
• Policy (π): In each round t, select action 𝑠𝑡 ∈ 𝑆  
 

• Observed Reward at  rounds t: 
         r 𝑠𝑡  =  𝑠𝑡 𝑢 𝑓(𝑢)𝑢∈𝑉 + 𝜖𝑡 𝑛𝑜𝑖𝑠𝑒  
• Regret of policy π:  

RT 𝜋 = 𝑇𝑓 𝑢
∗ − 𝐸  𝑟(𝑠𝑡)  

• Cost of policy π: 
          CT 𝜋 =  𝐶(𝑠𝑡)

𝑇
𝑡  

 

• Goal : 

 
 
 
• Conflicting goals: 

o Node actions giv e better estimates, but costly 
o Group actions giv e poor estimates, but cheaper 

 
 
 

 
 
 
 
 

𝑚𝑖𝑛 𝜋,𝑆 𝐶𝑇(𝜋) 

𝑠. 𝑡   𝑅𝑇 𝜋 ≤ 𝑅𝑇
∗  
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• Undirected Graph: 𝐺 = (𝑉,𝐸,𝑊) 
• N Nodes, 𝑊 = {𝑤𝑖𝑗}: Weights 

 

• Signal on Graph 
• Rew ard Function 
         𝑓:𝑉 → 𝑅  
 

• Locate maxima 
𝑢∗= 𝑎𝑟𝑔𝑚𝑎𝑥𝑣∈𝑉 𝑓(𝑣) 

 
• Actions: 

• Noisy Cluster Averages; Differentiated Costs 
      

      Goal: Locate u* with min Cost? 
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Motivation and Application 
 

Surveillance/Geography 

Forest Cover Dataset:  Labeled samples on 30m2 region  

Nodes : Forest  Regions; Edge weights: feature similarity;   

Rewards: Density of species. Locate highest density. 

Actions : Zoom-in  (high cost); Zoom-out (low  cost). 
 

Other Examples:  
Sensor Netw orks  

Radar Search  

Online advertisements 

 
   Large Number of nodes  

   Few  samples to observe. 𝑇 ≪𝑁 

 

Actions and Costs 
 

• Actions set is subset of simplex : S ⊂ Δ𝑁  
 

• Node actions: Sample nodes 
         For a node 𝑢 ∈ 𝑉 use s 𝑢 = 𝛿(𝑢− 𝑣) 
• Group actions:  Sample Average of a subset 
       For a subset 𝐴 ∈ 𝑉 use 𝑠 𝑢 =

1

|𝐴|
 𝛿(𝑢−𝑣)𝑣∈𝑉  

 

• Cost of actions  
 

• For all 𝑠 ∈ 𝑆 

𝐶 𝑠 = 𝑠 𝑢 − 𝑠 𝑣
2

𝑢,𝑣

= |𝐿𝑠|2
2 

 
• Why this cost function 

• Larger the group size smaller the cost 
• Probing Nodes has high cost 
• In Fourier domain: Energy of s 
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Reward Function 
 

• Linear Reward: f = 𝑄𝛼∗  
 

• Q is the eigenvectors of the graph Laplacian 
• Linear bandits, w ith parameter 𝛼∗ 

 
• Smooth Reward 

 

• Neighboring nodes have similar rew ard 
 

𝑢, 𝑣 ∈ 𝐸 ⇒  𝑓 𝑢 ∼ 𝑓 𝑣 :  

 |𝐿𝑓 |2
2 =  𝑤𝑢𝑣 𝑓 𝑢 − 𝑓 𝑣

2

𝑢,𝑣

 

 

• Assume |𝐿𝑓|2
2 ≤ 𝑐 [Valko et. al. ICML’15] 

 
 
 

Learning Setting and Objective 
 

Group Size 

What is the best Regret  

Constraint 𝑅𝑇
∗  ? 

Lower Bounds 
 

• No smoothness constraints (𝑐 → ∞) 
 

• Arbitrary bounded set of action 
        RT = Ω 𝑁 𝑇  [Dani et. al. COLT’08] 

• Finite set of actions 
       RT = Ω(√𝑁𝑇) [Chu et. al. AISTATS’08] 

 

• For smooth rew ard 

𝑅𝑇 = Ω 𝑑𝑇 :  𝑑 ≪ 𝑁  
d= max{𝑖:𝜆𝑖 𝑖 −1 ≤

𝑇

log 𝑇
}[Valko et. al. ICML’14] 

• d-sparsely connected clusters 
• Need at least  one sample from each cluster 

   We aim for 𝑅𝑇
∗ = 𝑂(𝑑√𝑇) 

 
 
 
 
 
 
 
 

CheapUCB Algorithm 
 

• Main idea:use similarity of neighborhood 
• Group actions provide good node information 
        𝑢 ∈ 𝐴 ∶ 𝑓 𝑢 ∼

1

𝐴
 𝑓 𝑣 +𝑐𝑜𝑛𝑠𝑡𝑣∈𝐴   

 

• CheapUCB: UCB based algorithm. Selects arms 
optimistically like SpectralUCB [Valko et. al. ICML’15] 
 
 

 
 

 
• Phases:  Split the T into J=|log T| phases 
• Length:  Phase j=1,2,…J  is of 2 j-1  rounds 
• Select action: In phase j select groups of size J-j+1 

Zoom-in slowly using progressively  
costly actions 

 
 
 
 
 

Phase 1 
Length 1 

Phase 2 
Length 2 

Phase j 
Length 2j-1  

Phase J 
Length T/2 

0 T 

CheapUCB achieves at least 25% cost savings 

Algorithm Regret bound Cost 

SpectralUCB (ICML’14) 𝑂(𝑑√𝑇) T 

CheapUCB (This paper) 𝑂(𝑑√𝑇) 3T/4 

Experiments 
 


