
ImprovedLarge-ScaleGraphLearning
throughRidgeSpectralSparsification

DanieleCalandriello1,2, IoannisKoutis3, AlessandroLazaric4,MichalValko1

1SequeL team, INRIA Lille - Nord Europe. 2 LCSL-IIT/MIT. 3 New Jersey Institute of Technology. 4 Facebook AI Research Paris.

Motivation
Graphs are ubiquitous (e.g. Facebook n = 109,m = 1012)

typical graph algorithm has O(mn) time and O(m) space cost

Large graphs do not fit in a single machine memory

Hard to solve with engineering:
multiple passes slow, distribution has communication costs

Hard to solve for natural graphs (i.e. no vectorial representation)
sparsity level cannot be chosen

Make the graph sparse, while preserving its spectral structure

Already known in graph community: spectral graph sparsifiers
but ML models also have regularization

1) Can we reduce memory costs without reducing accuracy?
2) Does regularization help us to further reduce memory costs?
3) Can we do so without assumptions and increased runtime?

Learning on Graphs
The graph G = (X , E) is undirected and weighted
• |X | = n nodes and |E| = m edges
• The weights aei,j encodes the distance between nodes

The Laplacian of G is the PSD matrix LG , DG −AG .
• Using edge-indicator vector be ,

√
ae(χi − χj)

LG =
∑
e beb

T
e = BT

GBG Positive Semi-Definite
• G is connected, LG has only one 0 eigenvalue and Ker(LG) = 1

Laplacian smoothing (LapSmo) with Gaussian noise.
Let y , f? + ξ be a noisy measurement of f? with [ξ]i ∼ N (0, σ2).

f̂ , arg min
f∈Rn

(f − y)T(f − y) + λfTLGf = (λLG + I)−1y, (1)

where λ is a regularization parameter.

Graph semi-supervised learning (SSL).
• There exists a label yi for each node in G
• S is the set of l labeled nodes
• T is the set of u = n− l unlabeled nodes
• IS ∈ Rn×n is the diagonal indicator matrix of nodes in S
• C = clIS + cuIT and cl ≥ cu > 0
• yS , ISy ∈ Rn
• With input X , S and yS , return a labeling f ∈ Rn

harmonic function solution (HFS):

f̂HFS , arg min
f∈Rn

1
l (f − y)TIS(f − y) + λfTLGf

= (λlLG + IS)+yS . (2)

stable harmonic function solution (STA):

f̂STA = arg min
f∈Rn

1
l (f − y)TIS(f − y) + λfTLGf + µ

l f
T1

= (λlLG + IS)+
(
yS −

yT
S(λlLG + IS)+1

1T(λlLG + IS)+1
1

)
. (3)

local transductive regression solution (LTR):

f̂LTR , arg min
f∈Rn

(f − y)TC(f − y) + fT(LG + λI)f

= (C−1(LG + λI) + I)−1yS . (4)

Spectral clustering (SC).

F̂ , arg min
F:FTF=Ik,fc⊥1

Tr(FTLF).

Near-Linear Time Solvers
Pseudo-inverse L+

G dense
O(n3) time to construct and O(n2) space to store

Use iterative method (e.g. GD) to solve ‖LGx− y‖2:
O(m) space, O(mt) time, λmax(LG)/λmin(LG) ' n iter.

Preconditioned Conjugate GD + recursive sparsification
O(m) space, O(m log(n)) time, λmax(LG)/λmin(LG) ' 1 iter.

Cost of learning on graph: O(m) space/time, O(log(n)) passes

Ridge Spectral Sparsifiers

Definition 1. A (ε, γ)-spectral sparsifier of G is a re-weighted sub-
graph H ⊆ G whose Laplacian LH satisfies

(1− ε)LG − εγI � LH � (1 + ε)LG + εγI. (5)

Spectrum is preserved with mixed multiplicative/additive error

(1 − ε)λi(LG)− εγ ≤ λi(LH) ≤ (1 + ε)λi(LG) + εγ,

Preserves all directions larger than γ
An (ε, 0)-spectral sparsifier is a traditional ε-sparsifier

Definition 2. Given a graph G, define
γ-effective resistance: re(γ) = bT

e (B
T
GBG + γI)−1be

Effective dimension: deff(γ) =
∑
e re(γ) =

n∑
i=1

λi(LG)

λi(LG) + γ
≤ n

Proposition 1 ([5] (informal)). Starting from the empty graph, con-
struct H by adding each edge in G to H independently with prob-
ability pe = qre(γ) . If q ≥ 4 log(4n/δ)/ε2 , then w.p. 1 − δ, H is an
(ε, γ)-sparsifier with O(deff(γ)q) edges.

Computing re(γ) requires O(m) time/space and multiple passes over the graph. Can we do better?

Distributed Sequential Resparsification

DiSRe

Algorithm 1 The DiSRe algorithm.
1: Input: G ε, γ, δ, Output: (ε, γ)-sparsifier HG
2: Partition G into k sub-graphs:

H1,l ← Gl ← {(ei,j , p̃1,e = 1)}
3: Initialize set S1 = {H1,l}kl=1

4: for h = 1, . . . , k − 1 do
5: Pick two sparsifiers Hh,i′ ,Hh,i′ from Sh
6: H ← Merge-Resparsify(Hh,i,Hh,i′)
7: Place H back into Sh+1

8: end for
9: Return HG , the last sparsifier in Sk

Algorithm 2 Merge-Resparsify
1: Input: (ε, γ)-sparsifiers Hh,i,Hh,i′ of graphs Gh,i,Gh,i′
2: Output: H, an (ε, γ) sparsifier of Gh,i + Gh,i′
3: Initialize H = Hh,i +Hh,i′
4: For all e ∈ H, use a fast SDD solver to compute

r̃h+1,e(γ)← (1− ε)bT
e (LH + (1 + ε)γI)−1be

5: Set probabilities p̃h+1,e ← min{qr̃h+1,e(γ), p̃h,e}
6: Sample zh+1,e from Bernoulli(p̃h+1,e/p̃h,e) (i.e. coin-flip)
7: Return H ← {(ei,j , p̃h+1,e)} for all zh+1,e 6= 0

Theorem 1. Let ε > 0 be the accuracy, 0 ≤ δ ≤ 1 the probability
of error, and ρ , (1 + 3ε)/(1 − ε). Given an arbitrary graph G and
an arbitrary merge tree structure, if DiSRe is run with over-sampling
parameter q , 26ρ log(3n/δ)/ε2, then with probability 1− δ
(1) each sub-graphs H{h,l} is an (ε, γ)-sparsifier of G{h,l}
(2) with at most 3qdeff(γ) edges.

Space: O(deff(γ) log(n)) ≤ O(n log(n)) (independent from m)

Time: O(deff(γ) log3(n)) for fully balanced and k ≥ m/(deff(γ)q)

With only O(m log3(n)) work (loading G is Ω(m))

Communication: only O(log(n)) rounds
removed edges are forgotten single pass/streaming

point-to-point, centralization only to choose tree

SSL with DiSRe
Setting. The labels are bounded |y(x)| ≤ c and F is the set of centered functions such that |f(x)− y(x)| ≤ 2c.

Theorem 2. If the labels ỹS are centered then, w.p. 1 − δ, f̂STA computed on a (ε, 0) -sparsifier
H satisfies

R(f̃) ≤ R̂(f̂) + β +

(
2β +

c2(l + u)

lu

)√
π(l, u) ln 1

δ

2
+

1 + ε

1− ε

(
2εlγλ2(LG)c

((1 − ε)lγλ2(LG)− 1)2

)2

,

β ≤ 3c
√
l

((1 − ε)lγλ2(LG)− 1)2
+

4c

(1 − ε)lγλ2(LG)− 1
, π(l, u) ,

lu

l + u− 0.5

2max{l, u}
2max{l, u} − 1

O(n log(n)) space, O(n log3(n)) time
O(m log3(n)) work

EXACT O(m) time/space

Preserve risk rate: only 1+ε
1−ε slower

First bound without assumptions on G
require centered f̃

LapSmo with DiSRe

Theorem 3. Let f̂ be the LapSmo solution computed using LG and f̃ the solution
computed using its (ε, γ)-sparsifier LH. Then,

‖f̃ − f̂‖22 ≤
ε2

1− ε (0.25 + λγ)
(
λf̂TLG f̂ + λγ‖f̂‖22

)
.

O(deff(γ) log(n)) space, O(deff(γ) log3(n)) time
exploit regularization: H sub-linear in n

In general, requires γ ∝ f̂TLG f̂/‖f̂‖
trade-off between smoothness and decay of LG

Experiments
Dataset: Amazon co-purchase graph from https://snap.stanford.edu/data/com-Amazon.html (Yang and Leskovec, 2012)
n = 334, 863 nodes, natural , artificially sparse (true graph known only to Amazon)

we compute 4-step random walk to recover removed co-purchases, m = 98, 465, 352 edges (294 avg. degree)

Target: For LapSmo v eigenvector associated with smallest eigenvalue of LG , for SSL sign(v).

Alg. Parameters |E| (x106) Err. SSL (l=346) Err. SSL (l=672) Err. D(f̃)(σ=10−3) Err. D(f̃) (σ=10−2)
EXACT 98.5 0.312 ± 0.022 0.286 ± 0.010 0.067 ± 0.0004 0.756 ± 0.006
kN k = 60 15.7 0.329 ± 0.0143 0.311 ± 0.027 0.172 ± 0.0004 0.822 ± 0.002
kN k = 90 21.2 0.334 ± 0.024 0.311 ± 0.024 0.125 ± 0.0002 0.811 ± 0.003
DiSRe γ=0, q=100 15 0.314 ± 0.0165 0.296 ± 0.015 0.068 ± 0.0003 0.758 ±0.005
DiSRe γ=0, q=150 22.8 0.314 ± 0.0158 0.310 ± 0.024 0.068 ± 0.0004 0.756 ± 0.005
DiSRe γ=103, q=100 7.3 − − 0.072 ± 0.0003 0.789 ± 0.005
DiSRe γ=102, q=100 11.8 − − 0.068 ± 0.0002 0.772 ± 0.004
DiSRe γ=10, q=100 14.4 − − 0.068 ± 0.0004 0.760 ± 0.004

Time: Loading G from disk 90s, DiSRe 720s(k = 4 × 8 CPU) - 120s(k = 4 × 32 CPU), kN 60s, computing f̃ 120s, computing f̂ 720s
Space EXACT and G 30GB, DiSRe or kN and H 10GB

References
[1] Belkin, M., Matveeva, I., and Niyogi, P.. Regularization and Semi-

Supervised Learning on Large Graphs. In COLT, 2004.
[2] Cortes, C., Mohri, M., Pechyony, D., and Rastogi, A.. Stability of

transductive regression algorithms. In ICML, 2008.
[3] Koutis, Ioannis, Miller, Gary L., and Peng, Richard. A nearly-m log

n time solver for SDD linear systems. In FOCS, 2011.
[4] Calandriello, D., Lazaric, A., and Valko, M. Distributed sequential

sampling for kernel matrix approximation. In ICML, 2017.
[5] Cohen, M., Musco, C., and Musco, C. Input sparsity time low-rank

approximation via ridge leverage score sampling. In SODA, 2017.
[6] Fergus, Rob, Weiss, Yair, and Torralba, Antonio. Semi-Supervised

Learning in Gigantic Image Collections. In NIPS, 2009.
[7] Kelner, J. A. and Levin, A.. Spectral Sparsification in the Semi-

streaming Setting. Theory of Comput. Syst., 53(2):243–262, 2013.

