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Graph Learning

Graph are ubiquitous in machine learning:
constructed graphs discretized PDE, similarity function
natural graphs social networks, gene interaction, co-purchase

Machine learning is ubiquitous on graphs:
De-noising
Semi-Supervised Learning (SSL)/Label propagation
Spectral clustering
Pagerank

Facebook’s trillion edge graph: n = 109 and m = 1012 [Ching et al. 2015]

Large graphs do not fit in a single machine memory
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Scalable Graph Learning

G with n nodes and m edges
naively O(m) space and O(mt) time for t ≤ n iterations

Hard to solve with engineering:
multiple passes slow, distribution has communication costs

Black-box acceleration methods:

Reduce iterations t: fast graph solvers O(m · log(n)) time
[Koutis et al. 2011; Kyng and Sachdeva 2016]

Reduce the number of edges m

Hard to do in natural graphs where sparsity level cannot be chosen
removing edges impacts structure/accuracy

Make the graph sparse, while preserving its structure for learning
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Graph Spectral Sparsification

Definition (Spielman and Srivastava 2011)

An ε-sparsifier of G is a reweighted subgraph H whose Laplacian LH satisfies

(1− ε)LG � LH � (1 + ε)LG (1)

Proposition (Spielman and Srivastava 2011; Kyng, Pachocki, et al. 2016)

There exists an algorithm that can construct an ε-sparsifier
with only O(n log(n)/ε2) edges
in O(m log2(n)) time and O(n log(n)/ε2) space
a single pass over the data
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Graph Spectral Sparsification in Machine Learning

Laplacian smoothing (denoising): given y , f? + ξ and G compute

min
f∈Rn

(f − y)T(f − y) + λfTLGf (2)

Preproc Time Space
f̂ = (λLG + I)−1y 0 O(m log(n)) O(m)

f̃ = (λLH + I)−1y O(m log2(n)) O(n log2(n)) O(n log(n))

Large computational improvement
accuracy guarantees! [Sadhanala et al. 2016]

Need to approximate spectrum only up to regularization level λ
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Ridge Graph Spectral Sparsification

Definition (This paper)

An (ε, γ)-sparsifier of G is a reweighted subgraph H whose Laplacian LH satisfies

(1− ε)LG − εγI � LH � (1 + ε)LG + εγI (3)

Mixed multiplicative/additive error
large (i.e. ≥ γ) directions reconstructed accurately
small (i.e. ≤ γ) directions uniformly approximated (γI)

Adapted from Randomized Linear Algebra (RLA) community
PSD matrix low-rank approx. [Alaoui and Mahoney 2015]

RLA → Graph: Improve over O(n log(n)) size exploiting regularization
Graph → RLA: Exploit LG structure for fast (ε, γ)-sparsification
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How to construct an ε-sparsifier

For complete graphs, sample O(n log(n)) edges uniformly and reweight
For generic graphs, sample O(n log(n)) edges uniformly? For generic
graphs, sample O(n log(n)) edges uniformly? For generic graphs,
sample O(n log(n)) edges using effective resistance

https://math.berkeley.edu/~nikhil/

Effective resistance re = bT
eL+
Gbe of an edge

inverse of number of alternative paths
sum of re is n − 1
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How to construct an (ε, γ)-sparsifier

Definition
γ-effective resistance: re(γ) = bT

e(LG + γI)−1be

Effective dim.: deff(γ) =
∑

e re(γ) =
∑n

i=1
λi(LG)
λi(LG)+γ ≤ n

Can still be computed using fast graph solvers
interpretation as inverse of alternative paths lost

Most existing graph algorithms inapplicable [Kyng, Pachocki, et al. 2016]
Most existing RLA algorithms too slow [Cohen et al. 2017]

Adapt SOA algorithm for kernel matrix approximation
SQUEAK, Calandriello et al. 2017
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DisRe

arbitrarily split in subgraphs that fit in a single machine

recursively merge-and-reduce until one graph left
additive error cumulates!

merge-and-resparsify
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Sparsification

Compute p̃(1)
e ∝ r̃ (1)e (γ) using fast graph solver

For each edge e sample with probability p̃(1)
e

w.h.p. (ε, γ)-accurate and use only O(deff(γ) log(n)) ≤ O(n log(n)) space
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Merge

Combine sparsifiers, using 2O(deff(γ) log(n)) space

twice as large as necessary
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Merge-and-Resparsify

Compute p̃(2)
e ∝ min{r̃ (2)e (γ), p̃(1)

e } using fast graph solver

For each edge e sample with probability p̃(2)
e /p̃(1)

e

survival probability p̃(2)
e

p̃(1)
e

p̃(1)
e

survival probability p̃(2)
e

Z
Zp̃(1)
e

Z
Zp̃(1)
e
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DisRe guarantees

Theorem
Given an arbitrary graph G w.h.p. DisRe satisfies
(1) each sub-graphs is an (ε, γ)-sparsifier
(2) with at most O(deff(γ) log(n)) edges.

Space: independent from m O(deff(γ) log(n)) ≤ O(n log(n))

Time: O(deff(γ) log3(n)) for fully balanced tree Communication: only
O(log(n)) rounds

removed edges are forgotten single pass/streaming
point-to-point, centralization only to choose tree
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Guarantees for Laplacian smoothing

f̂ = (λLG + I)−1y, f̃ = (λLH + I)−1y

Theorem (Sadhanala et al. 2016 This paper)

If LH is an (ε, 0) (ε, γ) -sparsifier of LG

‖f̃ − f̂‖2
2 ≤

ε2

1− ε (0.25 + λγ)
(
λf̂TLG f̂ + λγ‖f̂‖2

2

)
.

O(deff(γ) log(n)) space, O(deff(γ) log3(n)) time
exploit regularization: H sub-linear in n

Recover bound for ε-sparsifier when γ → 0
freely cross-validate γ since deff(0) ≤ n

trade-off between smoothness and decay of LG
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Experiments
Dataset: Amazon co-purchase graph [Yang and Leskovec 2015]

natural , artificially sparse (true graph known only to Amazon)
we compute 4-step random walk to recover removed co-purchases
[Gleich and Mahoney 2015]

Target: eigenvector v associated with λ2(LG) [Sadhanala et al. 2016]

n = 334, 863 nodes, m = 98, 465, 352 edges (294 avg. degree)

Alg. Parameters |E| (x106) ‖̃f − v‖2
2 (σ=10−3) ‖̃f − v‖2

2 (σ=10−2)

EXACT 98.5 0.067 ± 0.0004 0.756 ± 0.006
kN k = 60 15.7 0.172 ± 0.0004 0.822 ± 0.002
DisRe γ=0 22.8 0.068 ± 0.0004 0.756 ± 0.005
DisRe γ=102 11.8 0.068 ± 0.0002 0.772 ± 0.004

Time: Loading G from disk 90sec, DisRe 120sec(k = 4 × 32 CPU),
computing f̃ 120sec, computing f̂ 720sec
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Recap and open questions

Remark (Sadhanala et al. 2016)
To the best of our knowledge, [graph sparsification] applications in
machine learning have not yet been thoroughly pursued.

introduction of (ε, γ)-sparsifiers to Graph ML
DisRe, new distributed algorithm to construct (ε, γ)-sparsifiers
new results for fast Laplacian Smoothing
new results for fast SSL using ε-sparsifiers (at poster #76)

Open questions
other accelerated Graph ML algorithms using (ε, γ)-sparsifiers
more experiments on dense graphs
Facebook: 300 average friends [Pew Research Center 2013]
Twitter 453 average followers, 3.4x denser 2012-16 [Leskovec et al. 2007]
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