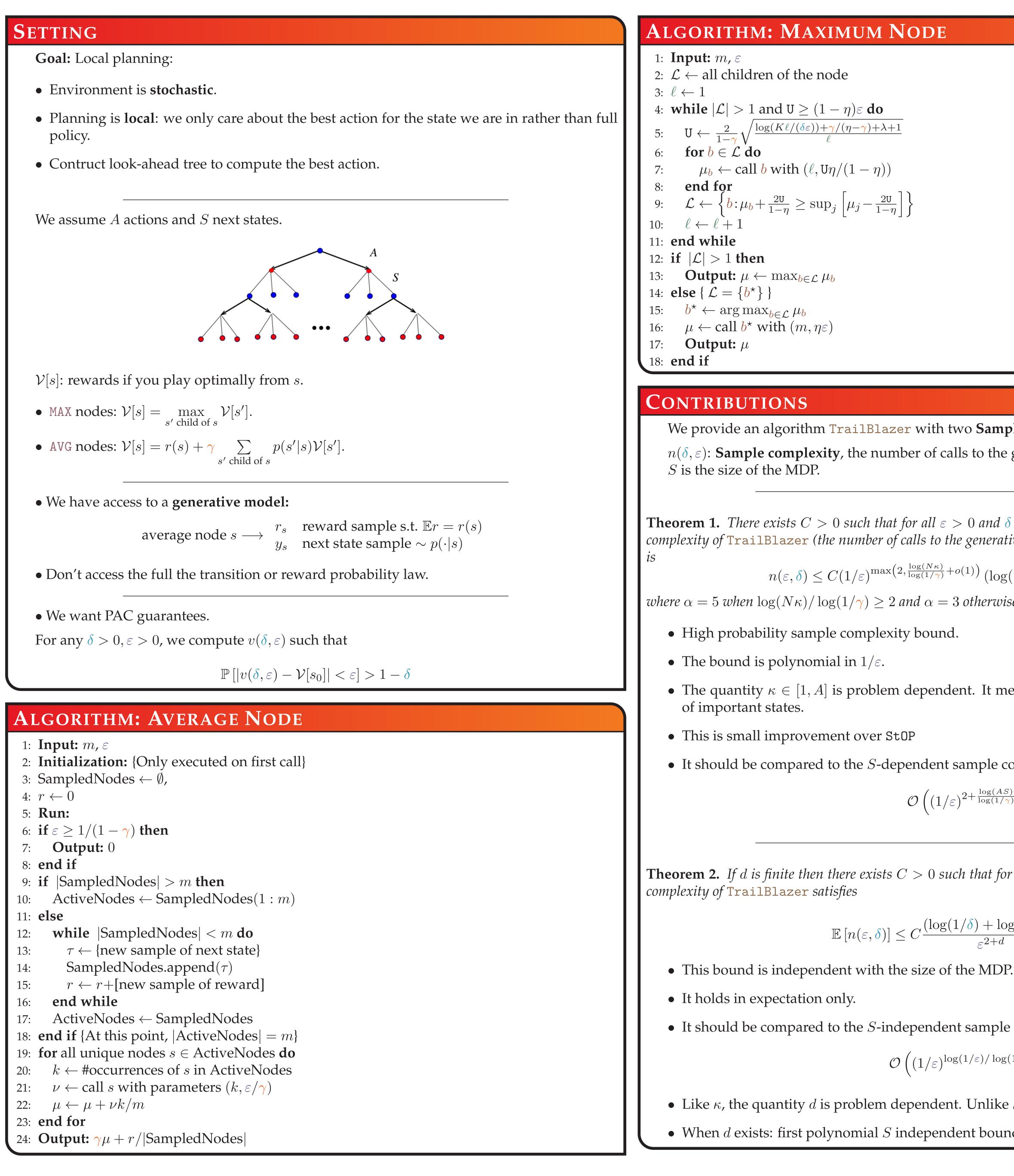
BLAZING THE TRAILS BEFORE BEATING THE PATH: SAMPLE-EFFICIENT MONTE-CARLO PLANNING

JEAN-BASTIEN.GRILL@INRIA.FR, MICHAL.VALKO@INRIA.FR, AND MUNOS@GOOGLE.COM



	EXAMPLE FOR $D=0$
	• The gap of a node is the difference
	 Low gap refer to hard problems.
	• $\Delta(s) := s \rightarrow gap of s'$ with probability
	• The following assumption measure
	Assumption 1. $\exists a, b > 0 \text{ s.t. for all aver}$
	$\mathbb{P}\left[\mathcal{I} \right]$
	Theorem 3. Under Assumption 1, $d = 0$.
	When $d = 0$, the Sample complexity Carlo sampling .
	KEY IDEAS
	 Tree-based algorithm
	 Delicate treatment of uncertainty
mple complexity bounds.	 Refining few paths
the generative model.	ANALYSIS
	$\Delta_{\rightarrow s}(s')$: The difference of the sum optimally and one playing first t
ad $\delta > 0$, with probability $1 - \delta$, the sample- rative model before the algorithm terminates)	Definition 1 (near-optimality). <i>We say th</i>
$\log(1/\delta) + \log(1/\varepsilon))^{\alpha}$,	$\Delta_{\to s}(s_{h'}) \le 12 \frac{\gamma^{h-h'}}{1-\gamma}$
rwise.	with $s_{h'}$ the ancestor of s of depth h'. Let \mathcal{N}_h
	with $s_{h'}$ the ancestor of s of depth h' . Let \mathcal{N}_h Definition 2. We define $\kappa \in [1, K]$ as the st
	$\exists C \; \forall k$
measures the branching factor of the set	• There are at most $(AS)^h$ nodes of d
	• With probability $1 - \delta$, TrailBlaze
e complexity of uniform planning:	Definition 3. We define $d \ge 0$ as the smalle
$\left(\frac{(AS)}{(1/\gamma)}\right)$	$\sup_{h \le h_m} \mathbb{E} \left[K^{-h} \prod_{h'=0}^{h-1} \left(\frac{\mathbb{1} \left(\Delta_{\to S^h} \left(M_{-h'} \right) \right)}{\max \left(\Delta_{-h'} \right)} \right) \right]$
t for all $\varepsilon > 0$ and $\delta > 0$ the expected sample	With S^h : Random node of depth h chosen acts $S^h_{h'}$: MAX-node parent of S^h of depth h'. $OPT^h_{h'}$: 1 if the action at $S^h_{h'}$ to S^h is opt
$\frac{-\log(1/\varepsilon))^3}{+d}$.	If no such d exists, we set $d = \infty$.
DP.	• It also takes into account the difficu
D1.	• <i>d</i> is higher when low gap nodes are
ple complexity of uniform planning:	REFERENCES
$\log(1/\gamma)$	Michael Kearns, Yishay Mansour, and Ar planning in large Markov decision processes.
ike κ , the quantity d may not exist.	Thomas J Walsh, Sergiu Goschin, and M model-based reinforcement learning. AAAI,
ound.	Balazs Szorenyi, Gunnar Kedenburg, an processes using a generative model. NIPS, 2

erence in value between the best and second best action.

probability p(s'|s).

neasure the number of low gap nodes.

all average node s and t > 0

 $\mathbb{P}\left[\overline{\Delta}(s) < t\right] < at^{2+b}$

plexity is of order $(1/\varepsilon)^2$ which is the same order as **Monte**

sum of discounted rewards stating from s' between an agent g first the action toward s and then optimally.

Te say that a node s of depth h *is* near-optimal, *if for all* h' < h

or the action from $s_{h'}$ to s is optimal

Let \mathcal{N}_h be the set of all near-optimal nodes of depth h.

as the smallest number such that

 $\exists C \forall h, |\mathcal{N}_h| \leq C(N\kappa)^h.$

les of depth *h* thus $\kappa \leq A$.

1Blazer only explore near-optimal nodes.

e smallest d such that there exists a > 0 for which for all $h_m > 0$

$$\frac{\left(S_{h'}^{h}\right) \leq \gamma^{h-h'}/(1-\gamma)}{\sum_{sh} \left(S_{h'}^{h}\right), \gamma^{h_{m}-h'}\right)^{2}} + OPT_{h'}^{h}\right) \leq a\gamma^{-dh_{r}}$$

osen according to transition probabilities.

 S^h is optimal else 0.

e difficulty to identify the near-optimal paths.

des are concentrated.

and Andrew Y. Ng. *A sparse sampling algorithm for near-optimal* ocesses. ICAI, 1999.

and Michael L Littman. Integrating sample-based planning and AAAI, 2010.

urg, and Remi Munos. Optimistic planning in Markov decision NIPS, 2014.