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ANOMALY DETECTION

Goal: Find extreme values

• outburst of the network activity

• peak water flow

• biosurveillance

Challenge: Heavy tails of real-world distributions

New algorithm: EXTREMEHUNTER

Analysis: Finite-time performance guarantees

Prior work: Either heuristics or only asymptotic guarantees for
parametric distributions

EXTREME REGRET

Protocol for learner π - Every time step

• each of the K arms emits a sample Xk,t ∼ Pk

• learner π chooses some arm It

• learner π receives only XIt,t (bandit setting)

Reward of learner π

• overall reward is the highest value found in n steps

Gπn = max
t≤n

XIt,t

Reward for pulling the optimal arm ∗

• overall reward is the highest value found in n steps

E [G∗n] = max
k≤K

E
[
max
t≤n

Xk,t

]
Extreme regret in the bandit setting

E [Rπn] = E [G∗n]− E [Gπn] = max
k≤K

E
[
max
t≤n

Xk,t

]
− E

[
max
t≤n

XIt,t

]

EXTREMAL TYPES FOR MAXIMA

What is the distribution of the maximum?

• Fisher-Tippett-Gnedenko theorem

– analogue of central limit theorem for averages

– limiting distribution for maximum is one of the three

Fréchet Gumbel Weibull
1− e−x−α 1− e−e−x e−x

α

Frechet distribution (alpha = 2) Gumbel distribution Weibull distribution (alpha = 2)

• α-Fréchet is defined as

P (x) = exp

{
−
(
x−m
s

)α}
.

• FTP theorem: ‘P converges to an α-Fréchet distribution’ ≡
‘1− P is a −α regularly varying function in the tail’

Approximately α-Pareto distribution (slightly more restrictive)

lim
x→∞

|1− P (x)− Cx−α|
x−α

= 0

• does ensure a limit

• does not ensure a convergence rate

Second order Pareto condition also known as the Hall condition∣∣1− P (x)− Cx−α
∣∣ ≤ C ′x−α(1+β)

• also ensures a convergence rate

• equivalent to P (x) = 1− Cx−α +O
(
x−α(1+β)

)
• similar to approximate Pareto for small β

How does it characterize a tail?

• β is the rate of the convergence (when x diverges to infinity)
of the tail of P to the tail of 1− Cx−α ≡ Pareto

• α is the heaviness of the tail

• the smaller the α, the heavier the tail

Learn αs and identify the smallest one among the sources.

EXPECTATION OF THE MAXIMUM

What is the expectation of the maximum of a 2nd-order Pareto?

Theorem 1. Let X1, . . . , Xn be n i.i.d. samples drawn according to
(α, β, C,C ′)-second order Pareto distribution P . If α > 1, then:∣∣∣E(max

i
Xi)− (nC)

1
αΓ
(
1− 1

α

)∣∣∣ ≤ 4D2

n (nC)
1
α +

2C′Dβ+1

Cβ+1nβ
(nC)

1
α +B

where D2, D1+β > 0 are some universal constants.

EFFICIENT ESTIMATORS

Estimator of α
Traditional Hill’s estimator with r sample fraction

âHt =

(
1

rn

r∑
u=1

log
X(n−i+1)

X(n−rn+1)

)−1

1 - F

rn

1 - Pareto

1 - F

rn

1 - Pareto

1 - F

rn

1 - Pareto

Bn << Vn Bn >> Vn Bn = VnNO NO OK

Adaptive (to β) tail estimator with concentration

ât = log

(
1

n

n∑
u=1

1
{
Xu > er

})
− log

(
1

n

n∑
u=1

1
{
Xu > er+1

})
(1)

ât comes with a high probability finite-time concentration guarantee

∣∣∣ 1
αk
− ĥk,t

∣∣∣ ≤ D√log(1/δ)T
−b/(2b+1)
k,t = B1(Tk,t) (2)

Associated estimator of constant C

Ĉk,t = T
1/(2b+1)
k,t

 1

Tk,t

Tk,t∑
u=1

1
{
Xk,u ≥ T

ĥk,t/(2b+1)
k,t

} (3)

Ĉk,t has also a high probability finite-time concentration guarantee

∣∣∣Ck − Ĉk,t∣∣∣ ≤ E√log(Tk,t/δ) log(Tk,t)T
−b/(2b+1)
k,T = B2(Tk,t) (4)

EXTREMEHUNTER’s UCB index((
Ĉk,t +B2 (Tk,t)

)
n
)ĥk,t+B1(Tk,t)

Γ̄
(
ĥk,t, B1 (Tk,t)

)
(5)

EXTREMEHUNTER
Input and Initialization:
b: where b ≤ βk for all k ≤ K
N : minimum number of pulls of each arm
Tk ← 0 for all k ≤ K
δ ← exp(− log2 n)/(2nK)

Run:
for t = 1 to n do

for k = 1 to K do
if Tk ≤ N then
Bk,t ←∞

else
estimate ĥk,t using (1) that verifies (2)
estimate Ĉk,t using (3) that verifies (4)
update Bk,t using (5) with (2) and (4)

end if
end for
Play arm kt ← arg maxk Bk,t
Tkt ← Tkt + 1

end for

REGRET BOUND FOR EXTREMEHUNTER
Theorem 2. Assume that the distributions of the arms are respectively
(αk, βk, Ck, C

′) second order Pareto with mink αk > 1. If n ≥ Q, the
expected extreme regret of EXTREMEHUNTER is bounded from above as:

E [Rn] ≤ L(nC∗)
1
α∗
(
K
n log(n)

2b+1
b + n− log(n)(1− 1

α∗ ) + n
−b

(b+1)α∗
)

where L,Q > 0 are some constants depending on (αk, Ck)k, C
′, and b.

ANALYSIS

Step 1 • Favorable high probability event ξ of interest.

Step 2 • Given ξ, we bound the estimates of αk and Ck, and use
them to bound the main upper confidence bound.

Step 3 • With high probability we do not pull suboptimal arms
too often.
• Guarantees that the number of pulls of the optimal arms ∗
is on ξ equal to n up to a negligible term.

Step 4 • Lower bound the expectation of maximum of the col-
lected samples.
• Straightforward in classical bandits by the linearity of the
expectation. Challenging in extreme bandits.
• Show that the expectation of maximum on ξ is not far
away from the one without conditioning on ξ.

Remarks:

• It is not possible to learn β.

• The larger β, the easier the problem (parametric for β =∞).

• The smaller α∗, the easier the problem (easier to identify).

EXPERIMENTS
Comparison of extreme regret for:

• EXTREMEHUNTER

• UCB - mean-optimizing strategy

• THRESHOLDASCENT - state-of-the-art max-k strategy

Exact Pareto Distributions

• 3 arms with Pk(x) = 1− x−αk , where α = [5, 1.1, 2]

• the heaviest tail coincides with the largest mean
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Comparison of extreme bandit strategies (K=3)
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• easy parametric setup

• UCB performs well in terms of extreme regret

Approximate Pareto Distributions

• P1(x) = 1− x−1.5 and P3(x) = 1− x−3

• P2(x) is a mixture distribution

– mixture weight of 0.8 of the Dirac(0)

– mixture weight of 0.2 of 1− x−1.1

• the second arm→ the most heavy-tailed

• but the first arm→ the largest mean

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

500

1000

1500

2000

2500

time t

ex
tr

em
e 

re
gr

et

Comparison of extreme bandit strategies (K=3)

 

 
ExtremeHunter
UCB
ThresholdAscent

Computer Network Traffic Data

• heavy-tailed network traffic data

• collected from user laptops in the enterprise environment

• sample ≡ number of network events in 4 seconds
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Comparison of extreme bandit strategies on the network data K=5
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