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The bandit problem considered

Simple regret for infinitely
many armed bandit

I Mean reservoir distr. F bounded
by µ̄∗

I Limited sampling resources n

At time t ≤ n one can either

I sample a new arm νKt from the
reservoir distr. with mean
µKt ∼ F , and set It = Kt,

I or choose an arm It among the
Kt−1 observed arms {νk}k≤Kt−1 ,

and then collect Xt ∼ νkt

Objective: after n rounds, return an
arm k̂ whose mean µk̂ is as large as
possible. Minimize the simple regret

rn = µ̄∗ − µk̂,

where µ̄∗ is the right end point of
1− F .

At time t = 0:

1 - Mean reservoir distribution

µ*
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The bandit problem considered

Simple regret for infinitely
many armed bandit

I Mean reservoir distr. F bounded
by µ̄∗

I Limited sampling resources n

At time t ≤ n one can either

I sample a new arm νKt from the
reservoir distr. with mean
µKt ∼ F , and set It = Kt,

I or choose an arm It among the
Kt−1 observed arms {νk}k≤Kt−1 ,

and then collect Xt ∼ νkt

Objective: after n rounds, return an
arm k̂ whose mean µk̂ is as large as
possible. Minimize the simple regret

rn = µ̄∗ − µk̂,

where µ̄∗ is the right end point of
1− F .

At time t = 1:

1 - Mean reservoir distribution

Arm 1
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The bandit problem considered

Simple regret for infinitely
many armed bandit

I Mean reservoir distr. F bounded
by µ̄∗

I Limited sampling resources n

At time t ≤ n one can either

I sample a new arm νKt from the
reservoir distr. with mean
µKt ∼ F , and set It = Kt,

I or choose an arm It among the
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and then collect Xt ∼ νkt
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The bandit problem considered

Simple regret for infinitely
many armed bandit

I Mean reservoir distr. F bounded
by µ̄∗

I Limited sampling resources n

At time t ≤ n one can either

I sample a new arm νKt from the
reservoir distr. with mean
µKt ∼ F , and set It = Kt,

I or choose an arm It among the
Kt−1 observed arms {νk}k≤Kt−1 ,

and then collect Xt ∼ νkt

Objective: after n rounds, return an
arm k̂ whose mean µk̂ is as large as
possible. Minimize the simple regret

rn = µ̄∗ − µk̂,

where µ̄∗ is the right end point of
1− F .

At time t = 2:

1 - Mean reservoir distribution

Arm 1 Arm 2
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The bandit problem considered

Simple regret for infinitely
many armed bandit

I Mean reservoir distr. F bounded
by µ̄∗

I Limited sampling resources n

At time t ≤ n one can either

I sample a new arm νKt from the
reservoir distr. with mean
µKt ∼ F , and set It = Kt,

I or choose an arm It among the
Kt−1 observed arms {νk}k≤Kt−1 ,

and then collect Xt ∼ νkt

Objective: after n rounds, return an
arm k̂ whose mean µk̂ is as large as
possible. Minimize the simple regret

rn = µ̄∗ − µk̂,

where µ̄∗ is the right end point of
1− F .

At time t = 2:

1 - Mean reservoir distribution

Arm 1 Arm 2
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The bandit problem considered

Simple regret for infinitely
many armed bandit

I Mean reservoir distr. F bounded
by µ̄∗

I Limited sampling resources n

At time t ≤ n one can either

I sample a new arm νKt from the
reservoir distr. with mean
µKt ∼ F , and set It = Kt,

I or choose an arm It among the
Kt−1 observed arms {νk}k≤Kt−1 ,

and then collect Xt ∼ νkt

Objective: after n rounds, return an
arm k̂ whose mean µk̂ is as large as
possible. Minimize the simple regret

rn = µ̄∗ − µk̂,

where µ̄∗ is the right end point of
1− F .

At time t = 3:

1 - Mean reservoir distribution

Arm 1 Arm 2 Arm 3
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The bandit problem considered

Simple regret for infinitely
many armed bandit

I Mean reservoir distr. F bounded
by µ̄∗

I Limited sampling resources n

At time t ≤ n one can either

I sample a new arm νKt from the
reservoir distr. with mean
µKt ∼ F , and set It = Kt,

I or choose an arm It among the
Kt−1 observed arms {νk}k≤Kt−1 ,

and then collect Xt ∼ νkt

Objective: after n rounds, return an
arm k̂ whose mean µk̂ is as large as
possible. Minimize the simple regret

rn = µ̄∗ − µk̂,

where µ̄∗ is the right end point of
1− F .

At time t = 3:

1 - Mean reservoir distribution

Arm 1 Arm 2 Arm 3
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The bandit problem considered

Simple regret for infinitely
many armed bandit

I Mean reservoir distr. F bounded
by µ̄∗

I Limited sampling resources n

At time t ≤ n one can either

I sample a new arm νKt from the
reservoir distr. with mean
µKt ∼ F , and set It = Kt,

I or choose an arm It among the
Kt−1 observed arms {νk}k≤Kt−1 ,

and then collect Xt ∼ νkt

Objective: after n rounds, return an
arm k̂ whose mean µk̂ is as large as
possible. Minimize the simple regret

rn = µ̄∗ − µk̂,

where µ̄∗ is the right end point of
1− F .

At time t = 4:

1 - Mean reservoir distribution

Arm 1 Arm 2 Arm 3
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The bandit problem considered

Simple regret for infinitely
many armed bandit

I Mean reservoir distr. F bounded
by µ̄∗

I Limited sampling resources n

At time t ≤ n one can either

I sample a new arm νKt from the
reservoir distr. with mean
µKt ∼ F , and set It = Kt,

I or choose an arm It among the
Kt−1 observed arms {νk}k≤Kt−1 ,

and then collect Xt ∼ νkt

Objective: after n rounds, return an
arm k̂ whose mean µk̂ is as large as
possible. Minimize the simple regret

rn = µ̄∗ − µk̂,

where µ̄∗ is the right end point of
1− F .

At time t = 5:

1 - Mean reservoir distribution

Arm 1 Arm 2 Arm 3

Arm 4
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The bandit problem considered

Simple regret for infinitely
many armed bandit

I Mean reservoir distr. F bounded
by µ̄∗

I Limited sampling resources n

At time t ≤ n one can either

I sample a new arm νKt from the
reservoir distr. with mean
µKt ∼ F , and set It = Kt,

I or choose an arm It among the
Kt−1 observed arms {νk}k≤Kt−1 ,

and then collect Xt ∼ νkt

Objective: after n rounds, return an
arm k̂ whose mean µk̂ is as large as
possible. Minimize the simple regret

rn = µ̄∗ − µk̂,

where µ̄∗ is the right end point of
1− F .

At time t = 6:

1 - Mean reservoir distribution

Arm 1 Arm 2 Arm 3

Arm 4
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The bandit problem considered

Simple regret for infinitely
many armed bandit

I Mean reservoir distr. F bounded
by µ̄∗

I Limited sampling resources n

At time t ≤ n one can either

I sample a new arm νKt from the
reservoir distr. with mean
µKt ∼ F , and set It = Kt,

I or choose an arm It among the
Kt−1 observed arms {νk}k≤Kt−1 ,

and then collect Xt ∼ νkt

Objective: after n rounds, return an
arm k̂ whose mean µk̂ is as large as
possible. Minimize the simple regret

rn = µ̄∗ − µk̂,

where µ̄∗ is the right end point of
1− F .

At time t = 7:

1 - Mean reservoir distribution

Arm 1 Arm 2 Arm 3

Arm 4 Arm 5
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The bandit problem considered

Simple regret for infinitely
many armed bandit

I Mean reservoir distr. F bounded
by µ̄∗

I Limited sampling resources n

At time t ≤ n one can either

I sample a new arm νKt from the
reservoir distr. with mean
µKt ∼ F , and set It = Kt,

I or choose an arm It among the
Kt−1 observed arms {νk}k≤Kt−1 ,

and then collect Xt ∼ νkt

Objective: after n rounds, return an
arm k̂ whose mean µk̂ is as large as
possible. Minimize the simple regret

rn = µ̄∗ − µk̂,

where µ̄∗ is the right end point of
1− F .

At time t = 8:

1 - Mean reservoir distribution

Arm 1 Arm 2 Arm 3

Arm 4 Arm 5
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The bandit problem considered

Simple regret for infinitely
many armed bandit

I Mean reservoir distr. F bounded
by µ̄∗

I Limited sampling resources n

At time t ≤ n one can either

I sample a new arm νKt from the
reservoir distr. with mean
µKt ∼ F , and set It = Kt,

I or choose an arm It among the
Kt−1 observed arms {νk}k≤Kt−1 ,

and then collect Xt ∼ νkt

Objective: after n rounds, return an
arm k̂ whose mean µk̂ is as large as
possible. Minimize the simple regret

rn = µ̄∗ − µk̂,

where µ̄∗ is the right end point of
1− F .

At time t = 9:

1 - Mean reservoir distribution

Arm 1 Arm 2 Arm 3

Arm 4 Arm 5

Arm 6
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The bandit problem considered

Simple regret for infinitely
many armed bandit

I Mean reservoir distr. F bounded
by µ̄∗

I Limited sampling resources n

At time t ≤ n one can either

I sample a new arm νKt from the
reservoir distr. with mean
µKt ∼ F , and set It = Kt,

I or choose an arm It among the
Kt−1 observed arms {νk}k≤Kt−1 ,

and then collect Xt ∼ νkt

Objective: after n rounds, return an
arm k̂ whose mean µk̂ is as large as
possible. Minimize the simple regret

rn = µ̄∗ − µk̂,

where µ̄∗ is the right end point of
1− F .

At time t...:

1 - Mean reservoir distribution

Arm 1 Arm 2 Arm 3

Arm 4 Arm 5

Arm 6

etc...
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The bandit problem considered

Simple regret for infinitely
many armed bandit

I Mean reservoir distr. F bounded
by µ̄∗

I Limited sampling resources n

At time t ≤ n one can either

I sample a new arm νKt from the
reservoir distr. with mean
µKt ∼ F , and set It = Kt,

I or choose an arm It among the
Kt−1 observed arms {νk}k≤Kt−1 ,

and then collect Xt ∼ νkt

Objective: after n rounds, return an
arm k̂ whose mean µk̂ is as large as
possible. Minimize the simple regret

rn = µ̄∗ − µk̂,

where µ̄∗ is the right end point of
1− F .

At time t = n:

1 - Mean reservoir distribution

Arm 1 Arm 2 Arm 3

Arm 4 Arm 5

Arm 6

Arm returned
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The bandit problem considered

Simple regret for infinitely
many armed bandit

I Mean reservoir distr. F bounded
by µ̄∗

I Limited sampling resources n

At time t ≤ n one can either

I sample a new arm νKt from the
reservoir distr. with mean
µKt ∼ F , and set It = Kt,

I or choose an arm It among the
Kt−1 observed arms {νk}k≤Kt−1 ,

and then collect Xt ∼ νkt

Objective: after n rounds, return an
arm k̂ whose mean µk̂ is as large as
possible. Minimize the simple regret

rn = µ̄∗ − µk̂,

where µ̄∗ is the right end point of
1− F .

Double exploration dilemma
here: Allocation both to (i) learn the
characteristics of the arm reservoir
distr. (meta-exploration) and (ii)
learn the characteristics of the arms
(exploration).

Main questions

How many arms should be sampled
from the arm reservoir distribution?
How aggressively should these arms
be explored?
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Applications

Simple-regret bandit problems
with a large number of arms or
with a small budget :

I Selection of a good
biomarker

I Special case of feature
selection where one wants to
select a single feature
[Hauskrecht et al., 2006]

...

Continuous set of arms Finite but large set of arms

<=>
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Literature review

I Simple regret bandits:
[Even-Dar et al., 2006], [Audibert
et al., 2010], [Kalyanakrishnan et
al., 2012], [Kaufmann et al.,
2013], [Karnin et al., 2013],
[Gabillon et al., 2012], and
[Jamieson et al., 2014]

I Infinitely many armed
bandits with cumulative
regret: [Berry et al., 1997],
[Wang et al., 2008], and [Bonald
and Proutière, 2013].

I Infinitely many armed
settings with arm
structure: [Dani et al., 2008],
[Kleinberg et al.,2008], [Munos,
2014], [Azar et al., 2014]
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Literature review

I Simple regret bandits:
[Even-Dar et al., 2006], [Audibert
et al., 2010], [Kalyanakrishnan et
al., 2012], [Kaufmann et al.,
2013], [Karnin et al., 2013],
[Gabillon et al., 2012], and
[Jamieson et al., 2014]

I Infinitely many armed
bandits with cumulative
regret: [Berry et al., 1997],
[Wang et al., 2008], and [Bonald
and Proutière, 2013]

I Infinitely many armed
settings with arm
structure: [Dani et al., 2008],
[Kleinberg et al.,2008], [Munos,
2014], [Azar et al., 2014]

Results:

I offer strategies that provide
an optimal (or ε-optimal) arm
with high probability.

I provide stopping rule based
strategies that sample until
they can provide an ε-optimal
arm.

But:

I Fixed number of arms that is
smaller than the budget n
(importance of trying each
arm).
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Literature review

I Simple regret bandits:
[Even-Dar et al., 2006], [Audibert
et al., 2010], [Kalyanakrishnan et
al., 2012], [Kaufmann et al.,
2013], [Karnin et al., 2013],
[Gabillon et al., 2012], and
[Jamieson et al., 2014]

I Infinitely many armed
bandits with cumulative
regret: [Berry et al., 1997],
[Wang et al., 2008], and [Bonald
and Proutière, 2013]

I Infinitely many armed
settings with arm
structure: [Dani et al., 2008],
[Kleinberg et al.,2008], [Munos,
2014], [Azar et al., 2014]

Results:

I Provide optimal strategies
under shape constraint on F
and boundedness of the arm
distributions.

But:

I Cumulative regret.

Note

We will discuss this in details
soon...

A. Carpentier and M. Valko Simple regret for IMAB - ICML 2015



A. Carpentier and M. Valko Simple regret for IMAB - ICML 2015

Literature review

I Simple regret bandits:
[Even-Dar et al., 2006], [Audibert
et al., 2010], [Kalyanakrishnan et
al., 2012], [Kaufmann et al.,
2013], [Karnin et al., 2013],
[Gabillon et al., 2012], and
[Jamieson et al., 2014]

I Infinitely many armed
bandits with cumulative
regret: [Berry et al., 1997],
[Wang et al., 2008], and [Bonald
and Proutière, 2013]

I Infinitely many armed
settings with arm
structure: [Dani et al., 2008],
[Kleinberg et al.,2008], [Munos,
2014], [Azar et al., 2014]

Results:

I Provide optimal strategies for
specific structured bandits.

But:

I Structure or contextual
information needed.

Inf. many armed bandit

No control on the position of 
where one samples from the
reservoir distr.

Optimisation setting

One selects where one samples
based on proximity to good 
points
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Back on infinitely many armed
bandits literature

IMAB with cumulative
regret: [Berry et al., 1997], [Wang et
al., 2008], and [Bonald and Proutière,
2013].

Cumulative regret:

RCn = nµ̄∗ −
∑
t≤n

Xt.

Crucial assumption:

Pµ∼F (µ̄∗ − µ ≥ ε) ≈ εβ ,

i.e. 1− F is β-regularly varying in
µ̄∗.

µ*

µ*

large β

Small β

A. Carpentier and M. Valko Simple regret for IMAB - ICML 2015



A. Carpentier and M. Valko Simple regret for IMAB - ICML 2015

Back on infinitely many armed
bandits literature

IMAB with cumulative
regret: [Berry et al., 1997], [Wang et
al., 2008], and [Bonald and Proutière,
2013].

Cumulative regret:

RCn = nµ̄∗ −
∑
t≤n

Xt.

Crucial assumption:

Pµ∼F (µ̄∗ − µ ≥ ε) ≈ εβ ,

i.e. 1− F is β-regularly varying in
µ̄∗.

Requirements: Bounded arm
distributions and knowledge of β
for choosing the nb. of arms.

Theorem (Regret bound)

Minimax bound on E(RCn )

O
(

max
(
n

β
β+1 ,
√
n
))

up to log(n).

Special case: If arm distr.
bounded by µ̄∗, different rate.

Theorem (Special regret)

Minimax bound on E(RCn )

O
(
n

β
β+1

)
up to log(n).
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The simple regret setting and assumptions

Objective:

Minimize the simple regret in the infinitely many armed setting

rn = µ̄∗ − µ
k̂
.

Same assumptions as for IMAB with cumulative regret:

I Regularly varying mean reservoir distr. :

Pµ∼F (µ̄∗ − µ ≥ ε) ≈ εβ

I Distributions from the arms are bounded/sub-Gaussian.
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Lower bound

The following lower bound holds.

Theorem (CV15)

The expected simple regret E(rn) can be lower bounded as

max
(
n
− 1
β , n−1/2

)
.

Remark: Different bottleneck as for the cumulative regret

E[RCn ] = O
(

max
(
n

β
β+1 ,
√
n
))
.

Strategy that attains this bound?
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The SiRI strategy

Parameters: β,C, δ.
Pick T̄β ≈ nmin(β,2)/2 arms from the reservoir
Pull each of T̄β arms once and set t← T̄β.
while t ≤ n do

For any k ≤ T̄β, set

Bk,t ← µ̂k,t + 2

√
C

Tk,t
log
( nδ
Tk,t

)
+

2C

Tk,t
log

(
nδ

Tk,t

)
Pull Tkt,t times the arm kt that maximizes the Bk,t
Set t← t+ Tkt,t.

end while
Output: Return the most pulled arm k̂.
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The SiRI strategy

Parameters: β,C, δ.
Pick T̄β ≈ nmin(β,2)/2 arms from the reservoir
Pull each of T̄β arms once and set t← T̄β.
while t ≤ n do

For any k ≤ T̄β, set

Bk,t ← µ̂k,t + 2

√
C

Tk,t
log
( nδ
Tk,t

)
+

2C

Tk,t
log

(
nδ

Tk,t

)
Pull Tkt,t times the arm kt that maximizes the Bk,t
Set t← t+ Tkt,t.

end while
Output: Return the most pulled arm k̂.
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The SiRI strategy
Parameters: β,C, δ.
Pick T̄β ≈ nmin(β,2)/2 arms from the reservoir
Pull each of T̄β arms once and set t← T̄β.
while t ≤ n do

For any k ≤ T̄β, set

Bk,t ← µ̂k,t + 2

√
C

Tk,t
log
( nδ
Tk,t

)
+

2C

Tk,t
log

(
nδ

Tk,t

)
Pull Tkt,t times the arm kt that maximizes the Bk,t
Set t← t+ Tkt,t.

end while
Output: Return the most pulled arm k̂.

Remark: SiRI is the combination of a choice of the
number of arms and a UCB algorithm for cumulative
regret.
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Upper bound

The following upper bound holds.

Theorem (CV15)

The expected simple regret E(rn) of SiRI can be upper bounded
up to log(n) factors as

max
(
n−1/2, n

− 1
β

)
.

Lower and upper bound match up to log(n) factors (not present
in all cases).
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Extensions

In the paper we present three main extensions:

I anytime SiRI.

I Distributions bounded by µ∗: a Bernstein modification
of SiRI has Minimax optimal simple regret

max
(
n−1, n−1/β

)
.

I Unknown β: possible to estimate β using arguments from
extreme value theory. Simple regret rate is the same up to
log(n) factors. Same could apply to cumulative regret.
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Recap on the rates (up to log(n))

Minimax optimal rates

Cumulative regret max
(
n

β
β+1 ,
√
n
)

Cum. regret with arm bound µ̄∗ n
β
β+1

Simple regret max
(
n−1/β , n−1/2

)
Simple regret with arm bound µ̄∗ max

(
n−1/β , n−1

)
Remark: Different bottleneck as for the cumulative regret.
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Simulations

Comparison on synthetic data of SiRI with:

I lil’UCB [Jamieson et. al, 2014], to which the optimal oracle
number of arms is given (algorithm for simple regret with
finitely many arms)

I UCB-F of [Wang et. al, 2008] (algorithm for cumulative
regret and infinitely many arms)
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Figure: Comparison on B(1, 1) (UL), B(1, 2) (UR), and B(1, 3) (DL),
and unknown β on B(1, 1) (DR)
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Conclusion

Minimax optimal solution up to log(n) factors for the simple
regret problem with infinitely many arms. Extensions:

I Unknown β

I Bernstein SiRI with minimax optimal performance when
arm distributions are bounded by µ̄∗

Open problems:

I Closing the log gaps (some of them are already closed)?

I Heavy tailed mean reservoir distribution?

THANK YOU!
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