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Adapting to unknown smoothness

Learning the envelope for rejection sampling

Smooth functions are easier to learn

How to adapt to the unknown smoothness?

How to trade off between learning and sampling?
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Vanilla rejection sampling Rejection Sampling

Vanilla rejection sampling
Rejection Sampling

Goal: Sample from a target density f (not easy to sample from)
Tool: Use a proposal density g (from which sampling is quite easy)

target f

envelope Mg

proposal g

x

M verifies f ≤ Mg
Rejection sampling:

1. Sample x from g
2. Accept x as a sample

from f with probability
f (x)

Mg(x)
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The setting

The setting

Let d ≥ 1 and let f be a density on Rd .

Goal:
Given a number n of requests to f , what is the number T of
samples Y1, . . . ,YT that we can generate such that they are
i.i.d. and sampled according to f ?

acceptance rate = T
n
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Can we increase the acceptance rate?
Adaptive Rejection Sampling

Adaptive Rejection Sampling
(ARS) [Gilks and Wild 1992]

I The target f is assumed to be
log-concave (unimodal)

I The envelope is made of
tangents at a set of points S

I At each rejection, the sample is
added to S

log(f )
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Can we increase the acceptance rate?
Improved ARS versions

Adaptive Rejection Metropolis
Sampling (ARMS) [Gilks, Best and
Tan 1995]

I Can deal with non-log-concave
densities.

I Performs a Metropolis-Hastings
control for each accepted
sample

I At each rejection, the sample is
added to S

Convex-Concave Adaptive
Rejection Sampling [Gorur and
Tuh 2011]

I Decomposes the target as
convex + concave

I Builds piecewise linear upper
bounds (tangents, secant lines)

I At each rejection, the sample is
added to S
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Pliable solution Folding the envelope

Assumption on the target density f
I The positive function f , defined on [0,A]d is bounded i.e., there

exists c > 0 such that the density f satisfies f (x) ≤ c.

I f can be uniformly expanded by a Taylor expansion in any point up
to some degree 0 < s ≤ 2,

|f (x + u)− f (x)− 〈5f (x), u〉1{s > 1}| ≤ c ′′‖u‖s
2.

I f is in a Hölder ball of smoothness s
I not very restrictive, for a small s
I f can be an unnormalized density (useful for some Bayesian methods)
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Pliable solution Folding the envelope

Visualizing a 2D example
Multimodal case

f (x , y) ∝
(

1 + sin
(

4πx − π

2

))(
1 + sin

(
4πy − π

2

))

1

0.5

000.20.40.60.81

5

4

3

2

1

0

Figure: 2D target density (orange) and the pliable proposal (blue)
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Pliable Rejection Sampling The PRS algorithm

Pliable Rejection Sampling
Step 1: Estimating f

I f is defined on [0,A]d , bounded and smooth.
I K is a positive kernel on Rd (product kernel).
I Let X1, . . . ,XN ∼ U[0,A]d . The (modified) kernel regression estimate

is

f̂ (x) = Ad

Nhd

N∑
k=1

f (Xi)K
(

Xi − x
h

)

For an unbounded support density, some extra information is needed to
construct a kernel-based estimate.

Pliable rejection sampling SequeL - 9/25

Cost: N requests to f out of n.
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Pliable Rejection Sampling The PRS algorithm

Assumption on the kernel K
K0 be a positive univariate density kernel defined on R

K =
d∏

i=1
K0

Furthermore, it is also of degree 2, i.e., it satisfies∫
R

xK0(x)dx = 0,

and, for some C ′ > 0 ∫
R

x2K0(x)dx ≤ C ′.

K0 is ε-Hölder for some ε > 0, i.e., ∃C ′′ > 0 s.t., for any (x , y) ∈ R2,

|K0(y)− K0(x)| ≤ C ′′ |x − y |ε .

Gaussian kernel satisfies this with C = 1, C ′ = 1, C ′′ = 4, and ε = 1
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Pliable Rejection Sampling The PRS algorithm

Pliable Rejection Sampling
Bounding the gap

Theorem 1
The estimate f̂ is such that with probability larger than 1− δ, for any
point x ∈ [0,A]d ,

∣∣∣f̂ (x)− f (x)
∣∣∣ ≤ H0

((
log(NAd/δ)

N

) s
2s+d
)

where H0 is a constant that depends on the problem parameters.

s is the degree to which f can be expanded as a Taylor expression.

Pliable rejection sampling SequeL - 11/25

Remaing Budget: n − N.
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Pliable Rejection Sampling The PRS algorithm

Pliable Rejection Sampling
Step 2: Generating Samples

I Remaining requests to f : n − N

I Let rN = AdHC

(
log(NAd/δ)

N

) s
2s+d

I Construct the pliable proposal ĝ out of f̂ :

ĝ =
f̂ + rN U[0,A]d

1
N
∑N

i=1 f (Xi) + rN

I Perform rejection sampling using ĝ and the empirical rejection
sampling constant

M̂ =
1
N
∑

i f (Xi) + rN
1
N
∑

i f (Xi)− 5rN
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Pliable Rejection Sampling The PRS algorithm

The algorithm

target f

Algorithm: Pliable Rejection Sampling
(PRS)
Input: s, n, δ, HC
Initial Sampling
Draw uniformly at random N samples
on [0,A]d

Estimation of f
Estimate f using these N samples by
kernel regression
Generating the samples
Sample n − N samples from the pliable
proposal ĝ and perform Rejection
Sampling using M̂ as the envelope
constant
Output: n̂ accepted samples
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Pliable Rejection Sampling The PRS algorithm

Is the sampling correct?
Theorem 1: w.p. 1− δ, for any x ∈ [0,A]d

ξ′
def
=
∣∣∣f̂ (x)− f (x)

∣∣∣ ≤ rN
1

Ad = rNU[0,A]d .

Hoeffding’s: w.p. 1− δ

ξ′′
def
=

{∣∣∣∣∣Ad

n

n∑
i=1

f (Xi)−
∫
[0,A]d

f (x)dx

∣∣∣∣∣ ≤ 2Adc
√

1
N log(1/δ) def

= cN

}

On, ξ = ξ′ ∩ ξ′′, we have for our proposal and 8rN ≤
∫
[0,A]d

f (x)dx def
= m

ĝ? =
f̂ + rNU[0,A]d

Ad/n
∑n

i=1 f (Xi) + rN
≥ f∫

[0,A]d
f (x)dx + rN + cN

≥ f∫
[0,A]d

f (x)dx
(1− 4rN/m)

Pliable rejection sampling SequeL - 14/25
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Pliable Rejection Sampling The PRS algorithm

Choice of empirical multiplication constant M̂

1
1− 4rN/m

=
m

m − 4rN

≤ Ad/N
∑

i f (Xi) + cN

Ad/N
∑

i f (Xi)− cn − 4rN

≤ Ad/N
∑

i f (Xi) + rN

Ad/N
∑

i f (Xi)− 5rN
= M̂
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Pliable Rejection Sampling The PRS algorithm

How many accepted samples can we guarantee?

M̂ =
Ad/N

∑
i f (Xi) + rN

Ad/N
∑

i f (Xi)− 5rN
≤ m + rN + cN

m − 5rN − cN
≤ m + 2rN

m − 6rN
.

On ξ, we get samples that are i.i.d. according to f , and n̂ will be a sum of
Bernoulli random variables of parameter larger than

1
M̂
≥ m − 6rN

m + 2rN
≥ (1− 6rN/m)(1− 4rN/m) ≥ 1− 20rN/m,

n̂ is with probability larger than 1− 3δ lower bounded as

n̂ ≥ (n − N)

(
1− 20rN/m − 4

√
log(1/δ)

n

)

Setting: N = n 2s+d
3s+d ,

n̂ ≥ n
[
1− K log(nAd/δ) s

3s+d n− s
3s+d
]
. (1)
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n̂ ≥ (n − N)

(
1− 20rN/m − 4

√
log(1/δ)

n

)

Setting: N = n 2s+d
3s+d ,

n̂ ≥ n
[
1− K log(nAd/δ) s

3s+d n− s
3s+d
]
. (1)
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Pliable Rejection Sampling The Main Result

A bound on the acceptance rate
The asymptotic performace

Theorem 2
Under Theorem 1’s assumptions and if H0 < HC , 8rN ≤

∫
[0,A]d

f (x)dx.
Then, for n large enough, we have with probability larger than 1− δ that

n̂ ≥ n
[

1−O
(

log (nAd/δ)
n

) s
3s+d
]
.

where n̂ is the number of i.i.d. samples generated by PRS.
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Pliable Rejection Sampling The Main Result

Competitor: A? sampling from Gumbel-Max trick

Gumbel-Max trick: p(i) ∝ exp (φ (i)) for i ∈ {1, 2, 3, 4, 5}
images from Chris J. Maddison

The Gumbel-Max Trick (well-known, see Yellott 1977)

Suppose we want to sample from a finite distribution

p(i) ∝ exp(φ(i)) for i ∈ {1, 2, 3, 4, 5}

φ(1)

φ(2)
φ(3)

φ(4)

φ(5)

1 2 3 4 5

• • • • •
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Pliable Rejection Sampling The Main Result

A? sampling
Continuous Gumbel-Max trick: f (x) ∝ exp (i(x) + o(x))A∗ Sampling

G q
1

X q
1 o(X )
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Pliable Rejection Sampling The Main Result

A? sampling vs. PRS
− A? needs several calls to f to generate a sample
+ PRS rejects (asymptotically) only a negligible number of samples

with respect to n

number of i.i.d. samples generated according to f per computation of f
are better than the ones for A? sampling

− A? needs a decomposition f (x) ∝ exp (φ(x)), where
φ(x) = i(x) + o(x)

+ PRS learns it!

Scaling with d? Same.
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Experiements Peakiness

Experiments
Scaling with peakiness

f ∝ e−x

(1+x)a , a defines the peakiness level

Peakiness
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(b) n = 105

Figure: Acceptance rate vs. peakiness
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Experiements 2D example

Experiments
Two dimensional example

1

0.5

000.20.40.60.81

5

4

3

2

1

0

n = 106 acceptance rate standard deviation
PRS 66.4% 0.45%

A? sampling 76.1% 0.80%
SRS 25.0% 0.01%

Table: 2D example: Acceptance rates averaged over 10 trials
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Experiements An inference problem

Experiments
The Clutter problem

n = 105, 1D acceptance rate standard deviation
PRS 79.5% 0.2%

A? sampling 89.4% 0.8%
SRS 17.6% 0.1%

n = 105, 2D acceptance rate standard deviation
PRS 51,0% 0.4%

A? sampling 56.1% 0.5%
SRS 2.10−3% 10−5%

Table: Clutter problem: Acceptance rates averaged over 10 trials
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Experiements An inference problem

Discussion
Normalized distribution

If
∫
[0,A]d

f = 1 then we can simplify the algorithm

ĝ? def
=

1
1 + rN

(
f̂ + rNU[0,A]d

)

Case of a distribution with unbounded support

instead of uniformly sampling on [0,A]d , we sample on a hypercube
centered in 0 and of side length

√
log(n)

Extensions for high dimensional cases (large d)

– when the mass of the distribution is localized in a few small subsets
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ĝ? def
=

1
1 + rN

(
f̂ + rNU[0,A]d

)

Case of a distribution with unbounded support

instead of uniformly sampling on [0,A]d , we sample on a hypercube
centered in 0 and of side length

√
log(n)

Extensions for high dimensional cases (large d)

– when the mass of the distribution is localized in a few small subsets

Pliable rejection sampling SequeL - 24/25



Experiements An inference problem

Discussion
Normalized distribution

If
∫
[0,A]d

f = 1 then we can simplify the algorithm
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Experiements An inference problem

Conclusion

+ PRS deals with a wide class of functions

+ PRS has guarantees: asymptotically we accept everything (whp)
+ PRS is a perfect sampler

+ (whp) the samples are iid (unlike MCMC)

+ PRS’s empirical performance is comparable to state of the art
+ We have an extension to densities with unbounded support

− PRS works only for small and moderate dimensions

+ in favorable cases, it can scale to high dimensions as well

− It does not work well for peaky distributions (posteriors)
Extension 1: Iterative PRS by re-estimating f several times
Extension 2: Using the fact that the evaluations are noiselles
Improved rate and lower bound: Follow-up work by Juliette Achdou
and Alexandra Carpentier
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Thank you!
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