_{t+1}}{W_{t}}=\frac{1}{\eta} \log \left(1-\eta \sum_{i=1}^{N} p_{t, i} \hat{\ell}_{t, i}+\frac{\eta^{2}}{2} \sum_{i=1}^{N} p_{t, i}\left(\hat{\ell}_{t, i}\right)^{2}\right),
$$

$$
\sum_{i=1}^{N} p_{t, i} \hat{\ell}_{t, i} \leq\left[\frac{\log W_{t}}{\eta}-\frac{\log W_{t+1}}{\eta}\right]+\frac{\eta}{2} \sum_{i=1}^{N} p_{t, i}\left(\hat{\ell}_{t, i}\right)^{2}
$$

- Taking expectation and summing over time

$$
\mathbb{E}\left[\sum_{t=1}^{T} \sum_{i=1}^{N} p_{t, i} \hat{\ell}_{t, i}\right]-\mathbb{E}\left[\sum_{t=1}^{T} \hat{\ell}_{t, k}\right] \leq \mathbb{E}\left[\frac{\log N}{\eta}\right]+\mathbb{E}\left[\frac{\eta}{2} \sum_{t=1}^{T} \sum_{i=1}^{N} p_{t, i}\left(\hat{\ell}_{t, i}\right)^{2}\right]
$$

Regret bound of Exp3-IX

$$
\underbrace{\mathbb{E}\left[\sum_{t=1}^{T} \sum_{i=1}^{N} p_{t, i} \hat{\ell}_{t, i}\right]}_{A}-\underbrace{\mathbb{E}\left[\sum_{t=1}^{T} \hat{\ell}_{t, k}\right]}_{B} \leq \mathbb{E}\left[\frac{\log N}{\eta}\right]+\underbrace{\mathbb{E}\left[\frac{\eta}{2} \sum_{t=1}^{T} \sum_{i=1}^{N} p_{t, i}\left(\hat{\ell}_{t, i}\right)^{2}\right]}_{C}
$$

Lower bound of \mathbf{A} (using definition of loss estimates)

$$
\mathbb{E}\left[\sum_{t=1}^{T} \sum_{i=1}^{N} p_{t, i} \hat{\ell}_{t, i}\right] \geq \mathbb{E}\left[\sum_{t=1}^{T} \sum_{i=1}^{N} p_{t, i} \ell_{t, i}\right]-\mathbb{E}\left[\gamma \sum_{t=1}^{T} \sum_{i=1}^{N} \frac{p_{t, i}}{o_{t, i}+\gamma}\right]
$$

Lower bound of B (optimistic loss estimates: $\mathbb{E}[\hat{\ell}]<\mathbb{E}[\ell]$)

$$
-\mathbb{E}\left[\sum_{t=1}^{T} \hat{\ell}_{t, k}\right] \geq-\mathbb{E}\left[\sum_{t=1}^{T} \ell_{t, k}\right]
$$

Upper bound of C (using definition of loss estimates)

$$
\mathbb{E}\left[\frac{\eta}{2} \sum_{t=1}^{T} \sum_{i=1}^{N} p_{t, i}\left(\hat{\ell}_{t, i}\right)^{2}\right] \leq \mathbb{E}\left[\frac{\eta}{2} \sum_{t=1}^{T} \sum_{i=1}^{N} \frac{p_{t, i}}{o_{t, i}+\gamma}\right]
$$

Regret bound of Exp3-IX

$$
R_{T} \leq \frac{\log N}{\eta}+\left(\frac{\eta}{2}+\gamma\right) \sum_{t=1}^{T} \mathbb{E}\left[\sum_{i=1}^{N} \frac{p_{t, i}}{o_{t, i}+\gamma}\right]
$$

$$
R_{T} \approx \mathcal{O}\left(\sqrt{\log N \sum_{t=1}^{T} \mathbb{E}\left[\sum_{i=1}^{N} \frac{p_{t, i}}{o_{t, i}+\gamma}\right]}\right)
$$

Regret bound of Exp3-IX

$$
R_{T} \leq \frac{\log N}{\eta}+\left(\frac{\eta}{2}+\gamma\right) \sum_{t=1}^{T} \mathbb{E}\left[\sum_{i=1}^{N} \frac{p_{t, i}}{o_{t, i}+\gamma}\right]
$$

$$
R_{T} \approx \mathcal{O}\left(\sqrt{\log N \sum_{t=1}^{T} \mathbb{E}\left[\sum_{i=1}^{N} \frac{p_{t, i}}{o_{t, i}+\gamma}\right]}\right)
$$

Graph lemma

- Graph G with $V(G)=\{1, \ldots, N\}$
- d_{i}^{-}- in-degree of vertex i
- α - independence set of G
- Turán's Theorem + induction

$$
\sum_{i=1}^{N} \frac{1}{1+d_{i}^{-}} \leq 2 \alpha \log \left(1+\frac{N}{\alpha}\right)
$$

Discretization

$$
\sum_{i=1}^{N} \frac{p_{t, i}}{o_{t, i}+\gamma}=\sum_{i=1}^{N} \frac{p_{t, i}}{p_{t, i}+\sum_{j \in N_{i}^{-}} p_{t, j}+\gamma} \leq \sum_{i=1}^{N} \frac{\hat{p}_{t, i}}{\hat{p}_{t, i}+\sum_{j \in N_{i}^{-}} \hat{p}_{t, j}}+2
$$

Discretization

$$
\sum_{i=1}^{N} \frac{p_{t, i}}{o_{t, i}+\gamma}=\sum_{i=1}^{N} \frac{p_{t, i}}{p_{t, i}+\sum_{j \in N_{i}^{-}} p_{t, j}+\gamma} \leq \sum_{i=1}^{N} \frac{\hat{p}_{t, i}}{\hat{p}_{t, i}+\sum_{j \in N_{i}^{-}} \hat{p}_{t, j}}+2
$$

Note: we set $M=\left\lceil N^{2} / \gamma\right\rceil$

Discretization

$$
\sum_{i=1}^{N} \frac{p_{t, i}}{o_{t, i}+\gamma}=\sum_{i=1}^{N} \frac{p_{t, i}}{p_{t, i}+\sum_{j \in N_{i}^{-}} p_{t, j}+\gamma} \leq \sum_{i=1}^{N} \frac{\hat{p}_{t, i}}{\hat{p}_{t, i}+\sum_{j \in N_{i}^{-}} \hat{p}_{t, j}}+2
$$

Note: we set $M=\left\lceil N^{2} / \gamma\right\rceil$

$$
\sum_{i=1}^{N} \frac{\hat{p}_{t, i}}{\hat{p}_{t, i}+\sum_{j \in N_{i}^{-}} \hat{p}_{t, j}}
$$

$$
\sum_{i=1}^{N} \frac{\hat{p}_{t, i}}{\hat{p}_{t, i}+\sum_{j \in N_{i}^{-}}} \hat{p}_{t, j}
$$

Example: let $M=10$

Efficient learning by implicit exploration in bandit problems with side observations

$$
\sum_{i=1}^{N} \frac{M \hat{p}_{t, i}}{M \hat{p}_{t, i}+\sum_{j \in N_{i}^{-}} M \hat{p}_{t, j}}
$$

Example: let $M=10$

$$
\sum_{i=1}^{N} \frac{M \hat{p}_{t, i}}{M \hat{p}_{t, i}+\sum_{j \in N_{i}^{-}} M \hat{p}_{t, j}}=\sum_{i=1}^{N} \sum_{k \in C_{i}} \frac{1}{1+d_{k}^{-}}
$$

Example: let $M=10$

$$
\sum_{i=1}^{N} \frac{M \hat{p}_{t, i}}{M \hat{p}_{t, i}+\sum_{j \in N_{i}^{-}} M \hat{p}_{t, j}}=\sum_{i=1}^{N} \sum_{k \in C_{i}} \frac{1}{1+d_{k}^{-}} \leq 2 \alpha \log \left(1+\frac{M+N}{\alpha}\right)
$$

Example: let $M=10$

Exp3-IX regret bound

$$
\begin{gathered}
R_{T} \leq \frac{\log N}{\eta}+\left(\frac{\eta}{2}+\gamma\right) \sum_{t=1}^{T} \mathbb{E}\left[2 \alpha_{t} \log \left(1+\frac{\left\lceil N^{2} / \gamma\right\rceil+N}{\alpha_{t}}\right)+2\right] \\
R_{T}=\widetilde{\mathcal{O}}(\sqrt{\bar{\alpha} T \log (N)})
\end{gathered}
$$

Exp3-IX regret bound

$$
\begin{gathered}
R_{T} \leq \frac{\log N}{\eta}+\left(\frac{\eta}{2}+\gamma\right) \sum_{t=1}^{T} \mathbb{E}\left[2 \alpha_{t} \log \left(1+\frac{\left\lceil N^{2} / \gamma\right\rceil+N}{\alpha_{t}}\right)+2\right] \\
R_{T}=\widetilde{\mathcal{O}}(\sqrt{\bar{\alpha} T \log (N)})
\end{gathered}
$$

Next step

Exp3-IX regret bound

$$
\begin{gathered}
R_{T} \leq \frac{\log N}{\eta}+\left(\frac{\eta}{2}+\gamma\right) \sum_{t=1}^{T} \mathbb{E}\left[2 \alpha_{t} \log \left(1+\frac{\left\lceil N^{2} / \gamma\right\rceil+N}{\alpha_{t}}\right)+2\right] \\
R_{T}=\widetilde{\mathcal{O}}(\sqrt{\bar{\alpha} T \log (N)})
\end{gathered}
$$

Next step

Generalization of the setting

Example

Example

Example

Example

Example

- Play m out of N nodes (combinatorial structure)
- Obtain losses of all played nodes
- Observe losses of all neighbors of played nodes

- Play action $\mathbf{V}_{t} \in S \subset\{0,1\}^{N},\|\mathbf{v}\|_{1} \leq m$ fro all $\mathbf{v} \in S$
- Obtain losses $\mathbf{V}_{t}^{\top} \ell_{t}$
- Observe additional losses according to the graph

FPL-IX algorithm

- Draw perturbation $Z_{t, i} \sim \operatorname{Exp}(1)$ for all $i \in[N]$
- Play "the best" action \mathbf{V}_{t} according to total loss estimate $\widehat{\mathbf{L}}_{t-1}$ and perturbation \mathbf{Z}_{t}

$$
\mathbf{V}_{t}=\underset{\mathbf{v} \in \mathcal{S}}{\arg \min } \mathbf{v}^{\top}\left(\eta_{t} \widehat{\mathbf{L}}_{t-1}-\mathbf{Z}_{t}\right)
$$

- Compute loss estimates

$$
\hat{\ell}_{t, i}=\ell_{t, i} K_{t, i} \mathbb{1}\left\{\ell_{t, i} \text { is observed }\right\}
$$

- $K_{t, i}$: geometric random variable with

$$
\mathbb{E}\left[K_{t, i}\right]=\frac{1}{o_{t, i}+\left(1-o_{t, i}\right) \gamma}
$$

FPL-IX - regret bound

$$
R_{T}=\widetilde{\mathcal{O}}\left(m^{3 / 2} \sqrt{\sum_{t=1}^{T} \alpha_{t}}\right)=\widetilde{\mathcal{O}}\left(m^{3 / 2} \sqrt{\bar{\alpha} T}\right)
$$

Conclusion

- Introduction of Implicit eXploration idea
- New algorithm for simple actions
- Using implicit exploration idea
- Same regret bound as previous algorithm
- No need to know graph before an action is played
- Computationally efficient
- New combinatorial setting with side observations
- Algorithm for combinatorial setting
- Using implicit exploration idea
- No need to know graph before an action is played
- Computationally efficient

Thank you!

Tomáš Kocák tomas.kocak@inria.fr

SequeL - INRIA Lille sequel.lille.inria.fr

