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Rejection Sampling

Goal: Sample from a target density f (not easy to sample from)
Tool: Use a proposal density g (from which sampling is quite easy)

envelope Mg

M verifies f < Mg
Sampling Algo:

1. Sample z from g

proposal g

2. Accept x as a sample

from f with
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Short Review

Rejection Sampling

Goal: Sample from a target density f (not easy to sample from)
Tool: Use a proposal density g (from which sampling is quite easy)

envelope Mg M verifies f < Mg
Algo:
Question:
. ple z from g
propog  Can we increase the acceptance
ke rate? 'pt x as a sample
/s ~ 15 f(x)
/ ~. probability Mo(x)

sy A target f
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The setting

The setting

Let d > 1 and let f be a density on R4,

Goal:
Given a number n of requests to f, what is the number T of
samples Y1, ..., Yr that we can generate such that they are
i.i.d. and sampled according to f?

acceptance rate = %
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Can we increase the acceptance rate? ARS

Can we increase the acceptance rate?
Adaptive Rejection Sampling

Adaptive Rejection Sampling log(f)
(ARS) [Gilks and Wild 1992]

» The target f is assumed to be
log-concave (unimodal)

» The envelope is made of
tangents at a set of points S

» At each rejection, the sample
is added to S
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Adaptive Rejection Sampling log(f)
(ARS) [Gilks and Wild 1992]

» The target f is assumed to be )
log-concave (unimodal)

» The envelope is made of
tangents at a set of points S

» At each rejection, the sample

is added to S

Very strong assumption!
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Can we increase the acceptance rate?

Improved ARS versions

Adaptive Rejection Convex-Concave Adaptive
Metropolis Sampling (ARMS) Rejection Sampling [Gorur and
[Gilks, Best and Tan 1995] Tuh 2011]
» Can deal with non-log-concave » Decomposes the target as
densities. convex -+ concave
» Performs a » Builds piecewise linear upper
Metropolis-Hastings control bounds (tangents, secant
for each accepted sample lines)
» At each rejection, the sample » At each rejection, the sample
is added to S is added to S
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Improved ARS versions

Adaptive Rejection Convex-Concave Adaptive
Metropolis Sampling (ARMS) Rejection Sampling [Gorur and
[Gilks, Best and Tan 1995] Tuh 2011]
» Can deal with non-log-concave » Decomposes the target as
densities. convex -+ concave
» Performs a » Builds piecewise linear upper
Metropolis-Hastings control bounds (tangents, secant
for each accepted sample lines)
» At each rejection, the sample » At each rejection, the sample
is added to S is added to S
Correlated samples! Convexity assumption!
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Folding the envelope
Better proposal means smaller

rejection area R

Smaller R means g should have a
similar “shape” to f

envelope A//TZ]\ .
For this purpose:

» Build an estimate f
» Translate it uniformly

. Y 1 c ) ;
4 estimate f

I
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from g ... and f!
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A Pliable Solution Folding the envelope

Visualizing a 2D example

Multimodal case

flz,y) x (1 + sin (477:1@ — g)) (1 + sin (47Ty — g))

TS

L7777

Figure: 2D target density (orange) and the pliable proposal (blue)
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Pliable Rejection Sampling

Step 1: Estimating f

» f is defined on [0, A%, bounded and smooth.
» K is a positive kernel on R? (product kernel).

> Let Xi,..., Xy ~Ug a¢. The (modified) kernel regression
estimate is

—~ d N . —
o) = g 2S00k (X2
k=1

For an unbounded support density, some extra information is needed to

construct a kernel-based estimate.
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Pliable Rejection Sampling The PRS algorithm

Pliable Rejection Sampling
Step 1: Estimating f
» f is defined on [0, A%, bounded and smooth.

» K is a positive kernel on R? (product kernel).

> Let Xi,..., Xy ~Ug a¢. The (modified) kernel regression
estimate is

—~ d N . —
o) = g 2S00k (X2
k=1

Cost: N requests to f out of n.

For an unbounded support density, some extra information is needed to

construct a kernel-based estimate.

.&’zu&/-




Pliable Rejection Sampling The PRS algorithm

Pliable Rejection Sampling

Bounding the gap

The estimate f s such that with probability larger than 1 — 9, for any
point x € [0, A]¢,

@)~ f()| < Ho ((w>)

where Hy is a constant that depends on the problem parameters.

s is the degree to which f can be expanded as a Taylor expression.
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Pliable Rejection Sampling The PRS algorithm

Pliable Rejection Sampling

Bounding the gap

The estimate f s such that with probability larger than 1 — 9, for any
point x € [0, A]¢,

@)~ f()| < Ho ((M))

where Hy is a constant that depends on the problem parameters.

s is the degree to which f can be expanded as a Taylor expression.

Remaing Budget: n — N.

tion Sampling SequeL -



Pliable Rejection Sampling The PRS algorithm

Pliable Rejection Sampling

Step 2: Generating Samples
» Remaining requests to f: n — N
> Let ry = AHe (710%0\71\}%/6))%%
» Construct the pliable proposal g out of f
f + 7N Up, A
& Yy F(X) +ry

» Perform rejection sampling using g and the empirical rejection
sampling constant

§:

Sequel -
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The algorithm

Algorithm: Pliable Rejection Sam-
pling (PRS)
Input: s, n, 6, He

target f

Output: 1 accepted samples
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The algorithm

Algorithm: Pliable Rejection Sam-
pling (PRS)

Input: s, n, 6, He

Initial Sampling

Draw uniformly at random N
samples on [0, A]?

Estimation of f

proposal HZ]\

Estimate f using these N samples by
kernel regression

/ Generating the samples

target £ Qample n — N samples from the
pliable proposal g and perform
Rejection Sampling using M as the
envelope constant

Output: 1 accepted samples

/ estimate f <




Pliable Rejection Sampling The Main Result

A bound on the acceptance rate

The asymptotic performace

Theorem 2
Under Theorem 1’s assumptions and if Hy < Ho
8ry < f[o A f(x)dx. Then, for n large enough, we have with

probability larger than 1 — § that

n>n [1 —0 (.log (":d/fS))“id] .

where N is the number of i.i.d. samples generated by PRS.
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A bound on the acceptance rate

The asymptotic performace

Theorem 2
Under Theorem 1’s assumptions and if Hy < Ho
8ry < f[o A f(x)dx. Then, for n large enough, we have with

probability larger than 1 — § that

n>n [1 —0 (.IOg (":d/fS))“id] .

where N is the number of i.i.d. samples generated by PRS.

Convergence Rate |

Convergence Rate 1
with d

with s




Experiments

Scaling with peakiness

JAcceptance Rate

Experiements

Peakiness

fx ﬁ, a defines the peakiness level

Figure: Acceptance rate vs. peakiness
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Experiements 2D example

Experiements

Two dimensional example

n =106 ‘ acceptance rate  standard deviation
PRS 66.4% 0.45%
A* sampling 76.1% 0.80%
SRS 25.0% 0.01%

Table: 2D example: Acceptance rates averaged over 10 trials
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Experiments

The Clutter problem

n=10% 1D | acceptance rate standard deviation

PRS 79.5% 0.2%
A* sampling 89.4% 0.8%
SRS 17.6% 0.1%
n =10%, 2D | acceptance rate standard deviation
PRS 51,0% 0.4%
A* sampling 56.1% 0.5%
SRS 2.107%% 1075%

Table: Clutter problem: Acceptance rates averaged over 10 trials

Sequel -
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Experiements An inference problem

Conclusion

-+ PRS deals with a wide class of functions
+ PRS has guarantees: asymptotically we accept everything (whp)

+ PRS is a perfect sampler
+ (whp) the samples are iid (unlike MCMC)

+ PRS’s empirical performance is comparable to state of the art

+ We have an extension to densities with unbounded support

— PRS works only for small and moderate dimensions

+ in favorable cases, it can scale to high dimensions as well

— It does not work well for peaky distributions (posteriors)

Possible extension: Iterative PRS by re-estimating f several times
(use the gathered samples to increase its precision)

-~
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Thank you!

Questions? feel free to come for a little chat!

Akram Erraqabi
erragabi@gmail.com
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