PLIABLE REJECTION SAMPLING

AKRAM.ER-RAQABI@UMONTREAL.CA, MICHAL.VALKO@INRIA.FR, CARPENTIER@MATH.UNI-POTSDAM.DE, AND ODALRIC.MAILLARD@INRIA.FR

SIMPLE REJECTION SAMPLING

Goal: Sample from a target density *f* (not easy to sample from) **Tool:** Use a proposal density *g* (from which sampling is quite easy) **Property:** Smaller $\mathcal{R} \implies$ fewer rejections (good!)

M verifies $f \leq Mg$. The sampling algorithm: • Sample *x* from *g*

• Accept x as a sample from f with probability $\frac{f(x)}{Mq(x)}$

BOUNDING THE GAP

Theorem 1. The estimate \hat{f} is such that with probability larger than $1 - \delta$, for any point $x \in [0, A]^d$,

$$\left|\widehat{f}(x) - f(x)\right| \le H_0\left(\left(\frac{\log(NAd/\delta)}{N}\right)^{\frac{s}{2s+d}}\right)$$

where H_0 is a constant that depends on the problem parameters.

THE PLIABLE PROPOSAL

• Remaining requests to f: n - N

• Let
$$r_N = A^d H_C \left(\frac{\log(NAd/\delta)}{N}\right)^{\frac{s}{2s+d}}$$

• Construct the *pliable* proposal \hat{g} out of \hat{f} :

EXPERIMENTS - SCALING WITH PEAKINESS

 $f \propto \frac{e^{-x}}{(1+x)^a}$, parameter *a* defines the **peakiness** level

SETTING

Let $d \ge 1$ and let f be a density on \mathbb{R}^d .

Question: Given a number *n* of requests to *f*, what is the number T of samples Y_1, \ldots, Y_T that one can generate such that they are i.i.d. according to *f*?

Can we increase the acceptance rate?

Adaptive Rejection Sampling (ARS) [Gilks and Wild 1992] • The target *f* is assumed to be *log-concave* (unimodal) • The enveloppe is made of tangents at a set of points S• At each rejection, the sample is added to *S*

Adaptive Rejection Metropolis Sampling (ARMS) [Gilks, Best and Tan 1995]

 $\widehat{g} = \frac{f + r_N \,\mathcal{U}_{[0,A]^d}}{\frac{1}{N} \sum_{i=1}^N f(X_i) + r_N}$

• Perform rejection sampling using \hat{g} and the empirical rejection sampling constant

 $\widehat{M} = \frac{\frac{1}{N} \sum_{i} f(X_i) + r_N}{\frac{1}{N} \sum_{i} f(X_i) - 5r_N}$

ALGORITHM: PRS

Parameters: s, n, δ, H_C Initial sampling Draw uniformly at random N samples on $[0, A]^d$ and evaluate *f* on them **Estimation of** *f* Estimate *f* by *f* on these *N* samples (Equation 1) Generating the samples Sample n - N samples from the compact pliable proposal \hat{g}^{\star} Perform rejection sampling on these samples using \widehat{M} as a rejection constant to get \widehat{n} samples **Output:** Return the \hat{n} samples

NUMBER OF ACCEPTED SAMPLES

Theorem 2. Under Theorem 1's assumptions and if:

EXPERIMENTS - MULTIMODAL EXAMPLES

A 2D example

 $f(x,y) \propto \left(1 + \sin\left(4\pi x - \frac{\pi}{2}\right)\right) \left(1 + \sin\left(4\pi y - \frac{\pi}{2}\right)\right).$

• Performs a Metropolis-Hastings step for each accepted sample (which correlates the samples)

Convex-Concave Adaptive Rejection Sampling [Gorur and Tuh 2011]

- Decomposes the target as convex + concave
- Builds piecewise linear upper bounds (tangents, secant lines)

PLIABLE REJECTION SAMPLING

Better proposal means smaller rejection area \mathcal{R} **Smaller** \mathcal{R} means *g* should have a similar "shape" to *f* For this purpose:

CHOICE OF THE ESTIMATE

• $H_0 < H_C$ • $8r_N \le \int_{[0,A]^d} f(x) dx$

For n large enough, we have with probability larger than $1 - \delta$ that

$$\widehat{n} \ge n \left[1 - \mathcal{O}\left(\frac{\log\left(nAd/\delta\right)}{n} \right)^{\frac{s}{3s+d}} \right]$$

Convergence Rate \uparrow with smoothness

Convergence Rate \downarrow with dimensionality

PRS PROPERTIES

- PRS deals with a wider class of functions and not necessarily normalized
- PRS has guarantees: asymptotically we accept everything (whp).
- PRS is a **perfect** sampler (whp) the samples are iid (unlike MCMC)
- PRS empirical performance is comparable to state of the art
 - PRS deals better with peakiness than A* sampling
 - in general PRS does not scale to high dimensions
- An extension to densities with unbounded support is provided

	•	
PRS	66.4%	0.45%
A* sampling	76.1%	0.80%
SRS	25.0%	0.01%

The Clutter Problem [Thomas P. Minka, UAI '01]

• Consider K data points $(X_i)_{i=1}^K$ with half within [-5, -3]^d and half within $[2, 4]^d$

• These points are assumed to be generated from

 $p(x|\theta) = (1 - \pi)\mathcal{N}(x;\theta,I) + \pi\mathcal{N}(x;0,10I)$

Assumption 1 (on the density). • f defined on $[0, A]^d$ and bounded. • It admits a Taylor expansion in any point up to some degree $0 < s \le 2$.

Assumption 2 (on the kernel). • Let $K = \prod_{i=1}^{d} K_0$ • K_0 is a density kernel : defined on \mathbb{R} , uniformly bounded, normalized and non-negative • K_0 is ε -Hölder for some $\varepsilon > 0$ • K_0 is of degree 2, i.e.

 $\int_{\mathbb{D}} x K_0(x) dx = 0 \quad and \quad \int_{\mathbb{D}} x^2 K_0(x) dx < \infty$

Let $X_1, \ldots, X_N \sim \mathcal{U}_{[0,A]^d}$. The (modified) kernel regression estimate is

 $\widehat{f}(x) = \frac{A^d}{Nh^d} \sum_{i=1}^{N} f(X_i) K\left(\frac{X_i - x}{h}\right)$

(1)

 K_0 Gaussian kernel $\Rightarrow \hat{f}$ is a Gaussian mixture!

Some notes on (very) high dimensionality

Let the γ -support of f be

$$\operatorname{Supp}_{f,\gamma} = \overline{\Lambda}_{f,\gamma} \quad \text{where} \quad \Lambda_{f,\gamma} \stackrel{\text{def}}{=} \{ x \in \mathcal{D} : f(x) > \gamma \}$$

- In general, localizing the 0-support of f may require an exponential cost in d
- Supp $_{f,\gamma}$ is localizable with a less than exponential cost, if:
 - $f_{|\text{Supp}_{f,\gamma}^c|}$ the restriction of f on the complementary of $\operatorname{Supp}_{f,\gamma}$ is convex
 - One can evalute *f* and its gradient pointwise

The trick: find a point x_0 in $\text{Supp}_{f,\gamma}^c$ and use standard gradient based optimization to find a maximum on $\partial \text{Supp}_{f,\gamma}$.

• We put a gaussian prior on the mean $p(\theta) = \mathcal{N}(\theta; 0, 100I)$ • The goal is to sample from $p(\theta|(X_i)_{i=1}^K) \propto p(\theta) \prod_{i=1}^K p(X_i|\theta)$ $n = 10^5, 1D$ acceptance rate standard deviation 79.5% 0.2% PRS 89.4% 0.8% A* sampling 17.6% 0.1% SRS $n = 10^5, 2D$ standard deviation acceptance rate 51,0% 0.4% PRS 56.1% 0.5% A* sampling

 $2.10^{-3}\%$

 $10^{-5}\%$

EXTENDING THIS WORK

SRS

Iterative version:

- PRS is a 2 step algorithm: estimation + RS
- Possibly improve the estimate on several steps
- Optimize the number of samples gathered between these "estimation update steps"