

Akram Erraqabi Michal Valko Alexandra Carpentier Odalric-Ambrym Maillard Montréal Institute of Learning Algorithms, Canada Inria Lille - Nord Europe, France Institut für Mathematik - U. of Potsdam, Germany Inria Saclay - Île-de-France, France

SequeL – Inria Lille ICML 2016

New York, June 2016

Rejection Sampling

Goal: Sample from a target density f (not easy to sample from) **Tool:** Use a proposal density g (from which sampling is quite easy)

M verifies $f \leq Mg$ Sampling Algo:

- 1. Sample x from g
- 2. Accept x as a sample from f with probability $\frac{f(x)}{Mg(x)}$

Rejection Sampling

Goal: Sample from a target density f (not easy to sample from) **Tool:** Use a proposal density g (from which sampling is quite easy)

M verifies $f \leq Mg$ Sampling Algo:

- 1. Sample x from g
- 2. Accept x as a sample from f with probability $\frac{f(x)}{Mg(x)}$

Rejection Sampling

Goal: Sample from a target density f (not easy to sample from) **Tool:** Use a proposal density g (from which sampling is quite easy)

M verifies $f \leq Mg$ Sampling Algo:

- 1. Sample x from g
- 2. Accept x as a sample from f with probability $\frac{f(x)}{Mg(x)}$

acceptance rate =
$$\frac{\mathcal{A}}{\mathcal{A} + \mathcal{R}} = \frac{1}{M}$$

Rejection Sampling

Goal: Sample from a target density f (not easy to sample from) **Tool:** Use a proposal density g (from which sampling is quite easy)

The setting

The setting

Let $d \ge 1$ and let f be a density on \mathbb{R}^d .

Goal:

Given a number n of requests to f, what is the number T of samples Y_1, \ldots, Y_T that we can generate such that they are *i.i.d.* and sampled according to f?

acceptance rate = $\frac{T}{n}$

Can we increase the acceptance rate? ARS

Can we increase the acceptance rate?

Adaptive Rejection Sampling

Adaptive Rejection Sampling (ARS) [Gilks and Wild 1992]

- ► The target *f* is assumed to be *log-concave* (unimodal)
- The envelope is made of tangents at a set of points S
- ► At each rejection, the sample is added to S

Can we increase the acceptance rate? ARS

Can we increase the acceptance rate?

Adaptive Rejection Sampling

Adaptive Rejection Sampling (ARS) [Gilks and Wild 1992]

- ► The target *f* is assumed to be *log-concave* (unimodal)
- The envelope is made of tangents at a set of points S
- ► At each rejection, the sample is added to S

Can we increase the acceptance rate? ARS

Can we increase the acceptance rate?

Adaptive Rejection Sampling

Adaptive Rejection Sampling (ARS) [Gilks and Wild 1992]

- ► The target *f* is assumed to be *log-concave* (unimodal)
- The envelope is made of tangents at a set of points S
- ► At each rejection, the sample is added to S

Very strong assumption!

Can we increase the acceptance rate? Improved ARS versions

Adaptive Rejection Metropolis Sampling (ARMS) [Gilks, Best and Tan 1995]

- Can deal with non-log-concave densities.
- Performs a Metropolis-Hastings control for each accepted sample
- ► At each rejection, the sample is added to S

Convex-Concave Adaptive Rejection Sampling [Gorur and Tuh 2011]

- Decomposes the target as convex + concave
- Builds piecewise linear upper bounds (tangents, secant lines)
- ► At each rejection, the sample is added to S

Can we increase the acceptance rate? Improved ARS versions

Adaptive Rejection Metropolis Sampling (ARMS) [Gilks, Best and Tan 1995]

- Can deal with non-log-concave densities.
- Performs a Metropolis-Hastings control for each accepted sample
- ► At each rejection, the sample is added to S

Correlated samples!

Convex-Concave Adaptive Rejection Sampling [Gorur and Tuh 2011]

- Decomposes the target as convex + concave
- Builds piecewise linear upper bounds (tangents, secant lines)
- ► At each rejection, the sample is added to S

Ínría_

Can we increase the acceptance rate? Improved ARS versions

Adaptive Rejection Metropolis Sampling (ARMS) [Gilks, Best and Tan 1995]

- Can deal with non-log-concave densities.
- Performs a Metropolis-Hastings control for each accepted sample
- ► At each rejection, the sample is added to S

Correlated samples!

Convex-Concave Adaptive Rejection Sampling [Gorur and Tuh 2011]

- Decomposes the target as convex + concave
- Builds piecewise linear upper bounds (tangents, secant lines)
- ► At each rejection, the sample is added to S

Convexity assumption!

Folding the envelope

acceptance rate =
$$\frac{\mathcal{A}}{\mathcal{A} + \mathcal{R}} = \frac{1}{\widehat{M}}$$

Folding the envelope

Better proposal means smaller rejection area \mathcal{R}

Smaller \mathcal{R} means g should have a similar "shape" to f

acceptance rate =
$$\frac{\mathcal{A}}{\mathcal{A} + \mathcal{R}} = \frac{1}{\widehat{M}}$$

Folding the envelope

Better proposal means smaller rejection area
$$\mathcal{R}$$

Smaller $\mathcal R$ means g should have a similar "shape" to f

acceptance rate =
$$\frac{\mathcal{A}}{\mathcal{A} + \mathcal{R}} = \frac{1}{\widehat{M}}$$

Folding the envelope

acceptance rate =
$$\frac{\mathcal{A}}{\mathcal{A} + \mathcal{R}} = \frac{1}{\widehat{M}}$$

Better proposal means smaller rejection area \mathcal{R}

Smaller \mathcal{R} means g should have a similar "shape" to f

For this purpose:

▶ Build an estimate \hat{f}

Folding the envelope

acceptance rate =
$$\frac{\mathcal{A}}{\mathcal{A} + \mathcal{R}} = \frac{1}{\widehat{M}}$$

Better proposal means smaller rejection area \mathcal{R}

Smaller \mathcal{R} means g should have a similar "shape" to f

For this purpose:

- ▶ Build an estimate \hat{f}
- ▶ Translate it *uniformly*

Folding the envelope

acceptance rate =
$$\frac{\mathcal{A}}{\mathcal{A} + \mathcal{R}} = \frac{1}{\widehat{M}}$$

Better proposal means smaller rejection area \mathcal{R}

Smaller \mathcal{R} means g should have a similar "shape" to f

For this purpose:

- ▶ Build an estimate \hat{f}
- ► Translate it *uniformly*

Folding the envelope

acceptance rate =
$$\frac{\mathcal{A}}{\mathcal{A} + \mathcal{R}} = \frac{1}{\widehat{M}}$$

Better proposal means smaller rejection area \mathcal{R}

Smaller \mathcal{R} means g should have a similar "shape" to f

For this purpose:

- ▶ Build an estimate \hat{f}
- ▶ Translate it *uniformly*

Folding the envelope

acceptance rate =
$$\frac{\mathcal{A}}{\mathcal{A} + \mathcal{R}} = \frac{1}{\widehat{M}}$$

Better proposal means smaller rejection area \mathcal{R}

Smaller \mathcal{R} means g should have a similar "shape" to f

For this purpose:

- ▶ Build an estimate \hat{f}
- ▶ Translate it *uniformly*

Visualizing a 2D example

Multimodal case

$$f(x,y) \propto \left(1 + \sin\left(4\pi x - \frac{\pi}{2}\right)\right) \left(1 + \sin\left(4\pi y - \frac{\pi}{2}\right)\right)$$

Figure: 2D target density (orange) and the pliable proposal (blue)

Step 1: Estimating f

- f is defined on $[0, A]^d$, bounded and smooth.
- K is a positive kernel on \mathbb{R}^d (product kernel).
- ► Let $X_1, \ldots, X_N \sim \mathcal{U}_{[0,A]^d}$. The (modified) kernel regression estimate is

$$\widehat{f}(x) = \frac{A^d}{Nh^d} \sum_{k=1}^N f(X_i) K\left(\frac{X_i - x}{h}\right)$$

For an unbounded support density, some extra information is needed to construct a kernel-based estimate.

Step 1: Estimating f

- f is defined on $[0, A]^d$, bounded and smooth.
- K is a positive kernel on \mathbb{R}^d (product kernel).
- ► Let $X_1, \ldots, X_N \sim \mathcal{U}_{[0,A]^d}$. The (modified) kernel regression estimate is

$$\widehat{f}(x) = \frac{A^d}{Nh^d} \sum_{k=1}^N f(X_i) K\left(\frac{X_i - x}{h}\right)$$

Cost: N requests to f out of n.

For an unbounded support density, some extra information is needed to construct a kernel-based estimate.

Bounding the gap

Theorem 1

The estimate \hat{f} is such that with probability larger than $1 - \delta$, for any point $x \in [0, A]^d$,

$$\left|\widehat{f}(x) - f(x)\right| \le H_0\left(\left(\frac{\log(NAd/\delta)}{N}\right)^{\frac{s}{2s+d}}\right)$$

where H_0 is a constant that depends on the problem parameters.

 \boldsymbol{s} is the degree to which f can be expanded as a Taylor expression.

Bounding the gap

Theorem 1

The estimate \hat{f} is such that with probability larger than $1 - \delta$, for any point $x \in [0, A]^d$,

$$\left|\widehat{f}(x) - f(x)\right| \le H_0\left(\left(\frac{\log(NAd/\delta)}{N}\right)^{\frac{s}{2s+d}}\right)$$

where H_0 is a constant that depends on the problem parameters.

 \boldsymbol{s} is the degree to which f can be expanded as a Taylor expression.

Remaing Budget: n - N.

Step 2: Generating Samples

• Remaining requests to f: n - N

• Let
$$r_N = A^d H_C \left(\frac{\log(NAd/\delta)}{N}\right)^{\frac{s}{2s+d}}$$

• Construct the *pliable* proposal \widehat{g} out of \widehat{f} :

$$\widehat{g} = \frac{\widehat{f} + r_N \,\mathcal{U}_{[0,A]^d}}{\frac{1}{N}\sum_{i=1}^N f(X_i) + r_N}$$

 \blacktriangleright Perform rejection sampling using \widehat{g} and the empirical rejection sampling constant

$$\widehat{M} = \frac{\frac{1}{N} \sum_{i} f(X_i) + r_N}{\frac{1}{N} \sum_{i} f(X_i) - 5r_N}$$

Algorithm: Pliable Rejection Sampling (PRS)

Input: s, n, δ, H_C

Output: \hat{n} accepted samples

Algorithm: Pliable Rejection Sampling (PRS)

Input: s, n, δ, H_C **Initial Sampling** Draw uniformly at random Nsamples on $[0, A]^d$

Output: \hat{n} accepted samples

rría

Algorithm: Pliable Rejection Sampling (PRS)

Input: s, n, δ, H_C **Initial Sampling** Draw uniformly at random Nsamples on $[0, A]^d$ **Estimation of** fEstimate f using these N samples by kernel regression

Output: \hat{n} accepted samples

nría

Algorithm: Pliable Rejection Sampling (PRS)

Input: s, n, δ, H_C Initial Sampling Draw uniformly at random Nsamples on $[0, A]^d$ Estimation of fEstimate f using these N samples by kernel regression Generating the samples Sample n - N samples from the pliable proposal \hat{q} and perform Rejection Sampling using \widehat{M} as the envelope constant **Output**: \hat{n} accepted samples

(nría_

A bound on the acceptance rate

The asymptotic performace

Theorem 2

Under Theorem 1's assumptions and if $H_0 < H_C$, $8r_N \leq \int_{[0,A]^d} f(x) dx$. Then, for n large enough, we have with probability larger than $1-\delta$ that

$$\widehat{n} \ge n \left[1 - \mathcal{O}\left(\frac{\log\left(nAd/\delta\right)}{n}\right)^{\frac{s}{3s+d}} \right]$$

where \hat{n} is the number of *i.i.d.* samples generated by **PRS**.

A bound on the acceptance rate

The asymptotic performace

Theorem 2

Under Theorem 1's assumptions and if $H_0 < H_C$, $8r_N \leq \int_{[0,A]^d} f(x) dx$. Then, for n large enough, we have with probability larger than $1-\delta$ that

$$\widehat{n} \ge n \left[1 - \mathcal{O}\left(\frac{\log\left(nAd/\delta\right)}{n}\right)^{\frac{s}{3s+d}} \right]$$

where \hat{n} is the number of *i.i.d.* samples generated by **PRS**.

Convergence Rate \uparrow with s

Convergence Rate \downarrow with d

Experiments

Scaling with peakiness

 $f \propto \frac{e^{-x}}{(1+x)^a}$, a defines the peakiness level

Figure: Acceptance rate vs. peakiness

Experiements

Two dimensional example

$n = 10^{6}$	$acceptance\ rate$	$standard \ deviation$
PRS	66.4%	0.45%
A^{\star} sampling	76.1%	0.80%
SRS	25.0%	0.01%

Table: 2D example: Acceptance rates averaged over 10 trials

Experiments

The Clutter problem

$n = 10^5, 1\text{D}$	acceptance rate	$standard \ deviation$
PRS	79.5%	0.2%
A^{\star} sampling	89.4%	0.8%
SRS	17.6%	0.1%
$n = 10^5, 2D$	acceptance rate	standard deviation
$n = 10^5, 2D$ PRS	acceptance rate 51,0%	$standard \ deviation \\ 0.4\%$
$n = 10^5, 2D$ PRS A* sampling	$\frac{acceptance\ rate}{51,0\%}$ 56.1%	standard deviation 0.4% 0.5%

Table: Clutter problem: Acceptance rates averaged over 10 trials

Conclusion

- + $\ensuremath{\,{\rm PRS}}$ deals with a wide class of functions
- + **PRS** has guarantees: asymptotically we accept everything (whp)
- + **PRS** is a **perfect** sampler
 - +~ (whp) the samples are iid (unlike MCMC)
- + $\ensuremath{\mathsf{PRS}}\xspace$'s empirical performance is comparable to state of the art
- $+\,$ We have an extension to densities with unbounded support
- **PRS** works only for small and moderate dimensions
 - $+\,$ in favorable cases, it can scale to high dimensions as well
- It does not work well for peaky distributions (posteriors)

Possible extension: Iterative PRS by re-estimating f several times (use the gathered samples to increase its precision)

Thank you!

Questions? feel free to come for a little chat!

SequeL – Inria Lille ICML 2016 Akram Erraqabi erraqabi@gmail.com sequel.lille.inria.fr